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Abstract: Cellular and humoral immunity exhibit dynamic adaptation to the mutating SARS-CoV-2
virus. It is noteworthy that immune responses differ significantly, influenced by whether a patient
has received vaccination or whether there is co-occurrence of naturally acquired and vaccine-induced
immunity, known as hybrid immunity. The different immune reactions, conditional on vaccination
status and the viral variant involved, bear implications for inflammatory responses, patient outcomes,
pathogen transmission rates, and lingering post-COVID conditions. Considering these developments,
we have performed a review of recently published literature, aiming to disentangle the intricate
relationships among immunological profiles, transmission, the long-term health effects post-COVID
infection poses, and the resultant clinical manifestations. This investigation is directed toward
understanding the variability in the longevity and potency of cellular and humoral immune responses
elicited by immunization and hybrid infection.

Keywords: SARS-CoV-2 infection; immune responses; humoral immunity; transmission; vaccination;
cellular immunity; clinical outcomes; COVID-19

1. Introduction

Following the appearance of Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2), multiple successive waves of infections have been observed from different
strains [1]. Until April 2024, the virus had impacted over 770 million people globally,
resulting in 7.0 million deaths [2]. Multiple risk factors such as advanced age, underlying
health conditions, and a history of pneumonia have been linked to COVID-19 suscepti-
bility [3]. Similar to other viral infections, it has been demonstrated that individuals can
mobilize their innate and adaptive immunity against COVID-19, facilitating its clearance
and impeding its spread [4].

The development of memory B and T cells, induced by either infection or vaccination,
is pivotal for a robust immune reaction in the form of antibody and cellular responses [5–9].
Associations between antibody levels and infection susceptibility have been documented,
while monitoring humoral response levels could serve as indicator of immune protec-
tion [10–12]. Research has indicated prolonged virus-specific cellular immunity in pre-
viously infected individuals, persisting for up to 8 months post-infection [4,13–15]. In
those who recovered from the original SARS-CoV, cellular immune responses remained
detectable for up to two decades, while memory B cells and antibodies were generally
undetectable after that period [4,16]. However, the continuing effectiveness of humoral
and cellular immunity memory in recovered individuals is not yet fully understood.

Vaccinations have been shown to reduce the severity of the disease but may not entirely
prevent infection [1,17,18]. There is a strong association between neutralizing antibody
concentrations and immunization efficacy [19]. Although vaccines decrease the occurrence
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of clinically severe outcomes, such as hospitalization and mortality, protection declines over
time [18]. The immunity provided by a two-dose vaccine remains significant against severe
outcomes for approximately 5–6 months [20]. The decline in immunity can compromise
host defenses. Notably, a third vaccine dose has been linked to a substantial increase in
immunity [21–23]. Recent findings indicate that a fourth dose can stimulate an enhanced
immunologic response in individuals previously vaccinated with three doses, regardless
of the initial vaccine type used [24]. With more individuals contracting the virus globally,
post-infection vaccination is expected to increase [25–30]. Prior SARS-CoV-2 infection
appears to enhance vaccine-induced immune responses, but the long-term implications are
not clear.

Elevated levels of specific inflammatory biomarkers, including interferon-γ, are di-
rectly involved in the humoral immunity response [31,32]. Furthermore, higher concentra-
tions of pro-inflammatory cytokines following vaccination are associated with heightened
antibody responses among blood donors and organ transplant recipients [31,33]. Cytokines
and chemokines are critical to the body’s response to infections and vaccines [31]. However,
our understanding of how COVID-19 vaccination affects cytokine and chemokine levels
in the short or long term, as well as their trajectories in symptomatic COVID-19 patients,
is limited.

Studies have reported suboptimal vaccine-induced immune responses in patient
populations with chronic conditions and those undergoing immunosuppressive treat-
ment [34–47]. Comprehensive population analyses, including immunocompromised par-
ticipants, have revealed reduced seropositivity for SARS-CoV-2 spike protein antibodies
after vaccination and only modest vaccine efficacy [48,49]. Additionally, being immuno-
compromised after immunization may increase the risk for severe clinical outcomes [50].

This work aims to methodically examine the recent literature to assess the impact of
previous immunization or infection with COVID-19 on subsequent immune responses and
clinical outcomes.

2. Materials and Methods

During the literature search, conducted from January 2021 until March 2024 using the
PubMed database, 1225 articles were initially identified as potentially relevant. The key
words applied included SARS-CoV-2 infection, long COVID, immune response, inflamma-
tory, vaccination, symptoms, and transmission. Specifically, the search strategy included
the following query string: SARS-CoV-2 infection AND vaccination AND immunity AND
symptoms AND Long COVID. Expanding the query string further resulted in a restricted
article pool. Subsequently, 391 studies were considered obsolete and omitted from consider-
ation. Following a close review of these 834 studies, 800 were eliminated due to irrelevant
subject matter, animal experiments, or studies prior to 2021. Only English-language papers
were reviewed, and duplicates were excluded. Further rigorous assessments of the full texts
of the remaining 34 studies led to the exclusion of an additional 20 studies. Consequently,
14 studies were ultimately deemed appropriate and included in the systematic review,
strictly adhering to the study topic. Two independent researchers reviewed the articles
and hand-searched literature. Disagreements were discussed and resolved. A graphical
summary of the literature retrieval flow is presented in Figure 1.

Among the 14 articles analyzed, most studies (n = 3) were carried out in the United
States of America. The remaining studies originated from China, Thailand, Canada, Swe-
den, Switzerland, the United Kingdom, Spain, the Republic of Korea, and Qatar. Reinfection
was established through a second positive test result. This second positive result had to
be recorded at least 3 months after the initial diagnosis. These research articles explored
various aspects of SARS-CoV-2 reinfection, including its severity and subsequent health
implications, the related humoral and cell-mediated immune responses, and the long-term
effects following the infection.
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Figure 1. Schematic for study selection.

Specifically, as illustrated in Table 1, the 14 included studies varied in terms of pop-
ulation sizes, immunization status, and research aims. These studies included a mixture
of unvaccinated, partly vaccinated, and fully vaccinated cohorts. Two of the included
studies were network meta-analyses, with a particular focus on transmission and clinical
outcomes. Collectively, these articles aimed to capture the heterogeneity of infection-
experienced/naïve and immunization-experienced/naïve cohorts and establish an associa-
tion with inflammatory responses, the durability of the adaptive immune response, and
clinical outcomes.

Table 1. Summary of the included studies.

Included Studies Population Size (N) and Features Investigated Variables

Zhu X. et al., 2023 (USA) N = 822; 78% unvaccinated, 6% partly
vaccinated, 16% fully vaccinated

Levels of cytokines and chemokines in
infected individuals

Wang X. et al., 2022 (USA)
N = 295,691; 98% no prior infection, 5.9%
partly vaccinated, 35% fully vaccinated,
19.7% fully vaccinated/boosted

Correlation between immunization, previous
infection, and clinical outcomes

Madewell Z.J. et al., 2022
(USA) N = 135 studies; over 1.3 million participants

Longitudinal assessment by viral strain and
vaccination status on household secondary
attack rates

Guo L. et al., 2022 (China) N = 1096; 26.4% moderate COVID-19 disease,
67% severe, 6.7% critical disease

Sustainability and efficacy of humoral and
cellular responses in cases recovered from
infection after a twelve-month period

Deng J. et al., 2023 (China) N = 19 studies; 34,375 reinfection cases and
5,264,720 primary infection cases

Susceptibility to severe infection and adverse
outcomes following reinfection

Pongkunakorn T. et al., 2022
(Thailand)

N = 292; 158 Long COVID cases and 134
healthy controls

Immunity profile of Long COVID cases versus
healthy controls during the Omicron wave

Yorsaeng R. et al., 2023
(Thailand)

N = 4126; 47.6% fully vaccinated, 46.6% fully
vaccinated/one booster, 5.8% fully
vaccinated/two boosters

Antibody dynamics after immunization or
hybrid immunity
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Table 1. Cont.

Included Studies Population Size (N) and Features Investigated Variables
Hvidt A.K. et al., 2023
(Canada) N = 93; 100% unvaccinated initially Durability of COVID-19-specific immune

reaction after infection

Havervall S. et al., 2022
(Sweden)

N = 289 SARS-CoV-2-naïve and N = 118
SARS-CoV-2-recovered

Longitudinal immunological profiling to
immunization after infection

Mongin D. et al., 2023
(Switzerland)

N => 50,000 cases; 80.7% unvaccinated
and non-infected

Correlation between the secondary attack rate
and protective immunity conferred by natural
infection and/or immunization

Menni C. et al., 2022 (UK) N = 620,793; 100% fully vaccinated Primary vaccine series effectiveness and waning

Ontañón J. et al., 2021 (Spain) N = 63; 33 prior infection and 30
infection-naive

Persistence and dynamics of antibody-mediated
immune reaction after full immunization

Seo W.J. et al., 2022
(Republic of Korea)

N = 387; 204 fully vaccinated and
183 unvaccinated

Association of prior immunization and
clinical outcomes

Altarawneh H.N. et al., 2023
(Qatar) N = 239,120 PCR-positive samples

Impacts of past infection, immunization, and
hybrid immunity on symptomatic infections by
different variants

3. Discussion
3.1. Immune Responses

Research has examined the endurance of immune responses in individuals who have
recovered from illness. Cohen et al.’s research revealed enduring and robust antibody,
memory T cell, and B cell levels for approximately eight months after the initial infec-
tion [51]. Li et al. reported that, a year after diagnosis, over 70% of individuals still
tested positive for IgG antibodies [52]. However, T cell reactions as well as the efficacy
of circulating antibodies to various strains were not measured in that study. Rank et al.
found that about two-thirds of the study subjects showed persistent IFNγ-specific T cell
responses at the end of a 12-month period [53]. More recent findings from Zhang et al.
suggest that both neutralizing antibody and memory T cell immunity remains robust for a
year following diagnosis of the disease, with human peripheral blood mononuclear cells
(PBMCs) exhibiting sustained activity for nine days ex vivo [54]. However, the scope of
Zhang and colleagues’ study did not extend to evaluating the responses of humoral or
cellular immunity to different viral strains [54]. Thus, among healthy controls, recovery
from a natural infection appears to provide robust immune protection against reinfection.

3.1.1. Cellular Immunity

The pivotal role of the adaptive immune response in determining clinical outcomes
following a viral infection, including the impact on immunization, is well documented [55].
T cell responses, linked to early-stage protective immunity, emerge early in infection. How-
ever, these responses diminish in severe cases of the disease, characterized by significant
activation and reduced lymphocyte numbers [55]. Evidence suggests that a T cell subset,
initially activated by exposure to seasonal coronaviruses, exhibits cross-reactivity to SARS-
CoV-2, potentially enhancing clinical protection, especially in younger populations [55].
T cell memory includes widespread viral protein recognition, with individuals’ immune
systems recognizing around 30 distinct epitopes [55]. This lasting recognition could play
a crucial role in mitigating the impact of new viral mutations, providing a foundation
for sustained protection against severe illness from future variants. Immunization leads
to robust T cell immunity, thus contributing significantly to preventing severe disease
outcomes, hospitalizations, and fatalities [55]. New and combined vaccine approaches
may offer opportunities to further enhance these cellular immune reactions. Thus, T
cell immunity appears critical in managing viral infection, despite its significance being
previously underestimated.
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Research indicates that T cell immunity to SARS-CoV-2 declines at a slower rate
than neutralizing antibody levels over time [4]. Memory T cells from the SARS-CoV epi-
demic have been detectable up to 17 years post-infection, showing notable cross-variant
effectiveness [56]. Interestingly, there is evidence that T cell memory correlates with the
reduced severity of influenza in the absence of neutralizing antibodies [57]. Longitudi-
nal assessments of antibody and T cell immunity to primary infection over 20 months
revealed that more than 94% of participants seroconverted for IgG specific to Nucleocapsid
(N) and Spike (S) proteins one-month post-infection [58]. Additionally, the majority of
participants showed both non-S- and S-specific T cell detection, indicating an adaptive
immune response to the infection [58]. The study observed that while the detectability
of non-S-specific humoral and cellular immunity reduced over the 20-month period, it
was still observable in most participants, implying the development of efficient long-term
immune memory [59,60]. When examining responses to non-S antigens specifically, a
greater proportion of participants maintained measurable T cell responses as opposed to
circulating antibody levels [59,60]. This supports the notion of enduring cellular immune
memory akin to observations from the initial SARS-CoV outbreak. The humoral and cellu-
lar immune responses specific to the S-protein also declined within the first ten months
after infection; however, vaccination subsequently induced a strong S-specific memory
response [58]. These results corroborate those of other longitudinal studies that demon-
strate waning antibody and T cell immunity after 12 months, while the potentiation of an
S-specific memory response may be accomplished by subsequent immunization [61,62].
The analysis of both S- and non-S-specific T memory cells differs between immunity arising
from a prior infection or a subsequent immunization [63]. Gittelman et al. investigated
the specificity toward S and other targets and reported an increased presence of T cell
receptors 15 months after COVID-19 infection, and an even further increase in clonality
and diversity for the S protein in vaccinated participants, in contrast to non-S proteins [63].
These data validate long-term cellular response findings highlighted by Gittelman et al.,
distinguishing the immunity profiles following a primary infection versus those augmented
by vaccination [63]. The results consistently point to the natural persistence of generic
immunity for approximately 20 months [63]. Despite the observed waning in viral-specific
immunity, a non-S immune response was still detectable even after 20 months [63].

3.1.2. Humoral Immunity

Recent findings indicate that individuals who had prior natural infection followed
by two to four vaccine doses exhibited a heightened and more enduring response of Ig
anti-RBD (Receptor Binding Domain) antibodies over a year compared to those who were
solely vaccinated. This observation aligns with previous research that suggested that
individuals who experienced a breakthrough infection after receiving two doses of the
CoronaVac vaccine showed elevated Ig anti-RBD levels compared to those participants who
received a third dose of AZD1222, though they were similar to the antibody levels found
following a third dose of the BNT162b2 booster [64–67]. Additionally, a comprehensive
study in Monaco demonstrated that hybrid immunity generates potent humoral immunity
against infection [68].

Equally, a previously published study from Denmark was conducted in fully vac-
cinated participants with BNT162b2 with/without an earlier infection [69]. This work
reported robust hybrid immunity resulting from high antibody levels in the previously
infected cohort (72%) versus the non-infected participants (35%) [69]. Moreover, research
from a substantial Swedish cohort found that hybrid immunity provided marked protection
against COVID-19 reinfection and hospitalization [69].

It has been established that the Omicron variant causes less severe infections with a
mortality rate substantially lower by 6.2 times than that of Delta variant infections [70].
However, Omicron variants are more effective at evading the immune responses prompted
by vaccination [71,72]. The efficacy of the two-dose vaccine, based on the original Wuhan
strain, is reduced against the Omicron variant, with a noted rapid decline in the vaccine-
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induced humoral immunity [72–76]. Consequently, a third booster dose is mandatory
to reinforce immunity and provide further protection against severe clinical outcomes,
particularly in high-risk individuals [21–23].

Additional studies comparing humoral immunity in three-dose versus two-dose vac-
cinations across individuals who have not encountered infection previously also indicated
improved antibody longevity post the three-dose regimen [68]. Despite the evasive na-
ture of the Omicron variant and its various subtypes, immunization boosters and hybrid
immunity result in strong humoral responses in healthy controls. Naturally, elderly and
immunocompromised patients continue to be at an increased risk as humoral immunity is
expected to wane faster in these individuals versus healthy controls.

3.1.3. Systematic Inflammatory Response

Recent studies have shown that fully immunized individuals exhibited milder cy-
tokine inflammatory responses systemically after infection compared to those who were not
vaccinated, both in the early and late stages of infection [31]. As individuals recovered from
symptomatic COVID-19, all vaccination statuses were associated with a decrease in these
inflammatory markers [31]. Although unvaccinated individuals showed, longitudinally,
a more rapid reduction in these markers, the average levels of systemic cytokines, such
as interleukin-7 (IL-7), remained elevated compared to the levels in vaccinated individ-
uals three months post-diagnosis due to initially higher inflammatory levels [31]. These
findings suggest that vaccination has a mitigating effect on inflammation, even in cases
of symptomatic breakthrough infections. Research indicates that vaccinated individuals
who experience breakthrough infections demonstrate superior cellular immune responses,
leading to decreased inflammation compared to their unvaccinated counterparts [31]. Other
studies have linked increased cytokine and chemokine levels with greater disease severity
in SARS-CoV-2 infections and have noted associations of heightened IL-7 with chronic
inflammatory conditions, IL-8 with lung hyperinflammation and prolonged disease in se-
vere COVID-19 cases, and overrepresented VEGF-A in the pulmonary tissue of COVID-19
fatalities [77–80]. Notably, since post-infection unvaccinated participants demonstrated
elevated levels of systemic inflammatory markers compared to their immunized peers, it
is understood that prolonged inflammation resolution occurs in unvaccinated individu-
als [31].

Systematic reviews have identified a correlation between vaccination and a reduced
likelihood of experiencing post-COVID-19 symptoms [81]. The prolonged elevation of
cytokines in unvaccinated individuals may partially explain the increased propensity for
post-COVID-19 conditions in certain cases [81]. Comparative studies of older vaccinated
individuals have showed a 40% lower level of IL-22 during recovery compared to unvac-
cinated individuals [82]. In the younger demographic, the influence of vaccination was
less pronounced, with age-related variations in IL-22 expression suggested as a possible
explanation [82].

Individuals who received both adenovirus vector and mRNA vaccines exhibited
similar cytokine levels, although mRNA vaccines may further reduce IL-8 and VEGF-
A [31]. There have been assumptions that components of the adenovirus vaccine may
exacerbate inflammation, but data remain insufficient regarding the interplay between
vaccination types and cytokine profiles in symptomatic COVID-19 patients. Consequently,
further research is needed to establish a direct correlation between cytokine profiles and
vaccine type.

3.2. Clinical Outcomes

The Omicron variant demonstrated reduced susceptibility to protection from im-
munization and prior SARS-CoV-2 infection compared to the Delta variant, but hybrid
immunity still provided considerable protection against critical outcomes requiring inten-
sive care unit (ICU) admissions and mortality [75].
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Booster doses significantly improve immunization protection against several clinical
outcomes. However, their effect diminishes notably over time. Additionally, monoclonal
antibody treatment administered post-Omicron infection has been found to significantly
decrease the possibility of hospitalization and mortality [75].

The milder clinical outcomes reported with the Omicron strain compared to those
of earlier variants can be attributed to the reduced virulence of Omicron and increased
population immunity due to booster vaccinations and past infections [71,72]. Two factors
contributed to this; firstly, during the early days of the Omicron wave, many of the previous
infections were due to the Delta strain of the virus leading to weaker immunological
responses. Secondly, during the Omicron wave, individuals experienced a re-infectivity
delay before positive cases spiked. As a result, the Delta wave patients had more recently
experienced a previous COVID-19 diagnosis versus patients during the Omicron wave [75].

Researchers have also investigated the protection provided by an additional vaccine
shot or prior infection in relation to Omicron [83–85]. According to Deng et al.’s 2023 study,
among individuals experiencing SARS-CoV-2 reinfection, 41.77% were asymptomatic,
while 51.83% exhibited symptoms [86]. Only a small 0.58% experienced severe symptoms,
with a negligible 0.04% progressing to a critical state. Rates of hospitalization, intensive
care, or mortality linked to reinfections were reported at 15.48%, 3.58%, and 2.96%, respec-
tively [86]. In comparison to primary infection cases, individuals with reinfections were
more commonly affected by milder symptoms (with an odds ratio [OR] of 7.01), and the
likelihood of severe symptoms was significantly reduced by 86% (OR = 0.14) [86]. An initial
infection, therefore, provided a certain level of immunity against subsequent reinfections.
Crucially, reinfections resulted in no further increases in hospitalizations, ICU admissions,
or mortality [86].

3.2.1. Transmission

Vaccination or prior infection provides immunity that decreases both the likelihood
of spreading the virus and becoming infected. Notably, natural immunity from previous
infection plays a more significant role in reducing viral transmission [87]. The primary
immunological factor in reducing the chance of spreading the infection to close contacts is
natural infection, while the role of vaccination is comparatively minor [87]. However, the
impact of vaccination on reducing the rate at which the virus is transmitted remains more
consistent over time and is less affected by changes in viral strains compared to its effect
on reducing susceptibility to infection, thereby constituting a substantial contribution of
vaccines to limiting the spread of SARS-CoV-2 [87].

Other factors affecting transmission include symptom type, such as coughing; the
overall health status of the exposed individual; the environment in which the contact
occurred (such as home or workplace); and the likelihood of the contact undergoing testing.
Vaccination offers protection to both the initial carrier and their contacts, with a more
pronounced protective effect observed in the latter, reflecting earlier findings [88]. The
diminishing efficacy of vaccination over time and the ability of subsequent variants to
better evade immunity when compared to their predecessors underscore the importance
of the timing of the most recent vaccination and the variant of concern (VoC) for the
level of protection for contacts [88,89]. During the Omicron wave, vaccination within
six months did not provide additional protection to contacts, in contrast to non-vaccinated
and infection-naïve individuals [88,89]. However, Omicron’s ability to bypass immunity
did not reduce the decreased transmission resulting from recent vaccination, suggesting
that vaccines continue to lower viral load in Omicron-infected individuals, aligning with
findings that vaccination reduces the risk of severe disease for this VoC [90]. Vaccinations
administered over six months prior still decreased infectivity, but did not offer protective
benefits against contracting the infection for contacts during the Delta wave [87].



Viruses 2024, 16, 685 8 of 15

3.2.2. Clinical Severity

Despite variations in the level of immunity provided by previous infection, immu-
nization, or a combination of both (hybrid immunity), all three types (natural, vaccination,
hybrid) provided over 90% effectiveness in minimizing clinical severity, irrespective of the
viral strain involved [91–93]. Therefore, the evidence confirms the robust nature of any type
of immunity in defending against severe forms of the infection and indicates that when
breakthrough infections occur, they are unlikely to result in severe outcomes [83,91]. This
is consistent with other studies that suggest that the likelihood of severe manifestations in
reinfections is approximately 90% lower than in primary infections, and that the protection
provided by vaccination against severe COVID-19 persists beyond its protection against
mere infection [83,91].

The probability of developing pneumonia was significantly higher among individuals
who had not been vaccinated (65.6% compared to 36.8%), as was the need for oxygen
supplementation (29.0% versus 15.7%) compared to their vaccinated counterparts [3]. Vacci-
nated patients also experienced a significantly shorter duration from the onset of symptoms
to hospital discharge compared to those who had not been vaccinated (median of 10 days
versus 11 days; ρ < 0.001) [3]. Analyses revealed that vaccination was associated with a
decreased risk of pneumonia by approximately 70% and a reduced need for additional
oxygen by about 82% [3]. Furthermore, vaccination was linked to a significantly lower risk
of both pneumonia and severe disease in the event of a breakthrough infection [3]. Natu-
rally, risk factors and specific virus variants strongly dictate clinical severity as elderly or
immunocompromised patients are significantly more likely to develop pneumonia versus
healthy controls [3]. Equally, the Delta variant, which mostly targets the lower respiratory
system, is reported to increase the mortality risk versus the Omicron variant, which mostly
targets the upper respiratory tract [83–86].

3.2.3. Post-COVID Sequelae

Long COVID-19 (LC) is characterized by a constellation of incapacitating symptoms,
often including persistent fatigue and muscle pain, malaise, reduced appetite, and mental
impairments [94,95]. Previously published research has demonstrated that there is a
significant occurrence of this syndrome in individuals who have had mild-to-moderate
COVID-19, despite previous immunization [96]. Advanced age is also recognized as an
important factor influencing the severity of the condition, largely due to the gradual decline
in immune response as individuals age [96]. Despite uncertainty concerning the occurrence
and persistence of specific LC symptoms, patient reports suggest that fatigue can manifest
shortly after recovering from COVID-19 [94]. Previously published work has reported that
fatigue commonly lingers for six months in patients who have recovered from an initial
infection, while immunological disruptions could extend for about eight months following
mild-to-moderate COVID-19 infection [97]. In some cases, SARS-CoV-2 may persist in
individuals, leading to long-lasting symptoms associated with chronic inflammation and
impairment in various organs and tissues [97]. Systematic analysis has notably linked post-
infection chronic cognitive impairment with female gender and established an association
with the overall clinical severity of the disease, particularly with the presence of respiratory
symptoms [98]. However, emerging data suggest that LC might develop regardless of the
initial symptom severity [99]. The onset of this chronic illness may be linked to the presence
of lingering viral fragments coupled with a persistent systemic immune reaction [100].
Documenting the complex relationship between humoral and cellular immune responses
and the immunization status of individuals is vital for preparing relevant therapeutic
and vaccination strategies [100]. The immunological research conducted thus far has
not identified meaningful immunological discrepancies in LC patients, irrespective of
immunization status [94]. Noticeable reductions in IgG and neutralizing antibodies have
been observed in participants who had not received a booster vaccine before contracting
the infection, indicative of declining immunity [94]. However, notably high antibody
levels were still detected at three months post-COVID (PC) [94]. Individuals exposed to
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BA.5/BA.4 recorded elevated humoral and cellular responses versus patients exposed
to other Omicron subtypes [94]. Importantly, higher levels of anti-RBD antibodies were
reported after Pfizer-BioNTech immunization in some LC patients [94]. These findings
demonstrate that the pathogenesis of LC might involve persistent viral antigens, the
reactivation of latent herpesviruses, and ongoing inflammation, potentially correlating with
heightened antibody responses [101]. T cell profiling, including memory T cell subsets, has
been examined and proposed as pivotal in understanding the differences in disease severity
and recovery among COVID-19 patients [101]. The reviewed literature indicates that the
numbers of various CD+ T cells are lower in clinically severe cases compared to individuals
with non-severe infections [102–104]. Nevertheless, no significant disparity was reported
regarding T cell concentration levels between healthy controls and LC patients [102–104].

According to the World Health Organization, over 10% of infected individuals may
develop some form of LC symptomatology, despite previous vaccinations [105]. Although
illness rates substantially differ depending on virus subtype (e.g., Delta versus Omicron
variant) and other risk factors, the immunological research continues to remain inconclusive.
Additionally, other studies have reported that the post-viral symptoms of COVID-19 are no
different to an influenza infection in either severity or variety [106]. Therefore, LC remains
an actively debated topic among the scientific and medical community globally.

4. Conclusions

Despite significant progress in unravelling the underlying immunological mechanisms
of hybrid immunity, larger studies that delve into subsets of humoral and cellular immunity
need to be explored. Vaccines and prior infection have systematically demonstrated value in
reducing disease severity and transmission during reinfection. Nevertheless, post-COVID
sequelae remain a largely unexplored area despite significant scientific progress over the
last couple of years. Furthermore, due to the volatile scientific nature of the post-COVID
sequelae phenomenon, we have witnessed evolving definitions of the disease across major
healthcare institutions worldwide and conflicting research findings. As new variants of
concern and new vaccines are expected to emerge, ongoing research into the impact of
prior infection and immunization in the protection from negative clinical outcomes is
crucial to continue [107]. Additionally, the list of risk factors may be expected to evolve
and new variants may emerge that may pose an increased risk to specific age groups or
patients with specific comorbidities. Guidelines that capture all of these elements of disease
management, prevention, and the personalized immunological profiling of COVID-19
patients are fundamental strategies for tackling future pandemics as well.
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