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Abstract: The chromatin-remodeler SPOC1 (PHF13) is a transcriptional co-regulator and has been
identified as a restriction factor against various viruses, including human cytomegalovirus (HCMV).
For HCMV, SPOC1 was shown to block the onset of immediate-early (IE) gene expression under
low multiplicities of infection (MOI). Here, we demonstrate that SPOC1-mediated restriction of IE
expression is neutralized by increasing viral titers. Interestingly, our study reveals that SPOC1 exerts
an additional antiviral function beyond the IE phase of HCMV replication. Expression of SPOC1
under conditions of high MOI resulted in severely impaired viral DNA replication and viral particle
release, which may be attributed to inefficient viral transcription. With the use of click chemistry,
the localization of viral DNA was investigated at late time points after infection. Intriguingly, we
detected a co-localization of SPOC1, RNA polymerase II S5P and polycomb repressor complex 2
(PRC2) components in close proximity to viral DNA in areas that are hypothesized to harbor viral
transcription sites. We further identified the N-terminal domain of SPOC1 to be responsible for
interaction with EZH2, a subunit of the PRC2 complex. With this study, we report a novel and potent
antiviral function of SPOC1 against HCMV that is efficient even with unrestricted IE gene expression.

Keywords: human cytomegalovirus; restriction factor; viral transcription; antiviral; chromatin
remodeler; RNA Pol II; dual role

1. Introduction

Viruses must overcome the barriers of host defense mechanisms to establish a suc-
cessful infection. The first line of intracellular protection, known as intrinsic immunity, is
exerted by so-called restriction factors (RFs), which are constitutively expressed cellular
proteins with antiviral functions (reviewed in [1]). A number of RFs against various viruses
are known; among them is the cellular protein SPOC1 (survival time-associated PHD (plant
homeodomain) in ovarian cancer 1), also called PHF13 (PHD finger 13) [2–4].

This highly conserved protein was firstly described in 2005 in the context of ovarian
carcinoma, where high expression levels were demonstrated to correlate with poor survival
prognosis [5]. Under physiological conditions, enhanced expression of SPOC1 is reported
in fast-proliferating cell types [5]. Bördlein et al. showed in 2011 that the protein is essential
for stem-cell differentiation in testis and spermatogenesis [6]. Furthermore, SPOC1 is
important for regulating the DNA damage response. Here, it is recruited to DNA double-
strand breaks, influences DNA compaction factors and favors homologous recombination
over non-homologous end joining [7]. SPOC1 is located in chromosomal region 1p36.3,
and the encoded protein is 300 amino acids in length. It comprises an N-terminal domain
(NTD), two PEST domains and a PHD domain and harbors a nuclear localization signal [8].
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The PEST domains contribute via their peptide sequences, consisting of proline (P),
glutamic acid (E), serine (S) and threonine (T), to the instability of soluble SPOC1. In
contrast, the protein gains stability when bound to chromatin [8]. This chromatin associ-
ation is either mediated by the PHD domain or by a centrally located region of SPOC1.
SPOC1 is able to directly bind chromatin via H3K4me2/3 interactions and indirectly via
the polycomb repressive complex 2 (PRC2) and RNA polymerase II (RNAP II) [9]. SPOC1
targets genes that are transcriptionally more active and is classified as a H3K4me2/3 reader.
Chung et al. showed in 2016 that a depletion of SPOC1 leads to the disturbance of in-
teractions between PRC2, the serine 5 phosphorylated form of RNAP II (RNAPII S5P)
and H3K4me3/H3K27me, which subsequently leads to up- or downregulation of various
genes [10]. SPOC1 was therefore concluded to function as a transcriptional regulator that
favors either activation or repression of specific genes. This transcriptional regulation
was found to be dependent on the specific chromatin landscape of the respective gene.
In the presence of histone modifications H3K4me2/3 and H3K27me3 as well as PRC2
components and RNAP II S5P, SPOC1-bound genes were found to be inaccessible and
repressed. In contrast, another group of SPOC1-bound genes, which displayed a prepon-
derance of H3K4me2/3, RNAP II S2P and S5P, was found to be actively expressed [10].
SPOC1 functions as a scaffold stabilizing PRC2 and RNAPII S5P. Upon SPOC1 depletion, an
upregulation of PRC2-repressed genes was reported [10]. Furthermore, binding of SPOC1
has been shown to shift histone modifications towards repressive marks via recruiting
several heterochromatin-inducing factors, such as histone methyltransferases SETDB1 and
G9A [7].

In the context of viral infection, SPOC1 has been identified as an RF against aden-
ovirus (Ad) [2], human immunodeficiency virus 1 (HIV-1) [3] and human cytomegalovirus
(HCMV) [4]. HCMV, a highly adapted β-herpesvirus, remains mostly asymptomatic in
immunocompetent individuals but can lead to severe and life-threatening diseases in im-
munocompromised patients (reviewed in [11]). During lytic infection, viral gene expression
occurs in three sequential phases. In the immediate-early (IE) phase, the virus antagonizes
cellular barriers and establishes an optimal cellular environment for the onset of the early
(E) phase, which prepares for viral DNA replication. During the late (L) phase, DNA
replication takes place, and novel viral particles are assembled (reviewed in [12]). The main
regulatory element of the IE phase and all subsequent steps of viral infection is the major
immediate early promoter (MIEP). This promoter drives expression of the two main IE
gene products, IE1 and IE2. These two proteins, which are encoded by spliced RNAs, act
as important effector proteins, regulating further downstream events of HCMV infection
(reviewed in [13]). SPOC1 has been demonstrated to associate with the MIEP during the
very first hours of HCMV infection, which correlates with a block of IE gene expression,
probably via the recruitment of heterochromatin building factors [4]. It has been shown
that SPOC1-mediated restriction only takes place when SPOC1 is expressed during the
start of infection. So far, a role of SPOC1 during later times of lytic replication has not
been investigated. Interestingly, for HIV-1, SPOC1 has been reported to play a dual role
during the viral life cycle [3]. When SPOC1 levels were enhanced prior to viral integration,
it favored HIV-1 integration, while SPOC1 overexpression after integration displayed an
antiviral role via suppression of viral gene expression.

Here, we were interested to answer the question of whether SPOC1 exerts additional
functions during later phases of the HCMV replication cycle. Not only did we find that
this cellular protein acts as a cellular restriction factor of viral IE gene expression, but we
observed a strong negative impact of SPOC1 on viral particle release. Under high MOI
conditions that ensured an undisturbed IE phase in SPOC1-expressing cells, we found a
severely impaired viral DNA replication. SPOC1 potently blocked viral gene transcription,
resulting in diminished protein expression. Furthermore, we detected a co-localization
of SPOC1 with PRC2 components and RNAP II S5P in close proximity to viral DNA at
late times of replication. Finally, we confirmed the interaction of SPOC1 with the PRC2
component EZH2 and found the N-terminal domain of SPOC1 to mediate this interaction.
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Based on these data we conclude that SPOC1 not only represses the MIEP directly after
the onset of infection but also mediates a second defense layer in cells with incomplete
shutdown of the IE phase via repressing viral early and late gene transcription.

2. Materials and Methods
2.1. Plasmids and Cloning

The coding sequence of SPOC1 was cloned into the pHM971 plasmid (pcDNA3-based
expression vector with FLAG-tag, described in [14] with oligonucleotides SPOC1_BamHI_fw
and SPOC1_EcoRI_rev, resulting in N-terminally FLAG-tagged SPOC1 WT [pHM4299]).
pHM971 without SPOC1 served as the negative control. Furthermore, deletion mutants of
SPOC1 were generated by amplification of the relevant SPOC1 sequences with the same
forward primer and SPOC1_231.EcoRI_rv (aa 1-231) or SPOC1_150.EcoRI_rv (aa 1-150)
and cloning into the same plasmid. N-terminally FLAG-tagged SPOC1 deletion mutant aa
64-300 (pF1017) was kindly provided by Andreas Winterpacht (Erlangen, Germany), as
well as a pcDNA3.1-based expression vector for EZH2 (pF1071). For primer sequences, see
Table S1.

2.2. Cells and Transfection

Primary human foreskin fibroblasts (HFFs) were cultivated in Eagle’s minimal es-
sential medium (Gibco, Thermo Fisher Scientific Inc., Waltham, MA, USA) containing 7%
fetal calf serum (FCS) (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany), 1% GlutaMAX
(Gibco, Thermo Fisher Scientific Inc., Waltham, MA, USA), and penicillin-streptomycin
(Sigma-Aldrich, Merck KGaA, Darmstadt, Germany) at 37 ◦C and 5% CO2. The stable
SPOC1-expressing cells (HFF/SPOC1) and the respective control cells (HFF/Ctrl) as well
as SPOC1-inducible HFFs (HFF/ind.SPOC1) were described in [4]. HFF/mCherry-SPOC1
cells, which were utilized for immunofluorescence experiments, were generated as follows:
the SPOC1 coding sequence was cloned into the expression plasmid pLKO-EF1-α-mCherry
and used for generation of replication-deficient lentiviral particles (as previously described
in [4]). The lentiviral supernatant was then utilized for transduction of HFFs, which
resulted in HFF/mCherry-SPOC1. Additionally, a control cell line HFF/mCherry was
established [15]. For selection, the medium was supplemented with 500 µg/mL geneticin
(InvivoGen, Toulouse, France). Cells displayed a transduction efficiency of 70% [15].
HEK293T cells were cultivated in Dulbecco’s minimal essential medium (DMEM) sup-
plemented with glutamine (Gibco, Thermo Fisher Scientific Inc., Waltham, MA, USA),
10% FCS (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany) and penicillin-streptomycin
(Sigma-Aldrich, Merck KGaA, Darmstadt, Germany).

2.3. Infection and Virus Stock Titration

On day one, 3 × 105 HFF/well were seeded in 6 wells and incubated for two days
to ensure complete density. On day four, cells were infected with either HCMV TB40/E
wildtype (WT) [16] or AD169 WT [17], with multiplicities of infection (MOI) between 0.01
and 3. Cells were provided with fresh medium at 1.5 hpi. Virus titration, based on IE
protein-forming units (IEUs), was performed as previously described in [18].

2.4. Western Blotting and Quantification

Whole cell lysates from harvested cells were mixed with 4× sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) loading buffer and incubated at 95 ◦C
for 10 min prior to 1 min of sonification (Q700 Sonicator, QSonica, Newton, MA, USA).
The samples were separated on 10% or 12% SDS-polyacrylamide gels and afterwards
transferred onto PVDF membranes (BioRad, Feldkirchen, Germany). Using a FUSION
FX7 imaging system (Vilber Lourmat, Eberhardzell, Germany), proteins were detected via
chemiluminescence. The antibodies that were used for infection experiments were anti-β-
actin AC15 (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany), anti-SPOC1 m45/6F6
(kindly provided by Sabrina Schreiner, Freiburg, Germany) [8], anti-IE1 p63-27 [19], anti-IE2
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pAB178 [14], anti-UL44 BS510 (kindly provided by B. Plachter, Mainz, Germany), anti-MCP
28-4 [20] and anti-pp28 41-18 [21]. Anti-EZH2 (Cell Signaling Technology, Frankfurt am
Main, Germany) and anti-FLAG 1804 (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany)
antibodies were used for CoIP experiments. Horseradish peroxidase-conjugated anti-rat,
anti-mouse and anti-rabbit secondary antibodies for Western blot analysis were purchased
from Dianova (Hamburg, Germany). For quantification, the signal intensities of each band
on one membrane were measured using the Image Lab software (Bio-Rad, Feldkirchen,
Germany) and normalized to beta-actin stained on the same membrane.

2.5. Replication and Release Assays

Quantification of intra- and extracellular viral DNA was performed via quantitative
TaqMan real-time PCR using infected cells and their supernatants at 96 hpi as described
elsewhere [22]. The utilized oligonucleotides were CMV/IE1 plus the regarding probe MIE
FAM/TAMRA as well as Albumin primers and Alb FAM/TAMRA. For primer sequences,
see Table S1.

2.6. RNA Isolation and Quantitative SYBR Green Reverse Transcription-PCR (qRT-PCR)

RNA was isolated from infected cells, cDNA was synthesized and used for qRT-PCR
using the AriaMx Real-Time PCR System (Agilent, Santa Clara, CA, USA) as previously
described [23]. Primer pairs for GAPDH, UL123 (IE1), UL122 (IE2) [24], US3 [25], UL44 [26],
UL82 (pp71) [27], UL86 (MCP) [26] and UL99 (pp28) [25] were used. For primer sequences,
see Table S1.

2.7. Indirect Immunofluorescence

Indirect immunofluorescence analysis was performed as described elsewhere [28]. For
investigation of later stages of HCMV infection, the cells were treated with 2 mg/mL γ-
globulins from human blood (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany) prior to
incubation with primary antibodies (see Western Blotting and Quantification). Additionally,
anti-SUZ12 (Cell Signaling Technology, Frankfurt am Main, Germany), anti-RNA Pol II 4H8
(Abcam, Berlin, Germany) and anti-RNA Pol II 8WG16 (Covance, Princeton, NJ, USA) were
used as primary antibodies. Secondary antibodies utilized for indirect immunofluorescence
were combinations of mouse/rat/rabbit Alexa-488/-555 or -647 (Invitrogen, Carlsbad,
CA, USA).

2.8. Labelling of Viral DNA

For direct visualization of viral DNA, either 2′-desoxy-2′-fluor-5-ethinyluridin (F-Ara-
EdU) (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany) [15] or 5-ethynyl-20-deoxy-
cytidine (EdC) (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany) was used. Cells were
seeded on coverslips followed by HCMV infection. F-Ara-EdU (50 µM) or EdC (1 µM) was
added at 72 hpi. At 96 hpi, the cells treated with F-Ara-EdU were fixed, permeabilized
and stained as described above. Click chemistry (copper (I)-catalyzed azide–alkyne cy-
cloaddition) was performed according to [29], with 10 µM Alexa-555-azide in the labelling
solution, for 2 h at RT. After three washing steps, the coverslips were sealed as described
elsewhere [28]. When working with the EdC-treated cells, a quenching step (50 mM glycine
and 50 mM NH4Cl in 0.01 M PBS; for 5 min at RT) was performed prior to membrane
permeabilization. After staining with primary and secondary antibodies (for antibodies,
see Section 2.4, Western Blotting and Quantification, and Section 2.7, Indirect Immunofluo-
rescence), cells were washed three times and incubated in the dark in a labelling solution
containing 0.01 M PBS, 4.15 mM A488 azide (Thermo Fisher Scientific Inc., Waltham, MA,
USA), 1 M Na-ascorbate, 100 mM CuSO4, 1 M aminoguanidine and 100 mM THPTA at RT.
Coverslips were prepared for detection as described above.
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2.9. Co-Immunoprecipitation

Co-Immunoprecipitation (CoIP) was performed with HEK293T cells co-transfected
with an EZH2-expressing plasmid and either a control plasmid expressing only FLAG or
different FLAG-tagged deletion mutants of SPOC1 (see Plasmids and Cloning). At 48 h
post transfection, the cells were harvested, and CoIP was performed as described in [28] but
without sonification. Anti-Flag Magnetic Beads (MedChemExpress, Monmouth Junction,
NJ, USA) were used to pull down FLAG-SPOC1.

3. Results
3.1. HCMV Overcomes SPOC1-Mediated Immediate-Early Repression with Increasing Viral Doses

SPOC1 is a potent restriction factor during the immediate-early phase of HCMV
infection, but so far, it remains unknown whether the protein plays an additional role during
later phases of lytic replication. To investigate this, we established conditions to circumvent
SPOC1-mediated IE repression. One hallmark of restriction factors is that a higher viral
load enables the viruses to overcome the respective restrictive effects [30,31]. Therefore,
we infected SPOC1-expressing fibroblasts (HFF/SPOC1) or control cells (HFF/Ctrl) with
increasing MOIs (0.01, 1 and 3) and analyzed the levels of the IE1 and IE2 effector proteins
at 24 hpi as a marker for an effective rescue of SPOC1-mediated repression of the major
immediate-early promoter (MIEP). We observed that while SPOC1 efficiently suppressed
IE protein expression at an MOI of 0.01, higher MOIs of 1 or 3 led to comparable IE protein
levels after infection of HFF/Ctrl or HFF/SPOC1, respectively (Figure 1, panels A and B).
Based on these results we conducted all subsequent experiments at an MOI of 1 or higher
to ensure a comparable start of infection in both cell populations. This allowed us to be
sure that viral replication differences in SPOC1-expressing cells can be attributed to effects
exerted by SPOC1 during later phases of infection.
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With the use of high doses of HCMV, we established conditions that ensured an un-
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Figure 1. Increasing HCMV doses are able to antagonize SPOC1-mediated repression of IE1 and IE2
expression. (A) The 24 hpi lysates of HCMV-infected control fibroblasts (HFF/Ctrl) and fibroblasts
expressing SPOC1 (HFF/SPOC1) infected with HCMV TB40/E at MOIs of 0.01 (lanes 1 and 2), 1
(lanes 3 and 4) and 3 (lanes 5 and 6) were investigated by Western blotting. Expression levels of viral
immediate-early proteins IE1 and IE2, β-actin and SPOC1 were analyzed. (B) Quantification of IE1
and IE2 signal intensities normalized to β-actin levels in HFF/SPOC1 relative to normalized IE1 and
IE2 levels in HFF/Ctrl of three independent experiments. Statistical analysis was performed using
Student’s t-test (one sample, two-tailed); **** p < 0.0001, * p < 0.05, n.s. = not significant.

3.2. HCMV DNA Replication and Viral Particle Release Are Strongly Restricted upon
SPOC1 Expression

With the use of high doses of HCMV, we established conditions that ensured an un-
bothered IE phase after infection of SPOC1-expressing cells. This enabled us to investigate
the overall impact of SPOC1 on HCMV independent of its already described function as a
restriction factor of the IE phase. To test whether SPOC1 exerts effects during later phases
of HCMV replication, we analyzed the release of viral particles after one complete repli-
cation cycle under conditions of high MOI. For that purpose, HFF/Ctrl and HFF/SPOC1
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were infected with TB40/E at MOIs of 1 and 3. At 96 hpi, supernatants were harvested
and viral genome equivalents were determined via qPCR (Figure 2A). After infection of
HFF/SPOC1, almost no viral particles were released at MOI 1, and significantly fewer
particles could be detected at MOI 3 in comparison to control cells (HFF/Ctrl). In order to
answer the question of whether the antiviral function of SPOC1 already affects viral DNA
replication, we harvested cells that were infected under the same conditions followed by
extraction of DNA. The obtained DNA was analyzed for viral genome equivalents and
normalized to albumin copy numbers (Figure 2B). This revealed a strong decrease of viral
DNA replication in the presence of SPOC1.
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Figure 2. SPOC1 expression negatively affects HCMV DNA replication and viral particle release.
HFF/Ctrl and HFF/SPOC1 were infected in triplicate with HCMV strain TB40/E at an MOI of 1
or 3. (A) At 96 hpi, supernatants were analyzed for viral genome equivalents via qPCR. (B) At
96 hpi, intracellular DNA was isolated and HCMV genome equivalents were quantified via qPCR and
normalized to albumin copy numbers. One out of three independent experiments is shown. Statistical
analysis was performed using Student’s t-test (unpaired, two-tailed); *** p < 0.001, **** p < 0.0001.
(C) Experimental set-up: Doxycycline (Dox)-inducible HFF/SPOC1 cells were either treated with
Dox 24 h prior to or 24 h post infection with AD169 at MOI 0.1. (D) Dox-inducible HFF/SPOC1
was infected with AD169, at MOI 0.1, in triplicate. The infected cells were either left untreated or
treated with Dox 24 h prior to or 24 h post infection (C). At 96 hpi, the supernatant was harvested and
analyzed for viral genome equivalents via qPCR. One out of two experiments is shown. Statistical
analysis was performed utilizing the one sample t-test; * p < 0.05.

To further confirm this, we used fibroblasts with doxycycline-inducible SPOC1 ex-
pression. Reichel et al. showed that expression of SPOC1 24 h prior to infection led to
significantly lower IE1 protein levels, while SPOC1 expression at 8 hpi was no longer able
to repress IE1 [4]. Based on that finding, we infected our cells with AD169 and expressed
SPOC1 either 24 h prior to or 24 h post infection, as the IE phase of HCMV should be
completed at 24 hpi. When we investigated the viral release after 96 h, we found almost
no released particles when SPOC1 was expressed prior to infection. Furthermore, and
consistent with our observations using stable HFFs infected at high MOIs, we found that
SPOC1 expression after the IE phase of HCMV infection led to a significant downregulation
of viral particle release. From those results, we concluded that the cellular protein SPOC1
plays an additional antiviral role against HCMV during later phases of the replication cycle
that seems to be virus strain- and MOI-independent.
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3.3. SPOC1 Leads to Reduced Early and Late Viral Protein Expression

To narrow down the time point of impact of SPOC1 during HCMV infection, we next
analyzed the expression of different viral early and late proteins at 24 to 72 hpi via Western
blotting. In order to exclude strain-specific effects, we used the HCMV strains TB40/E
and AD169 at MOIs of 1 or 3 (Figure 3). Again, we ensured that IE1 protein expression
levels were comparable between both cell populations in each setup (Figure 3B). For all
tested viral early and late proteins, a diminished expression was observed after infection of
HFF/SPOC1 cells compared to the control cells (Figure 3A). This was true for all infection
conditions, with the strongest effects observed for TB40/E infection. The signal intensities
for each viral protein were quantified and normalized to β-actin levels (Figure 3C).
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Figure 3. SPOC1 leads to lower expression levels of viral early and late proteins. (A) Lysates of mock-
infected (m) or TB40/E- (MOI of 3) or AD169-infected (MOI of 3 and 1) HFF/Ctrl and HFF/SPOC1
cells were analyzed at 24 to 72 hpi by separation on a 10 % polyacrylamide gel followed by Western
blot detection of indicated proteins. Expression kinetics of viral immediate-early protein IE1, viral
early protein pUL44 and viral late proteins pp28 and MCP were investigated. Asterisks (*) highlight
the protein bands that are attenuated upon SPOC1 expression. (B) Quantification of IE1 levels
in HFF/SPOC1 normalized to β-actin are depicted as fold change of the normalized IE1 level of
HFF/Ctrl (indicated by dashed line at y = 1). (C) Quantification of early and late viral proteins of
HFF/SPOC1 normalized to β-actin are depicted as fold change of the regarding normalized protein
levels of HFF/Ctrl (indicated by dashed line at y = 1).

The overall downregulation of all tested viral proteins indicates that SPOC1 might
have a general negative impact on the early and late phase of lytic HCMV infection or
negatively influence an early event that in turn regulates all following steps. As similar
tendencies for all conditions were observed, and already an MOI of 1 led to clearly visible
changes in protein levels, the following experiments were also conducted under these
conditions when more practicable.
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3.4. SPOC1 Blocks Transcription of Viral Early and Late Genes

So far, we have observed that, independent of the viral immediate-early phase, SPOC1
expression leads to impaired viral DNA replication and particle release and a downregu-
lation of the expression of viral proteins. As SPOC1 is known to act as a transcriptional
regulator [10], we next asked whether the observed diminished viral protein levels might
be due to the repressive effects of SPOC1 on viral transcription exerted during the early
and late phase of the replication cycle.

HFF/Ctrl and HFF/SPOC1 were infected with AD169 at an MOI of 1. We firstly
ensured comparable IE protein expression levels at 24 hpi in both cell lines via Western
blotting and quantification of the respective signals (Figure 4A). As a further control, IE1
and IE2 mRNA levels were investigated at 8 hpi, as the peak of IE transcription is described
to occur during the very early hours after infection [32,33]. Additionally, we included
the IE gene US3, which is transcribed under control of a different HCMV IE promoter
(Figure 4B) [34]. Infected cells were harvested, followed by RNA isolation, cDNA synthesis
and SYBRgreen qPCR (Figure 4B). As shown in Figure 4, panel B, the transcript levels
of IE1, IE2 and US3 were comparable in HFF/Ctrl and HFF/SPOC1 at 8 hpi. At 48 and
72 hpi, when viral early and late transcription takes place, we used the same approach
with primers for either immediate-early (UL123 [IE1], UL122 [IE2]), early (UL44, UL82
[pp71]) or late viral genes (UL86 [MCP], UL99 [pp28]). All mRNA levels were normalized
to transcription of the housekeeping gene GAPDH.
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24 hpi IE1 and IE2 protein levels were analyzed via SDS PAGE and Western blotting. The relative
intensity values were normalized to β-actin. Quantification of three independent experiments is
shown. Statistical analysis was performed using Student’s t-test (one sample, two-tailed); n.s. = not
significant. (B) IE1, IE2 and US3 transcript levels normalized to GAPDH were evaluated at 8 hpi
using qPCR. Shown are the mean values of triplicates of one out of two experiments. Statistical
analysis was performed using Student’s t-test (one sample, two-tailed). (C) At 48 and 72 hpi, total
cellular RNA was isolated, cDNA was synthesized and viral mRNA levels of two immediate-early,
early and late genes were quantified via qPCR, respectively. Shown are the mean values of triplicates
of one out of three experiments. Statistical analysis was performed with Student’s t-test (unpaired,
two-tailed); ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Consistent with diminished protein levels (Figure 3), we observed a strong and sig-
nificant transcriptional downregulation of each tested gene at late times of the replicative
cycle in SPOC1-expressing cells (Figure 4C). Interestingly, this effect was also true for IE
transcripts, indicating the possibility that SPOC1, despite an unaffected IE phase, affects
the transcription of viral genes of all temporal classes at late times of the replicative cycle.

3.5. SPOC1 Localizes in Close Proximity to Viral DNA during Later Time Points of the
Replicative Cycle

It has been shown that the binding of SPOC1 to specific target genes can lead to
chromatin compaction and repression [7]. Since we observed downregulation of viral
gene expression, not only for protein but even stronger for transcriptional levels, we were
interested to investigate a potential association of SPOC1 with viral DNA. For that, the
localization of SPOC1 during the time course of the HCMV lytic replication cycle was
analyzed using HFFs that express SPOC1 fused to the autofluorescent protein mCherry.
Interestingly, at 48 h after infection with AD169 (MOI 1), SPOC1 accumulated in viral
replication centers (VRCs) marked by pUL44, while during later stages of infection, SPOC1
was redistributed and could be detected in distinct clusters at the peripheries of the VRCs in
close proximity to pUL44 (Figure 5A). In contrast, the control cell population HFF/mCherry
showed no mCherry signal in the cell nucleus at any time point of infection (Figure S1),
underlining the specificity of the observed mCherry-SPOC1 localization.
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purpose, F-ara-EdU was utilized for dynamic metabolic labeling of the viral DNA. 
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Figure 5. SPOC1 localization during the time course of HCMV infection. (A) HFF/mCherry-SPOC1
cells were infected with AD169 at MOI 1 and fixed at the indicated time points. An antibody against
pUL44 was used in combination with the secondary antibody Alexa-488. DAPI staining was used to
visualize the nucleus. (B) At 72 hpi, AD169-infected HFF/SPOC1 (MOI of 1) was treated with F-Ara-
EdU prior to fixation at 96 hpi. Samples were stained for SPOC1 (secondary antibody: Alexa-488) as
well as with an antibody against pUL44 in combination with the Alexa-647 antibody. Click chemistry
was performed to visualize viral DNA (modified from [15]).
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To further evaluate our hypothesis that SPOC1 might associate with viral DNA, we
tested whether the observed protein accumulations co-localize with viral DNA. For that
purpose, F-ara-EdU was utilized for dynamic metabolic labeling of the viral DNA. SPOC1-
expressing HFFs were infected (AD169, MOI of 1), and 72 hpi F-ara-EdU was added. At
96 hpi, the cells were fixed and additionally stained for SPOC1 and pUL44. Click chemistry
(copper (I)-catalyzed azide–alkyne cycloaddition) was performed to visualize viral DNA.
The VRCs in which active viral replication took place were successfully marked by F-Ara-
EdU (Figure 5B; Figure S2). In line with our previous results, we observed an overall
negative correlation between high expression of SPOC1 and the presence of viral DNA
in immunofluorescence analysis, emphasizing our findings of downregulated (p)UL44
and impaired viral DNA synthesis in SPOC1-expressing cell populations (Figure S2).
Additionally, a dot-shaped pattern of viral DNA at the nuclear rim was detected that
co-localized with pUL44 (Figure 5B). The SPOC1 signal was found to be located in the
VRCs and at the nuclear rim, in close proximity to pUL44 and viral DNA, indicating a
potential association of SPOC1 with viral DNA.

3.6. SPOC1 Interacts and co-Localizes with PRC2 Adjacent to Viral DNA

One known interaction partner of SPOC1 is the polycomb repressive complex 2
(PRC2) [10], consisting of the four subunits SUZ12, EED, EZH1 and EZH2. The complex
plays important roles for gene silencing and has histone methyltransferase activity [35].
Furthermore, the combination of PRC2, RNAP II S5P and SPOC1 was found to be localized
at repressed genes [10]. In the context of HCMV infection, PRC2 was described to play a
dual role. While on the one hand, this protein complex is able to silence HCMV genomes
to establish and maintain latency [36], it has also been shown to exert a non-canonical
function that supports lytic viral DNA replication [37]. With localization studies of PRC2,
SPOC1 and viral DNA markers, we aimed to investigate the possible involvement of PRC2
components in mitigating viral transcription during lytic HCMV infection. Viral DNA was
visualized either via click labeling or by staining for the viral replication marker pUL44
(Figure 6). HFF/SPOC1 cells were infected with AD169 at MOI 1, fixed after 96 hpi and
immunostained for SPOC1, pUL44 and either EZH2 (Figure 6A) or SUZ12 (Figure 6B). We
observed a strong co-localization of SPOC1 and both components of the PRC2 complex
in dotted structures at the nuclear rim. When viral DNA was visualized, it appeared in
the VRCs but also in small dots excluded from the viral replication centers and in close
proximity to SPOC1 and PRC2 (Figure 6, panels C and D).

To further confirm this finding and to narrow down the potential protein interaction
interface of SPOC1 and EZH2, various FLAG-tagged SPOC1 mutants were generated, each
lacking specific domains of the protein (Figure 7A). The FLAG-SPOC1 plasmids or an
empty control plasmid was co-transfected with an EZH2-expressing plasmid in HEK293T
cells. SPOC1 was precipitated using an antibody against the FLAG-tag, and a potential
interaction of the two proteins was analyzed via Western blotting and staining for EZH2
(Figure 7B). Despite a very strong expression of the deletion mutant SPOC1 64–300 in
lysate control and immunoprecipitation (IP), only a faint EZH2 band was visible in the
co-immunoprecipitation (CoIP), which is comparable to the control sample in lane 1. As all
other SPOC1 mutants, even mutants exhibiting very low expression levels yielded strong
EZH2 signals after co-precipitation; we concluded that the N-terminal domain of SPOC1
might be crucial for the interaction with the PRC2 component EZH2.
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with AD169 at an MOI of 1. At 96 hpi, the cells were fixed and treated with antibodies directed 

Figure 6. SPOC1 co-localizes with PRC2 components close to viral DNA. HFF/SPOC1 was infected
with AD169 at an MOI of 1. At 96 hpi, the cells were fixed and treated with antibodies directed
against SPOC1, pUL44 and either (A) EZH2 or (B) SUZ12. As secondary antibodies, Alexa-488
(SPOC1) and a combination of either mouse or rabbit Alexa-555 and mouse or rabbit Alexa-647 were
used. DAPI signals visualize the nucleus (modified from [15]). (C,D) At 72 hpi, EdC was added to
SPOC1-expressing cells prior to fixation at 96 hpi. The same antibodies against EZH2 (C) or SUZ12
(D) were used as for (A,B); viral DNA was visualized by click chemistry. Nuclei were visualized by
DAPI staining. Merge images were created from the two images above.
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but not inside VRCs. As already mentioned, the specific combination of various histone 
modifications, PRC2, SPOC1 and particular forms of phosphorylated RNAP II influences 
the mode of action of SPOC1 and thereby decides between activation and repression of 
target genes [10]. Interestingly, in the context of HCMV infection, Tamrakar and col-
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Figure 7. Interaction between SPOC1 deletion mutants and EZH2. (A) Schematic representation of
the generated FLAG-SPOC1 deletion mutants with indicated amino acid sequence. (B) HEK293T
cells were co-transfected with an empty control plasmid or FLAG-SPOC1 deletion mutants together
with an EZH2-expressing plasmid. FLAG-SPOC1 was precipitated, and lysate controls as well as
immuno-precipitated (IP) samples were analyzed via Western blotting. SPOC1 was visualized using
an anti-FLAG antibody. CoIP = Co-Immunoprecipitaton.
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3.7. Co-Localization of SPOC1 and RNA Pol II during Late Stages of Infection

So far, we have provided indications for interaction and co-localization of SPOC1
and PRC2 components with viral DNA that is present in dotted structures at the nuclear
rim but not inside VRCs. As already mentioned, the specific combination of various
histone modifications, PRC2, SPOC1 and particular forms of phosphorylated RNAP II
influences the mode of action of SPOC1 and thereby decides between activation and
repression of target genes [10]. Interestingly, in the context of HCMV infection, Tamrakar
and colleagues demonstrated that only the RNAP II S5P is excluded from VRCs but is
localized in accumulations at the nuclear rim. In contrast, when using antibodies detecting
all forms of RNAP II, they observed signals mainly in VRCs. They concluded that active
viral transcription takes place in areas surrounding the replication centers and is physically
separated from viral DNA synthesis [38]. Therefore, we decided to analyze the RNAP II
localization during HCMV infection in HFF/SPOC1 cells. AD169-infected cells were fixed
at 96 hpi and stained for SPOC1 and RNAP II S5P. Consistent with Tamrakar et al., this
staining resulted in signals at the nuclear rim that are distinct from viral replication centers.
Additionally, we found a clear co-localization of SPOC1 and RNAP II S5P (Figure 8A).
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(B) 8WG16 antibody to mark general RNA Pol II localization. DAPI was used to stain cell nuclei.

In contrast, when we used the antibody 8WG16, which recognizes unmodified RNAP
II, we observed a shift of the signal towards a rather dispersed nuclear pattern with
accumulations inside of nucleoli (Figure 8B). Thus, as proposed by Tamrakar and colleagues,
it is highly suggestive that the punctuate accumulations at the nuclear rim of infected cells
represent regions of ongoing viral transcription [38]. Since we observed a co-localization of
viral DNA with RNAP II S5P, PRC2 components and SPOC1 at these punctuate structures,
we hypothesize that this induces a repressive chromatin landscape that negatively affects
the expression of viral genes at late times of the HCMV replicative cycle.

4. Discussion

SPOC1 has been shown to potently repress the expression of HCMV immediate-early
genes via binding and blocking the MIEP, thereby exerting a strong antiviral effect during
the IE phase and affecting all subsequent steps of infection [4]. This antiviral effect was
shown to be MOI-dependent [4], which is a phenomenon that can be observed for many
restriction factors [30,31]. With this study, we confirm that the known antiviral function of
SPOC1 on HCMV IE gene expression is only effective under low MOI conditions, while
high viral loads rescue the initiation of lytic HCMV infection and overcome the first antiviral
defense mediated by SPOC1 (Figure 1).

In addition, we report on a second antiviral role of SPOC1 that takes place at a
later stage of infection. Our data show that the expression of SPOC1 in the context of a
rescued/unaffected IE phase (ensured either by usage of high viral doses or by inducible
SPOC1-expressing cell systems in combination with low viral loads) heavily impairs viral
DNA replication and particle release (Figure 2). While the effects observed under conditions
of high MOI are quite strong, they are less pronounced when investigated with the inducible
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cells. Reichel et al. showed that SPOC1 expression is upregulated as early as 8 h after
Dox treatment, but a much stronger effect is visible after 16 h [4]. A time delay of SPOC1
expression could explain the observed extenuated effects. Nevertheless, based on the
results gained from the two different experimental systems, we can conclude that this
newly described antiviral effect of SPOC1 is MOI-independent and applies for different
HCMV strains, as the same repressive effects were observed for the two HCMV strains
TB40/E and AD169.

For adenoviral (Ad) infection, Schreiner and colleagues showed that SPOC1 leads
to impaired viral DNA synthesis and the repression of viral transcription [2]. Also, for
HIV-1, it is described that SPOC1 suppresses viral gene expression [3]. Consistent with
these results, we found that viral transcription of HCMV is profoundly diminished when
SPOC1 is expressed (Figure 4), which is also reflected at the protein level (Figure 3). Most
interestingly, although we detected an undisturbed IE phase upon infection at high MOIs,
we observed diminished transcription of IE genes at later time points of infection. We
assume that SPOC1 exerts broad negative effects on HCMV transcription, most probably
via association with viral genes of all temporal classes. Undisturbed IE gene expression at
the onset of viral replication could be due to transient neutralization of SPOC1-mediated
repression by components of the HCMV virion that are imported by infection and thus
abundantly present under conditions of high MOI. Antagonization of SPOC1 by structural
proteins has been reported for human adenovirus type 5, where the major core protein pVII
associates with this chromatin remodeling protein followed by proteasomal degradation [2].
In contrast, no SPOC1 degradation could be observed during the first hours of HCMV
infection; however, this does not exclude the possibility of functional antagonization by a
viral factor that remains to be identified [4].

To gain more information on the potential mechanisms of SPOC1-mediated repression,
we investigated its localization during the time course of lytic HCMV replication. During
adenovirus infection, SPOC1 was shown to localize to viral replication centers (VRCs) and
to directly interact with E2A-DBP, the adenovirus DNA-binding protein and a marker
of VRCs [2]. When investigating SPOC1 localization at 48 h post HCMV infection, we
observed a co-localization of SPOC1 with pUL44, a marker for VRCs (Figure 5A). The
presence of SPOC1 in VRCs could indicate a possible direct interference with viral DNA
replication or replication-specific factors, such as pUL44. pUL44 is the processivity factor
of the viral DNA polymerase and important for proper viral replication [39]. In SPOC1-
expressing cells, we detected a downregulation of UL44 both at the transcriptional and
translational level (Figures 3 and 4). The question of whether SPOC1 directly interferes
with viral DNA replication remains to be answered. So far, we can state that viral factors
required for efficient DNA replication are expressed at lower levels than normal when
SPOC1 is present.

As the infection progresses, the exclusive co-localization with VRCs is lost, and we ob-
serve an accumulation of SPOC1 in a punctuate pattern at the rim of the nucleus (Figure 5A).
Interestingly, pUL44 could also be detected in clusters outside of VRCs at later times of
infection. As shown by click chemistry in combination with antibody staining, these accu-
mulations of pUL44 co-localize with viral DNA and are found in close proximity to SPOC1
(Figure 5B). It is worth mentioning that pUL44 has been proposed to be not only important
for viral DNA replication but also for efficient late viral gene expression [40]. Therefore, one
may speculate that the observed re-localization of pUL44 to punctuate structures containing
viral DNA indicates an association with sites of active late transcription.

One other essential protein for viral transcription is the cellular RNA polymerase II
(RNAP II). Tamrakar et al. showed that phosphorylation of the C-terminal domain (CTD)
of RNAP II, which regulates the mode of action of this protein, is finely tuned during
HCMV infection. They also investigated the localization of the different phosphorylated
isoforms of RNAP II during the replication cycle and found that, specifically, RNAP II
S5P is located outside of VRCs at the nuclear rim during later times of infection [38].
They hypothesized that RNAP II S5P serves as a marker protein for regions where viral
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transcription takes place and that this event is physically separated from viral replication.
Intriguingly, SPOC1 and especially the serine 5 phosphorylated form of RNAP II are known
interaction partners [9]. When we investigated the localization of SPOC1 and RNAP II
S5P during late time points of infection, we observed a co-localization of both proteins
(Figure 8). Fuchs et al. reported that SPOC1 not only interacts with RNAP II S5P but
also with subunits of the polycomb repressive complex 2 (PRC2), a well-known chromatin
repressor. SPOC1 appears to stabilize the association of both factors with the genome and
thereby exerts a regulating role in the transcriptional level [9].

Specifically, the combination of SPOC1, PRC2, RNAP II S5P, H3K4me2/3 and H3K27me3
was found to be predominantly associated with repressed genes [10]. Intriguingly, when we
stained infected HFF/SPOC1 with antibodies against SUZ12 and EZH2 we found a clear co-
localization of SPOC1 and the components of the PCR2 complex, again close to viral DNA.
SUZ12 is supposed to serve as the interacting factor of SPOC1 and the PRC2 complex [10].
In co-immunoprecipitation (CoIP) analyses, we detected a clear interaction of SPOC1 and
EZH2 (Figure 7). Although we cannot exclude an indirect interaction potentially mediated
by other proteins of the PRC2 complex or via DNA bridging, the CoIP indicates that the
N-terminal domain of SPOC1 is crucial for the interaction of PRC2 and SPOC1.

Taken together, we found SPOC1 to localize first in viral replication centers and later,
additionally, in punctuate clusters at the nuclear rim and outside of VRCs, where it co-
localized with RNAP II S5P and PRC2 components in close proximity to viral DNA. Since
we observed that SPOC1 expression leads to a downregulation of a number of viral genes
at the mRNA level, we propose that SPOC1, a known chromatin reader and transcriptional
co-regulator, represses viral genes utilizing repressive cellular factors such as PRC2, and
this takes place at specific nuclear sites outside of VRCs. Due to inefficient generation of
viral gene products, viral DNA replication and virus release are impaired. Since, in contrast
to results obtained at low MOI, the enzymatic PRC2 inhibitor GSK126 only marginally
affected H3K27me3 levels at high MOI, further experiments will be necessary to clarify the
contribution of PRC2-mediated histone modification to the repression of viral genes [37].

Lastly, we would like to highlight the fact that SPOC1 was found to be decreased in
a GSK-3β-dependent manner during later times of HCMV infection [4]. Downregulation
of SPOC1 has also been detected during HIV-1 infection, which is mediated by the viral
protein Vpr and probably counteracts the antiviral effects of SPOC1 against HIV-1 after
integration [14]. The GSK-3β-dependent degradation of SPOC1 observed during HCMV
infection may therefore represent a viral countermeasure of the repressive effects of SPOC1
on late viral transcription.
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