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Abstract: In recent years, an increasing number of viruses have triggered outbreaks that pose a
severe threat to both human and animal life, as well as caused substantial economic losses. It is
crucial to understand the genomic structure and epidemiology of these viruses to guide effective
clinical prevention and treatment strategies. Nanopore sequencing, a third-generation sequencing
technology, has been widely used in genomic research since 2014. This technology offers several
advantages over traditional methods and next-generation sequencing (NGS), such as the ability to
generate ultra-long reads, high efficiency, real-time monitoring and analysis, portability, and the
ability to directly sequence RNA or DNA molecules. As a result, it exhibits excellent applicability
and flexibility in virus research, including viral detection and surveillance, genome assembly, the
discovery of new variants and novel viruses, and the identification of chemical modifications. In
this paper, we provide a comprehensive review of the development, principles, advantages, and
applications of nanopore sequencing technology in animal and human virus research, aiming to offer
fresh perspectives for future studies in this field.

Keywords: nanopore sequencing; viruses; applications; chemical modifications; genome assembly

1. Introduction

The viruses known to date exhibit remarkable diversity and complexity, and it is
estimated that many more viruses remain to be discovered globally. Animal viruses, such
as African swine fever virus (ASFV) [1], porcine reproductive and respiratory syndrome
virus (PRRSV) [2], porcine epidemic diarrhea virus (PEDV) [3,4], Newcastle disease virus
(NDV) [5], infectious bronchitis virus (IBV) [6], and others, cause the death of animals
and lower the quality of animal products, which results in great economic losses in the
livestock industry. ASFV, in particular, is highly pathogenic and spreads quickly and
efficiently between pig herds, leading to pandemic outbreaks with mortality rates ap-
proaching 100% [7,8]. Certain viruses, such as influenza A virus (IAV) and the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can transmit from animals to
humans and cause zoonosis, endangering human health and life. IAV, capable of genetic
reassortment and the emergence of highly pathogenic variants, is responsible for sea-
sonal and global influenza pandemics that result in high morbidity and mortality rates
in both humans and poultry [9,10]. The coronavirus disease 2019 (COVID-19), caused
by SARS-CoV-2, has rapidly spread worldwide through contact and respiratory droplets,
resulting in more than 770 million confirmed cases and 6.9 million deaths up to September
2023 (https://data.who.int/dashboards/covid19/cases?n=c (accessed on 12 September
2023)) [11,12]. SARS-CoV-2 is believed to have a zoonotic origin, although the specific
animal reservoir has not been identified. Reports suggest that SARS-CoV-2 can also infect
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other animals, such as domestic cats, dogs, etc. [13–16]. Given the high risk that viruses pose
to both human and animal health, the development of a rapid and convenient detection
method is crucial in monitoring, controlling, and researching viruses.

Nanopore sequencing technology has been extensively employed in researching since
2014, when MinION sequencer, developed by Oxford Nanopore Technologies (ONT), was
made available to early-access users [17]. To date, nanopore sequencing has found appli-
cations in the identification of clinically relevant viruses and structural variations [18–21],
the assembly of new reference genomes [22,23], the detection of DNA and RNA modi-
fications [24,25], outbreak surveillance [26,27], on-site metagenomics research [28], and
more [29–31]. Distinct from next-generation sequencing (NGS), also known as short-read
sequencing, nanopore sequencing technology is capable of sequencing single long strands
of DNA or RNA, thereby enhancing the quality and throughput of sequencing [32]. It
offers a number of benefits over traditional methods, including reduced turnaround times
and lower equipment costs [33]. The technology also provides unique advantages in
terms of convenience, real-time genomic surveillance, and analysis [34,35], which are not
constrained by geographical location or time. Thanks to its versatility and adaptability,
nanopore sequencing has been widely applied in the field of virus research.

2. Nanopore Sequencing Technology
2.1. Development

The original concept of nanopore sequencing was introduced by Deamer in 1989
(Figure 1) [36]. In 1996, Deamer, along with Daniel Branton and colleagues, was the first to
demonstrate the transport of single-stranded DNA through the α-hemolysin nanopore [37].
It was further demonstrated in 1999 that nanopores could distinguish between purine and
pyrimidine segments along a single RNA molecule [38]. Shortly thereafter, Bayley and
Ghadiri demonstrated that nanopores could recognize DNA strands with single-nucleotide
resolution [39–42]. The results from the phi29 motor combined with the Mycobacterium
smegmatis porin A (MspA) nanopore contributed to the advancement of nanopore sequenc-
ing technology [43]. In 2014, ONT released the MinION devices to early-access users as
part of the Mapper Access Program (MAP), signifying the commercialization of nanopore
sequencing [36]. ONT has since continually improved and upgraded the technology, releas-
ing eight versions of the nanopore chip and introducing new devices such as GridION and
PromethION [32,44].
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Figure 1. The development of nanopore sequencing. Since the concept of nanopore sequencing was
proposed in 1989, the technology has undergone significant development over a period of 30 years.
The commercialization of nanopore sequencing kits began in 2014, and they have since been widely
used in multiple fields.
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2.2. Principle

Nanopore sequencing technology leverages the distinct electrical signals produced by
different nucleotide bases to identify their types. Nanopores, with their narrow diameters,
permit the passage of only a single purine or pyrimidine nucleotide at a time [37]. During
the sequencing process, double-stranded DNA is unwound by the action of a motor
protein. The resulting single-stranded DNA and RNA molecule are then propelled through
the nanopores by an applied electric field [45]. When negatively charged biomolecules
pass through nanopores, the ionic current fluctuates and different bases produce distinct
changes in current [46]. These changes of current signal can be captured and analyzed
using computer-aided tools [46,47]. Nanopore sequencing allows direct DNA or RNA
sequencing without the need for DNA synthesis reactions because nucleotides are recorded
directly from the current signal. The current signal is converted into a base sequence
through basecalling (Figure 2).
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Figure 2. The principles of nanopore sequencing. During nanopore sequencing, as DNA or RNA
molecules pass through the nanopore, an enzyme motor controls the translocation of the single strand,
resulting in distinctive signals of ionic current fluctuations that are detected by sensors within the
nanopore. These current signal datasets are then processed and translated into nucleic acid sequences
by bioinformatics software.

Nanopores can be categorized into two types: solid-state nanopores and biological
nanopores. Biological nanopores can be either artificially created through genetic engineer-
ing or derived from natural protein molecules [48]. They are commonly employed for gene
sequencing [49], disease diagnosis [50], and protein sequencing [51] of viruses.

2.3. Methods

Viral nucleic acids, including genomic DNA or RNA, as well as amplified DNA and
transcripts, can be detected by a nanopore sequenator. The nanopore sequencing processes
encompasses library preparation, sequencing, and bioinformatics analysis. Currently, ONT
has introduced numerous library preparation strategies and a variety of kits suitable for
virus research.

2.3.1. DNA Sequencing

DNA is extracted from samples using DNA extraction kits, such as the QIAamp DNA
Micro Kit (QIAGEN, Hilden, Germany). Subsequently, the length, quantity, and purity of
the DNA are assessed, which is crucial for guaranteeing the success of the experiment. The
choice of library preparation kit is determined based on the specific objectives of experiment
and the actual conditions (Table 1).
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Table 1. The DNA sequencing kits for nanopore sequencing.

Sequencing Kit Advantage Preparation Time Input Type Fragmentation Parallel
Quantities Application

Ligation
Sequencing Kit

Higher
output 60 min

gDNA
Amplified-

DNA
Optional 24/96

Whole-genome
sequencing/
Methylation/

Adaptive sampling

Rapid Sequencing
Kit Higher speed 10 min gDNA Transposase-

based 24/96

Whole-genome
sequencing/
Methylation/

Adaptive sampling

Rapid PCR
Barcoding Kit Lower input 15 min + PCR gDNA Transposase-

based 24
Whole-genome

sequencing/
Adaptive sampling

Ultra-Long DNA
Sequencing Kit

Ultra-long
reads

200 min + 1xO/N
incubation Cells Transposase-

based -

Whole-genome
sequencing/
Methylation/

Adaptive sampling

16S Barcoding Kit

Targeted
sequencing

10 min + PCR gDNA - 24
16S sequencing/

Genus-level bacterial
identification

Cas9 Sequencing
Kit 110 min gDNA

Cas9-
dependent
cleavage

- Target-site sequencing/
Methylation

Beyond targeted sequencing, the workflows for other sequencing kits predominantly
involve fragmentation, end preparation, and adapter ligation (Figure 3A). The workflows
for the rapid PCR barcoding kit and the 16S barcoding kit also include an amplification
step. Additionally, specialized Cas9 ribonucleoprotein (RNP) complexes are required for
the preparation of the Cas9 sequencing kit.

2.3.2. RNA Sequencing

RNA extraction and quality control procedures are analogous to those used for DNA,
albeit with modifications to account for the shorter half-life and structural differences of
RNA. RNA sequencing can be conducted through either cDNA-PCR sequencing or direct
RNA sequencing, with the choice of method dependent on the specific experimental aims
and the context of the study (Table 2). Unlike cDNA-PCR sequencing, which involves
the conversion of RNA to cDNA followed by PCR amplification (Figure 3B), direct RNA
sequencing can be applied to the RNA itself (Figure 3C). This approach ensures that the
read length reflects the actual length of the RNA molecules in the sample.

Table 2. The RNA sequencing kits for nanopore sequencing.

Type Sequencing Kit Preparation
Time Input Type Fragmentation Parallel

Quantities Application

Direct
RNA

Direct RNA
Sequencing Kit 105 min

500 ng total
RNA

50 ng poly(A)+
RNA

Optional -

Characterize and
quantify full-length

RNA transcripts, splice
variants, and fusions

Methylation

cDNA cDNA-PCR
Sequencing Kit 210 min + PCR

200 ng total
RNA

4 ng poly(A)+
RNA

24

Characterize and
quantify full-length

RNA transcripts, splice
variants, and fusions
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Figure 3. The principles of nanopore library preparation for viruses. (A) DNA library preparation.
DNA library preparation kits, such as SQK-RPB004, SQK-LSK114 and SQK-LSK109 (Oxford Nanopore
Technologies, Oxford, England), facilitate the preparation of DNA libraries from either amplicon or
native DNA inputs. These molecules are barcoded using a barcoding kit through PCR or rolling circle
amplification (RCA). (B) cDNA library preparation. The cDNA-PCR sequencing kit SQK-PCB114
(Oxford Nanopore Technologies, Oxford, England) uses a strand-switching method with poly (A)
RNA as a template to generate libraries and sequences. During the strand-switching, a unique
molecular identifier (UMI) is incorporated into the double-strand cDNA. Subsequently, the double-
stranded cDNA is amplified by PCR using primers with 5′ tags. Finally, sequencing adapters are
ligated to the amplified cDNA. (C) Direct RNA library preparation. Direct RNA library preparation
kits, such as SQK-RNA004 (Oxford Nanopore Technologies, Oxford, England), enable the direct
submission of either poly (A)-tailed RNA or total RNA. A reverse transcription step is recommended
to enhance the sequencing output. Following this, an adaptor is ligated to the RNA for subsequent
nanopore sequencing. Only native RNA is able to pass through the nanopore sensor.

RNA viruses, which typically lack poly(A) tails, are not amenable to sequencing using
standard methods. However, a number of strategies have been developed to facilitate
the addition of poly(A) tails to total RNA prior to library preparation. One such strategy
involves the use of poly(A) polymerase derived from E. coli.

2.3.3. Bioinformatics Analysis

The POD5 or fast5 files are acquired through sequencing, and these files serve as the
raw data for subsequent analysis. The workflow for analyzing viruses primarily involves
four key processes: (1) converting the current signals into a base sequence through a pro-
cess known as basecalling, (2) performing quality control on the sequence data to ensure
accuracy and reliability, (3) aligning the sequences with the reference sequences to iden-
tify variations, and (4) conducting additional analyses, such as determining methylation
patterns. A number of software tools have been developed specifically for the nanopore
sequencing data of viruses (Table 3).
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Table 3. The software for analyzing nanopore sequencing data of viruses.

Type Software Functions Availability

Sequencing
MinKNOW

(Oxford Nanopore Technologies,
Oxford, England)

MinKNOW is unique control software from
ONT. It is used for sequencing, real-time data

monitoring and simple analysis.

https://nanoporetech.com (accessed on 1
January 2024)

Basecalling
Guppy

(Oxford Nanopore Technologies,
Oxford, England)

Basecalling https://nanoporetech.com (accessed on 1
January 2024)

Basecalling
Dorado

(Oxford Nanopore Technologies,
Oxford, England)

Dorado is a high-performance, easy-to-use, open
source basecaller for Oxford Nanopore reads. It

is designed for duplex basecalling, simplex
barcode classification, initial support for poly(A)

tail estimation, and so on.

https://github.com/nanoporetech/dorado
(accessed on 1 January 2024)

Filter Porechop
version 0.2.4

Porechop is used for adapter removal and
demultiplexing of nanopore reads.

https://github.com/rrwick/Porechop
(accessed on 1 January 2024)

Assemble Spades
version 3.15.5

SPAdes is an assembly toolkit containing various
assembly pipelines. Spades is used for bacteria,

fungal, virus, and other small genomes.

https://github.com/ablab/spades (accessed
on 1 January 2024)

Assemble Canu
version 2.2

Canu is an assembly toolkit designed for
high-noise single-molecule sequencing. Canu
includes four steps: (1) detecting overlaps in

high-noise sequences, (2) generating corrected
sequence consensus, (3) trimming corrected

sequences, and (4) assembling trimmed
corrected sequences.

https://github.com/marbl/canu (accessed
on 1 January 2024)

Error
correction

Medaka version 1.11.3
(Oxford Nanopore Technologies,

Oxford, England)

A toolkit for polishing consensus sequences and
variant calling.

https:
//github.com/nanoporetech/medaka

(accessed on 1 January 2024)

Error
correction

Pilon
version 1.24

Pilon is an automated genome assembly
improvement and variant detection tool.

https://github.com/broadinstitute/pilon
(accessed on 1 January 2024)

Alignment Minimap2
version 2.28

Minimap2 is a versatile sequence alignment
program that aligns genomic and spliced

nucleotide sequences against a large
reference database.

https://github.com/lh3/minimap2
(accessed on 1 January 2024)

Alignment
Megalodon

(Oxford Nanopore Technologies,
Oxford, England)

Megalodon is a research command line tool for
reference genome/transcriptome anchored

modified base and variant analysis.

https:
//github.com/nanoporetech/megalodon

(accessed on 1 January 2024)

Massaging Samtools
version 1.20

A tool for dealing with SAM, BAM, and CRAM
files. These file formats convert to each other.

https://github.com/samtools/samtools
(accessed on 1 January 2024)

Taxonomy Centrifuge
version 0.32.2

Centrifuge is a classifier for metagenomic
sequence, enabling rapid, accurate, and sensitive
labeling of reads and quantification of species.

https://github.com/DaehwanKimLab/
centrifuge (accessed on 1 January 2024)

Taxonomy Emu

An approach that employs an
expectation-maximization (EM) algorithm to
generate taxonomic abundance profiles from

full-length 16S rRNA reads. This software can
reduce the number of false positives and

distinguish between genomically similar species.

https://github.com/treangenlab/emu
(accessed on 1 January 2024)

Variant
analysis

NanoVar version 1.6.2
(Oxford Nanopore Technologies,

Oxford, England)

NanoVar is a genomic structural variant (SV)
caller that utilizes low-depth long-read

sequencing such as ONT. It characterizes six
classes of SVs including novel-sequence

insertion, deletion, inversion, tandem
duplication, sequence transposition (TPO), and

translocation (TRA), and requires 4x and 8x
sequencing depth for detecting homozygous and

heterozygous SVs, respectively.

https://github.com/cytham/nanovar
(accessed on 1 January 2024)

Methylation
analysis

Tombo version 1.5.1
(Oxford Nanopore Technologies,

Oxford, England)

Tombo is a suite of tools primarily for the
identification and visualization of modified

nucleotides from raw nanopore sequencing data.

https://nanoporetech.github.io/tombo
(accessed on 1 January 2024)

https://nanoporetech.com
https://nanoporetech.com
https://github.com/nanoporetech/dorado
https://github.com/rrwick/Porechop
https://github.com/ablab/spades
https://github.com/marbl/canu
https://github.com/nanoporetech/medaka
https://github.com/nanoporetech/medaka
https://github.com/broadinstitute/pilon
https://github.com/lh3/minimap2
https://github.com/nanoporetech/megalodon
https://github.com/nanoporetech/megalodon
https://github.com/samtools/samtools
https://github.com/DaehwanKimLab/centrifuge
https://github.com/DaehwanKimLab/centrifuge
https://github.com/treangenlab/emu
https://github.com/cytham/nanovar
https://nanoporetech.github.io/tombo
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Table 3. Cont.

Type Software Functions Availability

Methylation
analysis

Nanopolish
(Oxford Nanopore Technologies,

Oxford, England)

Nanopolish is a comprehensive tool. It can
calculate an improved consensus sequence for a
genome assembly, detect base modifications, and

call SNPs and indels with respect to a
reference genome.

https://github.com/jts/nanopolish
(accessed on 1 January 2024)

Methylation
analysis DRUMMER

DRUMMER is a tool to identify RNA
modifications at nucleotide-level resolution on

distinct transcript isoforms through the
comparative analysis of basecall errors in

nanopore direct RNA sequencing (DRS) datasets.

https:
//github.com/DepledgeLab/DRUMMER

(accessed on 1 January 2024)

Sequence
splitting

and
merging

Ont_fast5_api
(Oxford Nanopore Technologies,

Oxford, England)

The ont_fast5_api provides a simple interface to
convert between files in the Oxford Nanopore
single_read and multi_read. fast5 file formats.

https:
//github.com/nanoporetech/ont_fast5_api

(accessed on 1 January 2024)

2.4. Advantages

Since the release of MinKNOW by ONT in 2004, there has been a significant surge
in popularity of nanopore sequencing technology and its applications in both basic and
applied research, thanks to its numerous unique advantages.

Nanopore sequencing stands out for its real-time capabilities and high efficiency. It
is able to detect pathogens and generate sequencing data in a much shorter timeframe
compared to NGS, positioning it as a more effective option for rapid genetic profiling [52,53].
The library preparation process for nanopore sequencing is remarkably simple, requiring
only 10 min when using a rapid barcoding kit [33,54]. This efficiency is further enhanced
by direct RNA sequencing, which eliminates the need for reverse transcription, PCR
amplification, and other steps, thereby saving both time and costs. Additionally, the
MinION flow cell enables the parallel sequencing of multiple samples and the generation of
data in real time. The sequencers can be easily connected to a computer via a port, allowing
researchers to monitor and analyze raw data in real time as sequencing occurs [55–57]. The
portability of nanopore sequencing even allows for its use in microgravity conditions [58].

Nanopore sequencing also offers greatly extended read lengths, surpassing those
achievable with second-generation Illumina sequencing. In 2018, Alexander Payne demon-
strated read lengths of up to 2.273 Mb [59]. This capability to generate long reads has
enhanced the accuracy of identifying complex repetitive and/or rearranged structures
in DNA/RNA molecules, including plasmids, and has facilitated the detection of a full
spectrum of structural variations [60,61]. It has also enabled the complete assembly of
genomes for complex mammals and microorganisms [62,63]. Both the nanopore and PacBio
sequencers are capable of producing long read sequences. However, the nanopore platform
has the potential to generate ultra-long reads beyond 100 Kb, which could revolutionize re-
search in genomics and proteomics. Furthermore, adaptive sampling, a pioneering feature
of nanopore sequencing, adjusts sequencing parameters to target specific genomic regions,
thereby improving coverage and the efficient use of sequencing resources [64].

The convenience and cost-effectiveness of nanopore sequencing are also significant
benefits. The MinION device is a lightweight and portable sequencer that offers unparal-
leled convenience for transportation and operation in remote and field environments, a
feature not provided by PacBio or Illumine sequencers. ONT has made efforts to reduce
costs, with the MinION device priced at just USD1000 and the Flongle, which allows for one-
time sequencing on small flow cells, at only USD100 [52]. Several studies have shown that
the ONT platform can be more cost-effective than the PacBio or Illumina platforms [65,66].
Nanopore sequencing has been utilized for species identification in the field [67,68], en-
abling rapid in situ biodiversity assessments [69,70], monitoring of endangered species,
and surveillance of invasive species [71].

One of the most exciting attributes of nanopore sequencing is its ability to sequence
direct RNA. In contrast, although PacBio sequencing can handle RNA inputs, it does not

https://github.com/jts/nanopolish
https://github.com/DepledgeLab/DRUMMER
https://github.com/DepledgeLab/DRUMMER
https://github.com/nanoporetech/ont_fast5_api
https://github.com/nanoporetech/ont_fast5_api
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offer direct RNA sequencing. Different from traditional methods, direct RNA sequencing
bypasses the steps of reverse transcription and PCR amplification, which can introduce
errors [72]. This direct approach accurately captures RNA modifications, providing insights
into viral epigenetics [73,74]. When combined with the ability to generate long reads,
direct RNA sequencing allows researchers to obtain full-length transcripts and gain a
comprehensive view of the subgenome landscape of viruses [75].

3. Applications
3.1. Diagnosis and Monitoring of Viruses

In recent years, emerging and re-emerging viruses have posed a significant challenge
to global public health due to increased globalization of economies and agricultural trade.
Nanopore sequencing, with its unique capabilities for real-time analysis and portability,
has emerged as critical in the timely diagnosis of virus strains and monitoring of the spread
of viral infections. This technology significantly aids in the understanding of disease
epidemiology, facilitating effective prevention strategies and informing treatment decisions.
Increasingly, research is being published that employs nanopore sequencing to detect and
analyze viruses that cause diseases in both humans and animals. This includes the study of
DNA viruses, such as African swine fever virus (ASFV) and monkeypox virus (MPXV), as
well as RNA viruses including influenza A virus (IAV), human metapneumovirus (HMPV),
and Ebola virus (EBOV).

ASFV is a prime example of a highly lethal animal virus, with a mortality rate reaching
100% and no vaccines or treatments currently available [76]. Understanding the epidemic
trends of ASFV is crucial to preventing its spread. Researchers initially employed nanopore
sequencing to perform genome-wide analysis on an ASFV clinical sample collected in
Zhuhai, China, uncovering that the genome sequence of this strain belonged to genotype II
ASFV, identical to the classic ASFV isolate Georgia 2007/1 and the currently circulating
strains SY18, AnhuiXCGQ, and HLJ18 in China [77]. Subsequently, in 2019, Jan et al.
produced a high-quality whole-genome sequence of ASFV Georgia 2007/1 using the Rapid
Barcoding Sequencing Kit (ONT, Oxford, UK) and Illumina sequencing, and they corrected
71 sequencing errors in the ASFV Georgia 2007/1 whole-genome sequence using Glimmer
3 [78]. These studies have provided more accurate information about the AFSV genome for
future research. Simultaneously, the ability to generate data in real time is essential to the
prompt analysis of high-consequence pathogens during an investigation. By leveraging the
MinION rapid sequencing kit and the self-developed ASF-FAST software, Vivian K et al.
were able to rapidly characterize and differentiate four distinct ASFV genome sequences
from blood samples of infected pigs in real time [79]. These findings suggest that nanopore
sequencing has the potential to uncover a wider array of ASFV genotypes, thereby laying
the foundation for tracing the virus’s dissemination.

Monkeypox, a zoonotic disease caused by MPXV, a double-stranded DNA virus, has
emerged as a significant global health concern [80,81]. There is an increasing mutation
rate in human monkeypox [82,83], leading to outbreaks in more densely populated ar-
eas. Whole genome sequencing is essential for researching and monitoring MPXV. Balázs
Kakuk and companions have sequenced the transcriptome of MPXV and the infected cells
by cDNA sequencing and direct RNA sequencing with nanopore technology [84]. This
research provides an LRS (long read sequencing) dataset, comprising nearly 1.5 million
viral sequences, which facilitates comprehensive and temporal analysis of the monkeypox
transcriptome and the impact of viral infection on host gene expression. In 2023, the poten-
tial transmission routes and mutational patterns of human monkeypox virus 1 (hMPXV1)
were identified through rapid targeted nanopore sequencing [85]. Numerous studies have
shown that nanopore technology enables researchers to gain a thorough understanding of
the MPXV genome, laying the groundwork for real-time global monitoring of monkeypox
virus lineages and outbreaks.

The influenza virus poses a great challenge to global public health due to its high
degree of variability and pathogenicity, its substantial zoonotic reservoir, and its potential to
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cause pandemics [86]. Several studies have gradually uncovered the genetic complexities of
IAV through nanopore sequencing, which has enhanced the ability to monitor and prevent
the spread of IAV. Notably, Kuiama and colleagues were the first to employ metagenomic
nanopore sequencing on clinical respiratory samples from the UK, successfully detecting
the influenza virus and reconstructing complete virus genomes [49]. Subsequent studies
identified 40 H1 and 19 H3 of hemagglutinin (HA) subtypes, and detected an S331R muta-
tion in the H3N2 reassortant of IAV from 180 respiratory samples from a UK hospital during
the 2018/19 influenza season using ONT metagenomic sequencing [87]. Rambo-Martin
et al. utilized nanopore sequencing to identify a cluster of IAV in swine that exhibited
genetic differences from candidate vaccine viruses, and developed a portable IAV sequenc-
ing and analysis platform named Mia (mobile influenza analysis) [88]. This platform was
instrumental in identifying the predominant A virus (H1N2) found in exhibition pigs that
had been transmitted to humans who had contact with the pigs at fairs in July and August
2018 (https://gis.cdc.gov/grasp/fluview/Novel_Influenza.html (accessed on 1 January
2024)). Clinically, rapid nanopore sequencing has become an invaluable tool for genotypic
resistance detection and real-time monitoring of IAV within hospitals, greatly aiding in the
efficient management of outbreaks [89]. Moreover, research has demonstrated that the NS
and PB2 genes have the potential to serve as new targets for detecting both human and
avian IAV via nanopore sequencing [90].

HMPV, first identified in the Netherlands in 2001, is a pathogen that can seriously harm
the human respiratory system, exhibiting a high incidence during the spring and summer
months. The advent of nanopore metagenomic sequencing has facilitated the diagnosis of
HMPV infections. Utilizing this technology, a study was conducted with 25 clinical samples
from 2017 to 2019 to investigate HMPV, firstly reporting the full-length genomes of HMPV
from the UK and identifying genomes that belong to a unique genetic group within the
A2b sublineage associated with nosocomial transmission among hematology patients [91].
Furthermore, nanopore sequencing offers novel insights into the evolutionary dynamics,
genetics, and epidemiology of viruses. Through phylogenetic analysis complemented by
nanopore sequencing, the study tracked the genetic lineages of HMPV over a period from
2005 to 2021, uncovering the mutation patterns and evolution of HMPV in Netherlands [92].

The use of nanopore sequencing has also extended to the analysis of EBOV genomes,
one of the deadliest viruses known to humankind. A total of 142 EBOV samples collected
from Guinean patients between March and October 2015 were sequenced, monitored and
real-time analyzed using the MinION platform [34]. The analysis revealed two predominant
lineages, named GN1 and SL3, which were also identified in Sierra Leone in early 2015,
suggesting a pattern of transmission between the two countries. This study underscores
the feasibility of implementing real-time genomic surveillance in resource-constrained
environments, highlighting the potential for rapid deployment of nanopore sequencing to
monitor and contain outbreaks.

3.2. Identification of Unknown Viruses

Nanopore sequencing, with its distinctive ability to perform long-read sequencing,
enables discovering the lengthy and previous unknown genomic fragments within complex
nucleic acid samples. This capability proved crucial in the characterization of emerging
pathogens, such as the SARS-CoV-2 coronavirus, which was first identified in late 2019
and went on to cause the COVID-19 pandemic, posing a significant threat to human health
and safety. Nanopore sequencing has emerged as a vital tool for quickly determining the
genomic traits and origins of SARS-CoV-2.

Between January and March 2020, 29 complete genome sequences of SARS-CoV-2 were
successfully obtained from clinical specimens collected in Hangzhou, through an efficient
8 h workflow. In addition, 33 variations were identified and analyzed within five coding
sequences (CDSs) and the 5′ untranslated regions [93]. Phylogenetic analysis indicated
that the majority of these cases originated from Wuhan, China, with some instances being
traceable to imported cases from various other countries.

https://gis.cdc.gov/grasp/fluview/Novel_Influenza.html
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Real-time whole-genome sequencing (WGS) has been used to distinguish chronic
infections from reinfections of SARS-CoV-2 and evaluate the reduced susceptibility of
treatments due to the emerging mutations conferring resistance [94]. These results provide
guidance for the subsequent therapeutic strategies of SARS-CoV-2. Nanopore WGS data
have been pivotal in identifying in-hospital transmission and potential outbreaks of SARS-
CoV-2, demonstrating that the source of infection is not always community-based but could
also originate within hospitals [95]. These findings underscore the potential of nanopore
technology over traditional NGS methods for investigating SARS-CoV-2, enabling prompt
adjustments to infection prevention strategies and treatment modalities.

3.3. Transcriptome Assembly and Detection of Novel Transcript and Splice Variants

Nanopore sequencing is capable of reading full-length transcripts, making it an in-
valuable tool for genome assembly of viruses and the discovery of new variants. Due to its
ability to provide comprehensive and accurate genomic information about various viruses,
nanopore sequencing greatly facilitates the identification of new mutations and subtypes.
This, in turn, offers fresh insights into the pathogenic mechanisms of viruses and paves the
way for more effective vaccine development.

The hepatitis D virus (HDV) is a pathogen that can coinfect with hepatitis B virus
(HBV), potentially leading to severe liver disease and even live cancer. The genetic se-
quencing of HDV is challenging due to its high genetic variability and complex genome
structure. However, by combining nanopore long-read sequencing with a sequencing anal-
ysis pipeline called VIRiONT, the full-length HDV genomes were successfully amplified
and sequenced in a single fragment, enabling the rapid identification of HDV genotypes
and subtypes [96]. This method led to the discovery of a new subtype of HDV genotype 1,
termed s22, which primarily comprises HDV sequences from Cameroon. It is evident that
nanopore sequencing can accurately determine the genotypes and subgenotypes of HDV,
aiding in a deeper understanding of HDV pathogenesis and treatment strategies.

The Varicella zoster virus (VZV) is a human-specific DNA virus that causes chickenpox
and zoster, and understanding its pathogenic mechanism has been a challenging task. While
previous studies have typically focused on investigating the pathogenic mechanism of
VZV at the protein level [97], nanopore technology has enabled research into the virus’s
RNA landscape. In 2018, István Prazsák and colleagues conducted a comprehensive
analysis of the lytic transcriptome of VZV using nanopore MinION cDNA sequencing,
identifying 114 novel transcripts, including mRNAs, non-coding RNAs, polycistronic
RNAs, and complex transcripts [98]. Additionally, the researchers discovered 10 novel
spliced transcripts and 25 novel transcription start site isoforms and transcription end site
isoforms, as well as a novel class of transcripts named ncroRNAs.

Pseudorabies virus (PRV), a member of the Alphaherpesvirinae subfamily, along with
VZV, causes severe nervous system disorders and a high mortality rates in young piglets,
while leading to respiratory issues, growth stunting, and reproductive failures in adult
pigs. These impacts result in substantial economic losses for pork producers globally [99].
PRV possesses a substantial double-stranded DNA genome and a correspondingly intri-
cate transcriptome. Utilizing the nanopore, PacBio, and Illumina platforms, research has
revealed 19 novel putative protein-coding genes, as well as three previously unidentified
complex transcripts (UL32-35-C, UL20-21-C, and ul18-15d-17-16-C) within PRV. Addition-
ally, 121 novel transcriptional overlaps were identified on the PRV genome [100]. These
findings significantly enhance our comprehension of the transcriptional complexity and
landscape of herpesviruses.

Adenovirus is a significant human pathogen that can cause a wide range of inflam-
matory responses of various body organs, including myocarditis, gastroenteritis, menin-
goencephalitis, and the inflammation of the respiratory tract [101,102]. It has been known
to trigger local outbreaks and, in some cases, result in mortality, posing a threat to human
health [103,104]. Researchers have employed nanopore sequencing technology to eluci-
date the genomic details of adenovirus. In 2021, the intricate transcriptome of human
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adenovirus type 2 (Ad2) was revealed through nanopore direct RNA sequencing, which
led to the discovery of approximately 900 alternatively spliced mRNAs. This included
800 new alternative spliced mRNAs and 14 novel transcripts [105]. Additionally, in 2022,
long-read direct RNA sequencing identified 35 new viral transcript isoforms of adenovirus
serotypes 5 (Ad5), including 14 new splice junctions, 6 novel ORF-containing transcripts,
and 15 transcripts that alter protein function by truncating or fusing with the canonical
ORFs [106]. Notably, the novel transcript E4orf6/DBP, which is formed by the fusion of the
N-terminus of E4orf6 to the downstream DBP ORF, has been shown to positively impact
cell-to-cell spread and cell lysis.

The SARS-CoV-2 virus, with its intricate architecture of multiple nested subgenomic
RNAs (sgRNAs), presents a complex transcriptomic profile that has proven challenging to
fully elucidate. The short sgRNAs have, until recently, been difficult to sequence accurately,
which has hindered reliable identification and quantification of the full-length coding
transcripts. Based on nanopore sequencing, nanopore recappable sequencing (NRCeq) was
used to identify the full-length RNA transcripts of SARS-CoV-2 and assemble the complete
annotation of the sgRNAs [107]. As a result, 14 canonical sgRNA transcript models with
lengths ranging from 370 to 8374nt were assembled by minimap2 and Pinfish. Additionally,
seven non-canonical sgRNAs that resulted from independent transcription events or the
recapping of 3’fragments of longer sgRNAs were assembled. The dynamic landscapes of
SARS-CoV-2 subgenomes and their regulatory features were analyzed using NGS short-
read and nanopore long-read poly(A) RNA sequencing. This research has revealed that
the complex transcriptome structure of SARS-CoV-2 contains various types of full-length
subgenomes [75]. Moreover, bidirectional template switches resulting from RNA-RNA
interaction patterns have been observed. These switches play a significant role in generating
the diversity of SARS-CoV-2 subgenomes, contributing to the virus’s complexity.

Nanopore sequencing has been used to detect single nucleotide variants (SNVs) in
SARS-CoV-2. Studies have indicated that ONT sequencing is capable of accurately identify-
ing within-specimen SNVs with frequencies ranging from 40% to 80%, yet it typically fails
to detect the indels or rare SNVs (<40%) [108]. Additionally, structure variants have also
been evaluated in SARS-CoV-2 and 16 candidate deletions ranging from 15 to 1840 bp were
identified across various genes, including S, M, N, ORF3, ORF6, ORF8, and orf1ab. This
research highlights the reliability of ONT sequencing in detecting large deletions and the
common and varied occurrence of structural variations within the SARS-CoV-2 genome.

3.4. Analysis of Chemical Modifications

The chemical modification of nucleotides plays an essential role in the biological pro-
cesses of various viruses and their eukaryotic host cells. Multiple modifications, including
pseudouridine, N5-methylcytidine (m5C), 2′-O-methylation (Nm), N6-methyladinosine
(m6A), N1-methylguanosine (m1G), and N4-acetylcytidine (ac4C), among others, have
been identified within viral genomes and have been shown to perform different important
functions in the viral life cycle [109,110]. Nanopore sequencing allows the direct sequencing
of DNA and RNA molecules without the need for reverse transcription and amplification,
enabling the detection and analysis of DNA and RNA modifications directly. With the
advancement of nanopore sequencing, more and more analysis tools and software have
been published and applied [111,112]. To date, numerous studies have utilized nanopore
direct sequencing to investigate the chemical modifications of viral genomes, contributing
to a deeper understanding of viral epigenetics.

Internal m6A was identified in herpes simplex virus (HSV) mRNA in 1977, but its
relevance to viral replication was unknown [113]. By nanopore direct RNA sequencing of
cells infected with HSV-1 WT or HSV-1 ∆ICP27, it was observed that the expression of ICP27,
a protein encoded by HSV-1, could suppress m6A and other RNA modifications [114]. What
is more, the depletion of m6A methyltransferase subunits affected HSV-1 gene expression
during the first 6 h of the replication cycle, indicating an important role of m6A in the early
stages of HSV-1 infection.
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The METTL3-dependent m6A modifications with the most frequent motif DRACH
were identified within individual adenovirus transcripts at nucleotide resolution by a
combination of MeRIP-seq and direct RNA long-read sequencing [24]. This study has
demonstrated that m6A is not essential for the early stages of adenovirus infection, but
the loss of m6A caused by the depletion of METTL3 results in the significant decrease
of viral late RNAs, late proteins, and infectious progeny production. Additionally, m6A
modifications positively regulate the splicing of viral late transcripts.

In recent years, an increasing number of studies have employed nanopore sequenc-
ing to investigate epigenetic modifications of coronavirus RNA. Consistent patterns of
m5C methylation have been observed in different human coronavirus (HCoV)-229E tran-
scripts through nanopore RNA sequencing, suggesting that the methylation of coronavirus
RNAs is sequence-specific [22]. In 2020, researchers detected at least 41 RNA modifica-
tions on SARS-CoV-2 transcripts using nanopore direct RNA sequencing, with the most
frequent motif being AAGAA [25]. Furthermore, evidence suggests that the modified
viral RNAs possess shorter poly (A) tails. This finding provides new insights into the life
cycle and pathogenicity of SARS-CoV-2. When combined with MeRIP-seq and nanopore
direct RNA sequencing, researchers have established that β-coronavirus RNAs, including
SARS-CoV-2 and human β-coronavirus HCoV-OC43, are modified with m6A. The repli-
cation of β-coronaviruses is controlled by host nuclear m6A factors, including the m6A
methyltransferase METTL3, and two cytoplasmic m6A recognition proteins, YTHDF1 and
YTHDF3 [115]. These findings offer a novel perspective to explore therapeutic approaches
for controlling coronavirus infection.

The first comprehensive mapping of methylation cytosine in the porcine reproductive
and respiratory syndrome virus (PRRSV) epitranscriptome during early infection was
achieved by nanopore-based direct RNA-sequencing in 2021 [116]. The research uncovered
widespread presence of m5C in the poly (A) RNA of two different PRRSV genotypes and
significantly different quantities and distribution patterns of m5C. What is more, the study
indicated a preferential enrichment of m5C modifications around the translational start
codons of sgmRNAs, establishing a connection between methylation modifications and
transcriptional regulation. This finding holds profound implications for the evolution and
pathogenicity of PRRSV.

4. Concluding Remarks

Viruses, as an important class of pathogenic microorganisms, pose a serious threat
to human and animal health. A number of variations, such as mutations, recombination
and base deletions, often occur in the virus genome, which result in the acceleration of
adaptive evolution, enhancement of immune evasion, infection of new hosts, and even the
emergence of novel viruses [117–119]. Consequently, the timely identification of viruses,
a comprehensive understanding of their genomic structures, and real-time monitoring
of their genetic evolutionary characteristics are of great significance to research on viral
evolution and transmission pathways, preventing disease outbreaks, and guiding clinical
treatment strategies. However, conventional approaches and NGS often have limitations,
such as being time-consuming, requiring high input, having complicated processes, being
costly, and producing short reads, which restrict on-site detection and widespread in-depth
studies of viruses.

Nanopore sequencing technology has emerging as a powerful and promising alterna-
tive in the field of virus research. It requires only a few minutes to prepare a library before
sequencing and can provide sequencing data more quickly than NGS, allowing for the
rapid acquisition of viral sequences. Nanopore direct sequencing is extensively used to
characterize full-length transcriptomes and complex transcriptional events, identify various
structure variants, and detect epigenetic marks and chemical modifications, offering numer-
ous new insights into the pathogenic mechanisms and transmission dynamics of viruses.
Due to its advantages of real-time analysis, portability, efficiency, and long-read sequencing,
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nanopore sequencing technology is highly favored for on-site detecting, monitoring, and
analysis of viruses.

Nanopore sequencing technology represents a significant breakthrough in the field
of genomics. However, despite its advancements, certain challenges persist. First, the
technology exhibits an error rate that is higher compared with NGS. Current studies indicate
error rates range from 5% to 20% [61,62,120,121], influenced by library preparation and the
nature of molecules being sequenced [122]. For instance, the error rate of R9.4 flow cell and
earlier-version flow cells that use 1D chemistry is about 10% [35]. Additionally, there is
evidence to suggest that error rates are particularly elevated within G/C mononucleotide
repeats [120,123]. The predominant errors include insertions and deletions at nucleotide
sites [124]. In recent years, ONT has been making efforts to improve the read accuracy of
nanopore sequencing. It has introduced new sequencing kits, such as Q20+, which employ
a new chemistry have been successfully trialed in nanopore flow cells, reportedly boosting
accuracy to 99.3% (https://nanoporetech.com/platform/accuracy/simplex (accessed on
1 January 2024)). Platforms such as the PromethION have been brought to the market,
boasting sequencing accuracy rates reaching up to 98.3%. In addition, the development
and application of new basecalling algorithms have significantly improved the accuracy
of nanopore sequencers. Algorithms like Bonito ensure a consensus between two neural
networks through alignment of their probability profiles, which effectively reduces the
median sequencing error by more than half and achieves an accuracy rate of 98.3% [125].
Nevertheless, the improved accuracy of nanopore sequencing over long or ultra-long
molecules is particularly commendable when compared to the error rate of short NGS
sequencing, which has a maximum capacity of only 300 base pairs.

The second challenge lies in the substantial quantity of input DNA and RNA necessary
for nanopore sequencing, which may amount to several micrograms of DNA and hundreds
of nanograms of RNA. Particularly, for direct RNA sequencing, a large amount of starting
RNA (>10 µg) is required to yield enough mRNA (500 ng) after effective rRNA depletion.
In certain cases, direct amplification of viral DNA and RNA is not recommended for
long-read sequencing due to the excessive PCR bias and the consequent diminution of
virus representation in the sequencing data. However, for diagnostic or identification of
viruses, PCR steps are optional in the library preparation for nanopore sequencing, for
example sequence-independent single-primer amplification (SISPA) [49]. When detecting a
viral genome, it is also advisable to conduct preliminary experiments to enrich the viral
genetic material. This can be achieved through methods such as sample filtration and
centrifugation, followed by treatment with DNase and RNase to remove eukaryotic and
bacterial contaminants prior to nucleic acid extraction. Alternatively, ribosomal depletion
targeting both eukaryotic and bacterial rRNAs can be utilized. Typically, the amount of
input material often depends on the specific subject of study.

The third challenge lies in the subsequent data analysis following the acquisition of
massive sequences, which are the same with the other high-throughput platforms. While
numerous analysis software have been developed for nanopore data, their operation is of-
ten confined to Linux environments, which requires a degree of expertise in command-line
interfaces and coding to execute analytical tasks. This presents a barrier to users without
a technical background. Fortunately, ONT has launched EPI2ME (https://labs.epi2me.io
(accessed on 1 January 2024)) in 2020, a comprehensive bioinformatics platform for the anal-
ysis of nanopore datasets. It offers a range of functionalities, including reference sequence
alignment, metagenomic species identification, and structural variation analysis. Notably,
EPI2ME is designed to be user-friendly for researchers who lack extensive computational
expertise and wish to analyze nanopore data without extensive bioinformatics knowledge.

One of the common issues of nanopore sequencing is the loss of 5′ ends during
direct RNA sequencing. This is probably induced by the premature release of mRNA
molecules by motor proteins, which leads to a loss of control to guide the RNA through the
nanopore [100]. The absence of 5′ ends hinders the accurate identification of transcriptional
start sites (TSSs) and the reconstruction of the transcriptome structure. Therefore, integrat-

https://nanoporetech.com/platform/accuracy/simplex
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ing datasets from multiple sequencing platforms can aid in predicting putative 5′ ends,
thereby enhancing the reliability and accuracy of the sequencing results. The nanopore
community is also endeavoring to improve 5′ end detection in DRS following 5′-dependent
adaptor ligation [126].

Another common issue is the template switching in certain library preparation tech-
niques. During the transcription of RNA, template switching events caused by the reverse
transcriptase (RT) can result in the production of chimeric cDNAs and artifactual in-
trons [127]. These introns are often mistaken for splice isoforms, which adversely affects
the analysis of transcripts. Direct RNA sequencing can avoid template-switching issues,
thus it is crucial to select the most suitable library construction approach according to
experimental needs.

Although certain challenges need to be surmounted, nanopore sequencing offers
numerous benefits and holds a significant promise for advancing animal and human virus
research. This technique is capable of generating extremely long reads, and providing
insight into a variety of biological polymers, including DNA, RNA, and proteins. These
unique features will markedly improve the continuity and integrity of genome assemblies
for viruses, thus facilitating a deeper and more comprehensive understanding of the origin
and evolution of viruses.
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