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Abstract: In quasispecies diversity studies, the comparison of two samples of varying sizes is a
common necessity. However, the sensitivity of certain diversity indices to sample size variations
poses a challenge. To address this issue, rarefaction emerges as a crucial tool, serving to normalize and
create fairly comparable samples. This study emphasizes the imperative nature of sample size normal-
ization in quasispecies diversity studies using next-generation sequencing (NGS) data. We present a
thorough examination of resampling schemes using various simple hypothetical cases of quasispecies
showing different quasispecies structures in the sense of haplotype genomic composition, offering
a comprehensive understanding of their implications in general cases. Despite the big numbers
implied in this sort of study, often involving coverages exceeding 100,000 reads per sample and
amplicon, the rarefaction process for normalization should be performed with repeated resampling
without replacement, especially when rare haplotypes constitute a significant fraction of interest.
However, it is noteworthy that different diversity indices exhibit distinct sensitivities to sample size.
Consequently, some diversity indicators may be compared directly without normalization, or instead
may be resampled safely with replacement.

Keywords: rarefaction; haplotypes; quasispecies; metagenomics; subsampling

1. Introduction

The study of viral quasispecies diversity is similar in many ways to the study of
biodiversity in ecology. Nevertheless, the size of a quasispecies is far beyond the size of
any known ecosystem; for example, the number of viral particles in a patient chronically
infected by the hepatitis C virus (HCV) may outnumber human population. Indeed, the
dynamics in a quasispecies have no comparison with the dynamics in any ecosystem.
Because of the low polymerase fidelity characteristic in these viruses, each viral replication
cycle generates new variants [1–3]. With high viral loads, the number of viral particles
generated and eliminated daily may be over 1012 [4,5].

The study of quasispecies diversity and composition through NGS by amplicons
constitutes a powerful approach to this extremely high-diversity world, which nevertheless
still falls short despite the developments since the times when molecular cloning was the
only available tool to dig into quasispecies [6,7]. The study by amplicon haplotypes starts
with the processing of next-generation sequencing (NGS) data to obtain a set of haplotypes
and corresponding frequencies as read counts [8]. The depth of the analysis depends on
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the library size, that is, the number of sequenced reads by sample and amplicon. Groups
of samples typically have different library sizes for technical variations, and library size
normalization is required for fair comparisons, given that some diversity indices are highly
sensitive to sample size. Rarefaction is a widely used normalization technique that involves
random subsampling of reads from the initial sample library to a common library size.
In the field of metagenomics, there is an open debate [9–13] about whether this process
should be used at all.

The basis of such debate is that by subsampling, we are increasing the downward bias
already existing in our data. Bias exists in the sense that, first, we may only approach the
true diversity of a microbiome, and second, that the more we limit our library size, the
less representative it is of the studied population. Nevertheless, despite these limitations,
it continues to be widely used in practice as a suitable normalization whenever diversity
comparisons are required. It helps reduce the impact of an uneven sampling effort by
eliminating the differential bias associated with more deeply sequenced samples. In metage-
nomic studies, the estimation of richness, which is the number of species identified in a
sample, is paramount, and alternative approximations to estimate the true value, including
unobserved species [14], might be preferred. In quasispecies studies, richness is understood
as the number of observed and unobserved haplotypes, which plays a minor role, with
other diversity computations being potentially preferable [15].

This report aims at clarifying the use of this essential tool in quasispecies diversity
comparisons, the process of rarefaction, by which two samples of different sizes become
comparable. In this context, rarefaction only makes sense in the frame of sample compar-
isons or when studying richness rarefaction curves of single samples. In ecology, rarefaction
is defined as repeated resampling without replacement to the reference size. In the context
of rarefaction, resampling without replacement implies that during a cycle of random sub-
sampling, the extracted reads are not reintroduced into the initial sample pool. Conversely,
resampling with replacement involves returning the sampled reads to the population after
each random extraction. From a computational perspective, when dealing with substan-
tial sample sizes, sampling with replacement tends to be faster than sampling without
replacement. In a recent work with metagenomic data [11], the authors observed that rar-
efying libraries with or without replacement had no substantial impact on Shannon entropy.
However, libraries rarefied with replacement exhibited a slightly reduced Shannon index
compared to those rarefied without replacement across different library sizes. This effect
is attributed to the exclusion of rare sequences, which occurred more frequently in sam-
pling with replacement than in sampling without replacement. This suggests that samples
dominated by only a few highly abundant sequence variants are comparatively robust to
subsampling. Nevertheless, the authors stated that rarefying without replacement should
be encouraged because it is more theoretically correct, specifically when representing the
data so they account for the limitations of smaller library sizes [11]. We aim to study the
impact of both sampling schemes with the large numbers implied in quasispecies analysis,
both theoretically and numerically.

Subsampling with replacement is equivalent to sampling from a population where
haplotype frequencies remain constant. Using the cumulative distribution derived from
these frequencies, extracting an item involves generating a random value from a uniform
distribution. This value is then matched against the cumulative distribution to determine the
corresponding haplotype ID. In this context, the item sampled with replacement represents a
haplotype ID. In contrast, when sampling without replacement, the sampled item is a single
read from the original sample. To prevent repetitions in successive random extractions, it
becomes necessary to track which reads have been sampled and which have not.

2. Methods

Intensive resampling simulations under each hypothetical case have been carried out
to support and extend the theoretical considerations for each case and resampling scheme.
See Box 1 for definitions. Each described example is represented as a vector of reads, where
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each element corresponds to a different haplotype, and the total coverage is given by the
sum of the vector elements. Based on this representation of quasispecies composition for
each case, all the computations were conducted using R [16], with the help of packages
knitr [17], tidyverse [18], ggplot2 [19], and dqrng [20]. Resampling without replacement
was optimized using the dqsample.int function from the package dqrng [20], and with the
help of a full sample size, vector mapping reads to haplotypes. The full R code used is
given in Supplementary Materials.

Box 1. Rarefaction related definitions [15,21,22].

Concept Definition

Rarefaction A technique used to compensate for different intensities of sampling
in diversity studies.

Subsampling cycle
It consists in the successive random extraction of a given
number of items from a sample, lower than the sample size, with or
without replacement at each extraction.

Subsampling with
replacement

This is based on a situation where an element is randomly extracted
from a sample, identified, and then immediately replaced. Therefore,
this element can be obtained again in further extractions along the
same subsampling cycle.

Subsampling without
replacement

All extractions in a subsampling cycle are performed without
replacement, so no item may be extracted multiple times in the
same cycle.

Downward bias Inaccuracy in measurement or estimation that underestimates the
true value.

Subsampling fraction Fraction of reads being subsampled from a given sample in a single
resampling cycle.

Granularity Level of resolution at which the data are processed when estimating
frequencies from counts.

3. Results

In the following sections, we study different specific cases to compose a compre-
hensive picture of the type of results to be expected with the two sampling schemes
according to quasispecies structure. We start by showing the limitations inherent to sam-
pling and subsampling with replacement. The following cases are studied under both
subsampling schemes:

• All singletons: This represents a quasispecies where all haplotypes are represented by a
single read. It serves as the simplest case to numerically show the discussed limitations,
showcasing the most significant differences between the sampling schemes.

• Single dominant case: This hypothetical scenario involves a dominant haplotype,
while all other haplotypes are singletons. Our goal is to evaluate the master frequency
and the number of haplotypes.

• Prominent haplotypes: In this case, there are six prominent haplotypes along with a set
of singletons. The objective is to evaluate the frequencies of the prominent haplotypes,
the fraction of singletons in the quasispecies, and the fraction of reads for haplotypes
with over one read and below the top 6 haplotypes, representing singleton replicates
produced in sampling with replacement.

• No rare haplotypes: This is a quasispecies composed of a master haplotype at 90%, with
10 other haplotypes at 1% each. This scenario excludes singletons and lower frequency
haplotypes. We seek to estimate haplotype frequencies by repeated subsampling.

• Flat quasispecies: Similar to the first case, all the haplotypes have equal frequencies,
ranging from 1 read to 10 reads each, representing a perfectly even quasispecies.
This case is crucial for demonstrating the robustness in sampling quasispecies data
that have undergone a previous abundance filter at a low level.
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Finally, we discuss the sensitivity of various diversity indices with respect to sample
size, and the corresponding granularity caused by estimating frequencies from the counts.

3.1. Bootstrap: The Theory around 0.632

Given a sample of n items (reads), the probability to randomly extract any given item
is 1/n, and the probability to not extract it is 1 − 1/n. In a bootstrap cycle composed
of n extractions, each extraction is followed by a replacement, which makes successive
extractions independent and with identical probability.

As a bootstrap cycle is composed of n extractions, the probability to not extract a given
item from the sample in a full cycle is (1 − 1/n)n; this means that the probability to have
a given item sampled in a bootstrap cycle is 1 − (1 − 1/n)n. As n tends to infinity, the
limit of this expression is 1 − 1/e = 0.632. This result implies that a bootstrap resample is
composed of 0.6321 unique realizations of items in the original sample plus 0.3679, which
are replicates, in the limit as n grows to infinity.

3.2. Subsampling a Given Fraction with Replacement

In subsampling with replacement to a given fraction of the sample size f, the number
of random extractions in each cycle is f · n; then, the probability to have a given item in the
subsample is 1 − (1 − 1/n)f·n, and the limit as n tends to infinity is 1 − (1/e)f.

To solve the limit, we transform the indetermination 1∞ to ∞ · 0, noting that f (x) = eln(f(x))

lim
n→∞

(1 − 1/n) f ·n = lim
n→∞

e f ·n·ln(1−1/n)

Next, ∞ · 0 is converted to 0/0 by double inversion of one term

lim
n→∞

f · n · ln(1 − 1/n) = lim
n→∞

f · ln(1 − 1/n)
1/n

and finally, by the application of L’Hopital rule, differentiating the numerator and denominator:

lim
n→∞

f · ln(1 − 1/n)
1/n

= lim
n→∞

f · 1/(1 − 1/n) · 1/n2

−1/n2 = lim
n→∞

f · −1
(1 − 1/n)

= − f

So that

lim
n→∞

(1 − 1/n) f ·n = lim
n→∞

e f ·n·ln(1−1/n) = e− f =

(
1
e

) f

Given the limit, Table 1 and Figure 1 show the expected fraction of items seen from
the original sample in a resampling cycle at various fractions of the original size, from
0.1 to 1. In resampling without replacement, the fraction of seen items would correspond
exactly to the fraction of subsampling. As the sample fraction increases, the deviation of
seen items with respect to the sampled fraction also increases to reach its maximum at f = 1,
corresponding to the pure bootstrap. This holds particular importance when studying
richness by subsampling. Due to the replacement, some rare species may be observed
with inflated frequencies in a subsampling cycle, while others may not be observed at all.
This inflation adversely affects the representation of other rare species in the sampled data,
as these will be sampled less.
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Table 1. Subsampling a given fraction with replacement. Proportion of items seen and unseen in a
single resampling cycle.

Fraction Seen Unseen

0.1 0.0952 0.9048

0.2 0.1813 0.8187

0.3 0.2592 0.7408

0.4 0.3297 0.6703

0.5 0.3935 0.6065

0.6 0.4512 0.5488

0.7 0.5034 0.4966

0.8 0.5507 0.4493

0.9 0.5934 0.4066

1.0 0.6321 0.3679
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3.3. The All-Singletons Case

The numerical approach involves creating a quasispecies sample composed of
10,000 unique reads, each representing a distinct haplotype with a single sequence. All of
them are rare haplotypes. In this scenario, sampling without replacement will produce a
resample with as many haplotypes as the resample size. Resampling with replacement will
suffer from the 0.632 effect described above. In repeated subsampling without replacement
to a fraction f, the number of haplotypes obtained is equal to the subsample size, as denoted
in the ‘True’ column in Table 2.

Table 2 shows the results of B = 500 repeated resampling cycles at increasing fractions
from 0.1 to 1, where ‘True’ is the true number of haplotypes in a fraction of the sample.
‘Expected’ is the number of expected haplotypes from the computed probability, ‘Median’ is
the median number of haplotypes observed after B cycles of resampling with replacement,
‘Unique’ is the proportion of haplotypes observed as singletons, and ‘Replicated’ is the
proportion of reads corresponding to replicated singletons.
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Table 2. All-singleton case. Estimating the number of haplotypes. Subsampling a given fraction
with replacement.

Frac True Expected Median IQR SD Unique Replicated

0.1 1000 952.1 952.0 8.00 6.21 0.9520 0.0480

0.2 2000 1813.5 1812.0 17.00 12.52 0.9060 0.0940

0.3 3000 2592.9 2593.0 23.00 15.88 0.8643 0.1357

0.4 4000 3298.1 3295.0 25.50 20.20 0.8238 0.1762

0.5 5000 3936.2 3932.0 33.00 24.95 0.7864 0.2136

0.6 6000 4513.5 4512.0 39.25 27.85 0.7520 0.2480

0.7 7000 5035.9 5033.0 37.00 28.11 0.7190 0.2810

0.8 8000 5508.5 5505.0 42.00 30.37 0.6881 0.3119

0.9 9000 5936.1 5934.0 43.25 32.02 0.6593 0.3407

1.0 10,000 6323.0 6321.5 42.00 32.47 0.6322 0.3678

A first conclusion is that in this case, an accurate estimate of richness is obtained
exclusively when subsampling without replacement. On the other hand, the deviation
from the true value diminishes proportionally with the decreasing fraction of subsampling.

3.4. The Single-Dominant Case

Let us consider a quasispecies composed of a dominant haplotype at varying fre-
quencies, from 10% to 90%, with the remaining reads attributed to singletons. Our focus
is on understanding how the estimation of the number of haplotypes and the frequency
of the master haplotype unfolds through repeated subsampling, both with and without
replacement. In this particular example, each quasispecies sample comprises 100,000 reads,
with a master haplotype spanning from 10 to 90%. The remaining haplotypes in the sample
are all singletons. Table 3 shows the quasispecies IDs and compositions.

Table 3. Single-dominant quasispecies data.

ID Master Hpl. No.

Q.90.10 0.9 10,001

Q.80.20 0.8 20,001

Q.70.30 0.7 30,001

Q.60.40 0.6 40,001

Q.50.50 0.5 50,001

Q.40.60 0.4 60,001

Q.30.70 0.3 70,001

Q.20.80 0.2 80,001

Q.10.90 0.1 90,001

Table 4 and Figure 2 show the results in estimating the number of haplotypes at
different subsampling fractions after B resampling cycles with and without replacement,
and Table 5 and Figure 3 show the results in estimating master frequencies.

As observed in the case of all singletons, the number of haplotypes is underesti-
mated with respect to the true value when subsampling with replacement, contrary to the
estimation by subsampling without replacement, which is very close to the true value.
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Table 4. Single dominant. Estimating number of haplotypes. Median values.

ID Subsz NoRpl WithRpl Exact

Q.90.10 0.50 5002.0 3933.0 5000

Q.90.10 0.25 2500.0 2215.0 2500

Q.90.10 0.10 1000.0 953.0 1000

Q.90.10 0.05 501.0 490.0 500

Q.80.20 0.50 10,002.5 7866.0 10,000

Q.80.20 0.25 5002.5 4423.0 5000

Q.80.20 0.10 1999.0 1906.0 2000

Q.80.20 0.05 1001.5 977.0 1000

Q.70.30 0.50 14,996.0 11,799.5 15,000

Q.70.30 0.25 7495.5 6635.0 7500

Q.70.30 0.10 2999.0 2858.0 3000

Q.70.30 0.05 1501.0 1466.5 1500

Q.60.40 0.50 20,005.0 15,741.0 20,000

Q.60.40 0.25 10,001.0 8852.0 10,000

Q.60.40 0.10 3999.5 3807.5 4000

Q.60.40 0.05 1998.0 1951.0 2000

Q.50.50 0.50 25,001.0 19,676.5 25,000

Q.50.50 0.25 12,500.5 11,070.0 12,500

Q.50.50 0.10 5006.0 4759.0 5000

Q.50.50 0.05 2499.0 2440.0 2500

Q.40.60 0.50 29,996.0 23,609.5 30,000

Q.40.60 0.25 14,993.0 13,274.0 15,000

Q.40.60 0.10 6000.0 5706.0 6000

Q.40.60 0.05 3001.5 2927.5 3000

Q.30.70 0.50 35,001.0 27,542.5 35,000

Q.30.70 0.25 17,504.5 15,487.5 17,500

Q.30.70 0.10 7004.0 6661.0 7000

Q.30.70 0.05 3499.0 3415.0 3500

Q.20.80 0.50 39,997.0 31,477.5 40,000

Q.20.80 0.25 20,002.5 17,701.0 20,000

Q.20.80 0.10 7997.0 7613.5 8000

Q.20.80 0.05 4003.0 3904.0 4000

Q.10.90 0.50 45,001.0 35,409.0 45,000

Q.10.90 0.25 22,502.0 19,914.0 22,500

Q.10.90 0.10 9003.0 8565.0 9000

Q.10.90 0.05 4503.0 4389.0 4500
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The estimation of the master haplotype frequency was nearly identical under both
sampling schemes (Table 5 and Figure 3), contrary to the estimation of the number of
haplotypes, which was severely downward biased when sampling with replacement,
except for the lowest fractions of subsampling.

This observation aligns with the data presented in Table 2 in the all-singletons case.
An accurate estimation of the master frequency in this scenario implies that the comple-
mentary, which is the fraction of reads in the quasispecies for non-dominant haplotypes, is
also accurate. In simpler terms, despite the underestimation in the number of haplotypes,
the aggregated sum for non-dominant reads remains accurate.

These results can be extended to say that prominent haplotypes will be accurately
subsampled under both schemes, but rare haplotypes will be severely underestimated
when subsampling with replacement, particularly when the fraction of reads for rare
haplotypes in the sample is significant.

Nonetheless, the estimate of the fraction of reads for low-abundance haplotypes may
still be accurate.
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Table 5. Single dominant. Estimating master frequency. Median values.

ID Subsz NoRpl WithRpl Exact

Q.90.10 0.50 0.899980 0.90005 0.9

Q.90.10 0.25 0.900040 0.90004 0.9

Q.90.10 0.10 0.900100 0.90000 0.9

Q.90.10 0.05 0.900000 0.90000 0.9

Q.80.20 0.50 0.799970 0.80010 0.8

Q.80.20 0.25 0.799940 0.80014 0.8

Q.80.20 0.10 0.800200 0.79980 0.8

Q.80.20 0.05 0.799900 0.80020 0.8

Q.70.30 0.50 0.700100 0.70016 0.7

Q.70.30 0.25 0.700220 0.70012 0.7

Q.70.30 0.10 0.700200 0.69980 0.7

Q.70.30 0.05 0.700000 0.69980 0.7

Q.60.40 0.50 0.599920 0.60004 0.6

Q.60.40 0.25 0.600000 0.59988 0.6

Q.60.40 0.10 0.600150 0.59990 0.6

Q.60.40 0.05 0.600600 0.60040 0.6

Q.50.50 0.50 0.500000 0.49985 0.5

Q.50.50 0.25 0.500020 0.49982 0.5

Q.50.50 0.10 0.499500 0.50005 0.5

Q.50.50 0.05 0.500400 0.50000 0.5

Q.40.60 0.50 0.400100 0.39998 0.4

Q.40.60 0.25 0.400320 0.39988 0.4

Q.40.60 0.10 0.400100 0.40040 0.4

Q.40.60 0.05 0.399900 0.39980 0.4

Q.30.70 0.50 0.299993 0.30011 0.3

Q.30.70 0.25 0.299860 0.30008 0.3

Q.30.70 0.10 0.299700 0.30010 0.3

Q.30.70 0.05 0.300400 0.30000 0.3

Q.20.80 0.50 0.200072 0.19978 0.2

Q.20.80 0.25 0.199924 0.19992 0.2

Q.20.80 0.10 0.200400 0.20025 0.2

Q.20.80 0.05 0.199600 0.20020 0.2

Q.10.90 0.50 0.100000 0.10007 0.1

Q.10.90 0.25 0.099960 0.09990 0.1

Q.10.90 0.10 0.099800 0.10000 0.1

Q.10.90 0.05 0.099600 0.10000 0.1
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3.5. Prominent Haplotypes

Let us consider now a quasispecies featuring six prominent haplotypes, each at half
frequency of the preceding one, with the remaining haplotypes being singletons (Table 6).
In this case, our goal is to estimate the frequencies of the six prominent haplotypes and to
also determine the fraction of reads belonging to singleton haplotypes.

Table 6. Prominent haplotypes, quasispecies composition.

Number of Reads 100,000

Number of haplotypes 3083

Prominent haplotypes (read counts) 49,231, 24,615, 12,308, 6154, 3077, 1538

Singletons (reads) 3077

To account for singleton replicates, we compute the fraction of reads for haplotypes
above 1 read but below the top 6 haplotypes in each subsampling.

Further analysis confirms that subsampling without replacement provides results
very close to the true values. In contrast, subsampling with replacement estimates the
frequencies of the prominent haplotypes fairly well, but underestimates the fraction of
singletons, which is underestimated in favor of replicated singletons, with frequencies
above 1 read and below the top 6 haplotypes. However, the sum of the fractions for
singletons and replicated singletons, as the complementary to the top 6, remains well
approximated, like in the single-dominant case (Tables 7 and 8).
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Table 7. Prominent haplotypes. Subsampling without replacement. Median values.

Subs SngFr Hpl_1 Hpl_2 Hpl_3 Hpl_4 Hpl_5 Hpl_6 Ov1

True 0.03077 0.49231 0.24615 0.12308 0.06154 0.03077 0.01538 0

0.5 0.03076 0.49211 0.24626 0.12315 0.06148 0.03084 0.01542 0

0.25 0.03080 0.49224 0.24606 0.12316 0.06164 0.03076 0.01536 0

0.1 0.03090 0.49240 0.24635 0.12280 0.06160 0.03070 0.01540 0

0.05 0.03100 0.49280 0.24620 0.12280 0.06120 0.03060 0.01520 0

Table 8. Prominent haplotypes. Subsampling with replacement. Median values.

Subs SngFr Hpl_1 Hpl_2 Hpl_3 Hpl_4 Hpl_5 Hpl_6 Ov1

True 0.03077 0.49231 0.24615 0.12308 0.06154 0.03077 0.01538 0.00000

0.5 0.01872 0.49230 0.24604 0.12302 0.06146 0.03078 0.01542 0.01210

0.25 0.02396 0.49232 0.24626 0.12308 0.06148 0.03068 0.01536 0.00684

0.1 0.02780 0.49215 0.24620 0.12320 0.06170 0.03070 0.01540 0.00285

0.05 0.02900 0.49280 0.24600 0.12320 0.06140 0.03060 0.01540 0.00140

In conclusion, the frequencies of prominent haplotypes will be equally estimated under
both schemes, but the number of rare haplotypes could be severely underestimated when
subsampling with replacement. The aggregation of non-dominants is well approximated
when subsampling with replacement. We observed similar results with real hepatitis E
virus data [23] sequencing sample replicates at different depths [24].

At a high sequencing depth, the frequencies of prominent haplotypes are highly stable
across varying sample sizes and may be compared directly without subsampling. Note that
the variance of a proportion p is given by Var(p) = p · (1 − p)/n, where n is the sample size.

3.6. No Rare Haplotypes

Let us review a quasispecies composed of a master haplotype at 90% and 10 other
haplotypes at 1% each, without any singletons or rare haplotypes. Our aim is to estimate
haplotype frequencies by repeated subsampling. A quasispecies without haplotypes at
very low frequencies will give approximately the same results with subsampling or not,
and both subsampling methods will retrieve very similar results (Tables 9 and 10).

Table 9. No rare haplotypes. Subsampling without replacement.

Subs HplNo Hpl_01 Hpl_02 Hpl_03 Hpl_04 Hpl_05

True 11 0.90000 0.01000 0.01000 0.01000 0.0100

0.5 11 0.89996 0.01002 0.01004 0.01002 0.0100

0.25 11 0.89990 0.01000 0.01000 0.01004 0.0100

0.1 11 0.90000 0.01010 0.01000 0.01000 0.0101

0.05 11 0.90000 0.01000 0.01000 0.01000 0.0100

Subs Hpl_06 Hpl_07 Hpl_08 Hpl_09 Hpl_10 Hpl_11

True 0.0100 0.01000 0.01000 0.01 0.01000 0.01000

0.5 0.0100 0.01002 0.01001 0.01 0.01002 0.00999

0.25 0.0100 0.00996 0.00996 0.01 0.01000 0.00996

0.1 0.0101 0.01000 0.01010 0.01 0.01000 0.01000

0.05 0.0100 0.01000 0.01000 0.01 0.01000 0.01000
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Table 10. No rare haplotypes. Subsampling with replacement.

Subs HplNo Hpl_01 Hpl_02 Hpl_03 Hpl_04 Hpl_05

True 11 0.90000 0.01000 0.01000 0.01000 0.01000

0.5 11 0.90006 0.00999 0.01002 0.01002 0.01004

0.25 11 0.90004 0.01000 0.01004 0.00992 0.01004

0.1 11 0.90010 0.01000 0.01000 0.01000 0.01000

0.05 11 0.90010 0.01000 0.01000 0.01000 0.01020

Subs Hpl_06 Hpl_07 Hpl_08 Hpl_09 Hpl_10 Hpl_11

True 0.01000 0.01000 0.01000 0.01000 0.01000 0.01000

0.5 0.01002 0.00998 0.01002 0.00998 0.00996 0.01002

0.25 0.01000 0.01000 0.00994 0.01004 0.01004 0.01000

0.1 0.00990 0.01000 0.01000 0.01000 0.01000 0.01000

0.05 0.00980 0.00980 0.01000 0.00980 0.00990 0.01000

3.7. Flat Quasispecies

Let us consider the case of a quasispecies with n haplotypes, where all have an equal
number of reads, k, growing from 1 to 10 each. As the frequency of each haplotype increases,
they become less rare. Given the number of reads per haplotype, k, the probability to sample
a given haplotype with replacement after a full resampling cycle of n · k random extractions,
that is, a bootstrap cycle, is given by 1 − (1 − k/(n · k))(n·k) = 1 − (1 − 1/n)(n·k), where n ·
k is the sample size. The probability, which, in the limit as n goes to infinity, is 1 − (1/e)k.
Table 11 and Figure 4 show the values computed for n = 1000 haplotypes, k from 1 to
10 reads each, the computed probability, and the corresponding limits.

Table 11. Flat quasispecies: full bootstrap cycle results at growing haplotype frequencies to this case
results in Equation (1).

nHpl k Reads Prob Limit

1000 1 1000 0.6323046 0.6321206

1000 2 2000 0.8648001 0.8646647

1000 3 3000 0.9502876 0.9502129

1000 4 4000 0.9817210 0.9816844

1000 5 5000 0.9932789 0.9932621

1000 6 6000 0.9975287 0.9975212

1000 7 7000 0.9990913 0.9990881

1000 8 8000 0.9996659 0.9996645

1000 9 9000 0.9998771 0.9998766

1000 10 10,000 0.9999548 0.9999546

In subsampling a fraction f of the full sample size, as described in Table 12, the ex-
pected number of haplotypes subsampling without replacement is given by the rarefaction
equation, which, when applied to this case, results in Equation (1).

E1[n|k, f ] = n − n ·
(

n · k − k
n · k · f

)
/
(

n · k
n · k · f

)
(1)
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Table 12. Flat quasispecies subsampling.

Haplotypes n

Reads per haplotype k

Full sample size n · k

Subsampling fraction f

Subsample size round(n · k · f)

The expected number of haplotypes when subsampling with replacement is given by
Equation (2)

E2[n | k, f ] = 1 − (1 − 1/n)n·k· f (2)

The results of Equation (1) for n = 10,000 haplotypes with frequencies, k = 1, 2, . . .,
10 reads, and subsample fractions, f = 0.1, 0.2, . . ., 1 are represented in Figure 5.

The ratio E2[n|k,f]/E1[n|k,f] gives the fraction of haplotypes estimated in subsam-
pling with replacement with respect to those estimated in subsampling without replace-
ment (rarefaction). This ratio gives a representation of the accuracy obtained in subsam-
pling with replacement in this scenario, and is represented in Figure 6, computed for
n = 10,000 haplotypes, k = 1, 2, . . ., 10 reads per haplotype, and f = 0.1, 0.2, . . ., 1.

This represents an extreme case with all haplotypes at equivalent and very low fre-
quencies, with no prominent or dominant haplotypes. This is a useful example to show the
implications of low-level abundance filters in our context. This type of low-level abundance
filter may aim at limiting technical and instrumental noise, but it is not always advisable.

When comparing samples with the rarest haplotypes being excluded by setting a
minimum abundance threshold, i.e., such as a minimum of 5 reads per haplotype, the
outcomes of subsampling under both methods will tend to be similar, particularly in
not-so-extreme cases, such as flat-like quasispecies.
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4. Discussion

The determination of quasispecies diversity is significantly influenced by sample size,
where larger samples generally yield a more accurate estimation. It is well-established that
diversity estimation is dependent on the sampling effort, affecting some indices more than
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others. The higher the effort, the bigger the chances to sample lower frequent and rare
haplotypes, an inherent characteristic of quasispecies.

qD(p) =

(
H

∑
i=1

pq
i

)1/(1−q)

(3)

When computing diversity through Hill numbers, qD(p) (Equation (3)) [25,26], of
different orders q, they will be limited above by 0D, being the number of haplotypes, and
below by ∞D, being the inverse of the frequency of the dominant haplotype. As the order
q increases, the relative weight of low frequency and rare haplotypes in the computation
decreases, as low-frequency values are more heavily affected by the exponent. At q = 0, all
haplotypes have equal weight regardless of their frequency, while at q = ∞, only the highest
frequency holds significance. This observation suggests that the sensitivity or dependence
of a Hill number with respect to sample size decreases as q gets bigger. Considering the
correspondence between Hill numbers and other classical diversity indices, we may set the
sensitivity order as:

Number of haplotypes > Shannon entropy > Gini index > Master frequency

The rare haplotype load (RHL) [27] and the quasispecies fitness fractions (QFF) [23]
are specific quasispecies diversity indices calculated as fractions of aggregated reads corre-
sponding to haplotypes with frequencies between defined limits. These indices represent
prominent fractions, which are relatively insensitive to sample size. Even the fraction of
rare haplotypes, computed below 1% or below 0.1%, proves to be robust to sample size,
provided that the coverage is high enough to capture with sufficient depth of these fractions.

The number of haplotypes and the related incidence indices [26], such as the number
of polymorphic sites or the number of mutations, on one hand, and the Shannon entropy
on the other will benefit from rarefaction, and repeated subsampling without replacement
to the reference size is required. Higher order diversity indices like the Gini–Simpson index
will be less sensitive to sample size and may be rarefied with replacement, when required.
The frequency of prominent haplotypes remains highly robust to sample size variations
and can be directly compared or rarefied with replacement if needed.

As mentioned earlier, it is advisable to employ subsampling without replacement.
In specific cases, such as when examining quasispecies diversity in hepatitis E virus
(HEV) [23], this approach is particularly crucial. HEV, characterized by a high muta-
tion rate, exhibits considerable diversity, resulting in haplotypes at very low frequencies.
Subsampling with replacement might not fairly represent these low-frequency haplotypes.
This especially needs to be considered when analyzing HEV samples from chronic patients
treated with ribavirin due to the increase in mutation rates introduced, which leads to a
more unstructured quasispecies, leading to even more low-frequency haplotypes [23,28].
On the contrary, for viruses with a less diverse quasispecies, like SARS-CoV-2 [23], as
demonstrated earlier in the ‘Flat Quasispecies’ case, subsampling could be effectively
carried out through subsampling with replacement. This is supported by the removal
of lowest-frequency haplotypes, which allows for the retrieval of comparable results to
subsampling without replacement.

In NGS data, haplotype frequencies are obtained as read counts, which are integers.
However, when computing diversity indices, frequencies are used as fractions of haplotype
reads relative to the sample size (total number of reads), N. This introduces granularity in
the results, as not all frequencies from 0 to 1 are possible, with the granularity determined
by the frequency of a single read, 1/N. With a coverage of 1000 reads, the resolution is
0.1%. This resolution may be insufficient for quasispecies analysis, especially when rare
haplotypes are of interest, in which a target depth above 100,000 reads per sample/amplicon
is recommended.
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Controversy in the metagenomics field, mentioned in the introduction, also arises
because there are different approaches other than rarefaction when differential abundance
analysis is the main objective instead of diversity comparisons. Methods based in counts
instead of frequencies, like generalized linear models (GLM), with family distributions
like the negative binomial [29], are being used in RNAseq or in label-free proteomics by
LC-MS/MS, among others. These methods are used in differential expression studies,
aiming to compare the relative abundances of mRNA or proteins between two biolog-
ical conditions, and use an implicit normalization by offsets, which allow for complex
normalizations [30]. In metagenomics, these and other methods based on compositional
data analysis (CoDA) [31,32] are also used in the normalization of microbiome abundance
tables [10,33]. Nevertheless, when comparing diversity metrics between unbalanced sam-
ples, rarefaction is a necessity [34], especially with diversity indices, such as the number of
haplotypes, polymorphic sites, mutation frequency, Shannon entropy, Hill numbers, and
others, or metrics, which show a dependency of the sample size.

This study lays the groundwork for determining the most appropriate subsampling
approach depending on quasispecies structure and the specific indices to be compared.
In summary, with high depths, frequencies of prominent haplotypes and fractions of reads
are robust to sample size variations and can be compared directly or previously subsam-
pled with replacement. The estimation of Shannon entropy, where low-frequency and rare
haplotypes still have a significant role, requires rarefaction by subsampling without replace-
ment to balance biases. The estimation of the number of haplotypes, incidence indices, the
fraction of singletons, or of the lowest frequency haplotypes requires subsampling without
replacement. As part of the experimental design, a minimum coverage must be established
beforehand to reject or repeat any samples falling below that threshold. This minimum
coverage sets the level of information conveyed by the study.
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