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Abstract: Although temperature can significantly affect the stability and degradation of drug nanosus-
pensions, temperature evolution during the production of drug nanoparticles via wet stirred media
milling, also known as nanomilling, has not been studied extensively. This study aims to establish
both descriptive and predictive capabilities of a semi-theoretical lumped parameter model (LPM)
for temperature evolution. In the experiments, the mill was operated at various stirrer speeds, bead
loadings, and bead sizes, while the temperature evolution at the mill outlet was recorded. The
LPM was formulated and fitted to the experimental temperature profiles in the training runs, and
its parameters, i.e., the apparent heat generation rate Qgen and the apparent overall heat transfer
coefficient times surface area UA, were estimated. For the test runs, these parameters were predicted
as a function of the process parameters via a power law (PL) model and machine learning (ML) model.
The LPM augmented with the PL and ML models was used to predict the temperature evolution in
the test runs. The LPM predictions were also compared with those of an enthalpy balance model
(EBM) developed recently. The LPM had a fitting capability with a root-mean-squared error (RMSE)
lower than 0.9 °C, and a prediction capability, when augmented with the PL and ML models, with
an RMSE lower than 4.1 and 2.1 °C, respectively. Overall, the LPM augmented with the PL model
had both good descriptive and predictive capability, whereas the one with the ML model had a
comparable predictive capability. Despite being simple, with two parameters and obviating the need
for sophisticated numerical techniques for its solution, the semi-theoretical LPM generally predicts
the temperature evolution similarly or slightly better than the EBM. Hence, this study has provided a
validated, simple model for pharmaceutical engineers to simulate the temperature evolution during
the nanomilling process, which will help to set proper process controls for thermally labile drugs.

Keywords: nanomilling; wet stirred media mill; drug nanoparticles; lumped parameter model;
process modeling; heat generation; cooling

1. Introduction

Low water solubility is a characteristic of most of the newly discovered active phar-
maceutical ingredients (APIs) [1-3]. The APIs with low solubility have been regarded
as highly risky development candidates [4]; their development into a marketed product
has been more challenging, regardless of how desired their pharmacological properties
are [5]. Nevertheless, either due to high-throughput screening technologies [6,7] or the need
for high lipophilicity and molecular weight for the treatment of bio-complex diseases [8],
the low solubility issue remains a challenge [9]. Therefore, there is increasing motivation
to study solubility and dissolution enhancement methods by pharmaceutical companies
and scientists [10]. Some of the popular methods entail formulation of amorphous solid
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dispersions [11,12], co-crystals [13,14], and nanoparticles [15,16]. The focus of this paper is
drug nanoparticle suspensions (nanosuspensions), and their most preferred production
method, i.e., wet stirred media milling (WSMM) [15].

Whereas WSMM results in the breakage of drug particles caused by bead collisions,
the stability of the nanoparticles emerges as a big challenge, which has been the most
studied aspect of the process [15,16]. On the other hand, process-related issues are not as
widely considered in the literature [17]. Among process-related problems, there are only a
few studies related to scale-up [18-20] and media wear/contamination [21-23], whereas
breakage kinetics and its relation to various process conditions have been widely studied in
the WSMM literature [18,24-30]. Recently, a well-known but overlooked issue of the WSMM
process, heat generation caused by viscous losses and collisions of beads with themselves
and the mill wall [31,32], has been addressed for the first time in the pharmaceutical
nanotechnology literature [33,34]. Temperature rise during milling is a critical issue since
it can facilitate Ostwald ripening and growth [35-37], amorphization [38,39], or cause
precipitation of stabilizers when gelation temperature is exceeded [40,41]. Despite the
criticality of this issue, it is surprising that except for two studies [33,34], the majority of the
WSMM studies did not delve into heat generation—transfer aspects of the process. It should
be noted that process conditions such as stirrer speed and bead loading have a significant
impact on the timewise evolution of temperature and the maximum temperatures attained
during the WSMM [34].

Modeling is important for gaining a process understanding of the WSMM. The models
for the WSMM could be categorized as mechanistic models, statistically based models,
and semi-theoretical models [17]. For the modeling of breakage kinetics, mechanistic mod-
els such as population balance model [42,43] and discrete element method [44,45] have
been used as well as statistically based models such as regression fits via the 1st order
breakage model [46,47] and the nth order breakage model [30,48]. In the last decade, our
group elucidated the impact of the process parameters via a mechanistic, microhydro-
dynamic model [16,29,30]. An example of a hybrid semi-theoretical model could be the
prediction of breakage rate constant in the nth order model, based on microhydrodynamic
parameters [49,50]. Semi-theoretical models can be advantageous as they provide practical
information about the process, without having high computational cost. Furthermore,
compared to purely statistically based, or empirical models, they can do more accurate
predictions thanks to their theoretical foundation [49,50]. In addition to these models,
machine learning (ML) algorithms have found significant use in various fields including
pharmaceuticals (e.g., [51-54]).

As heat generation analysis during WSMM is a new topic, there has been only one
modeling attempt for examining the temperature rise during WSMM [33] by using an
enthalpy balance model (EBM), which was performed by our group. The EBM necessitates
the simultaneous solution of five ordinary differential equations (ODEs) along with a
sophisticated optimizer for parameter estimation. The EBM considers all salient physical
features of the process, such as the recirculating suspension, the configuration of the mill,
and the jacketed cooling of the mill and the holding tank, while requiring all physical—-
thermal properties of the suspension and mill-bead materials of construction as input to
the model [33]. It is fair to state that the EBM is not a simple model and requires some
notable time and effort, justifying the development of simpler models.

In this study, we aim to develop a simple semi-theoretical model to simulate and
predict the temperature evolution during the WSMM, which can be easily adopted by
pharmaceutical scientists and engineers. To this end, we formulated a lumped-parameter
model (LPM) and compared its performance to the previously developed EBM. The ex-
periments consisted of 32 different combinations of stirrer speed, bead loading, and bead
size of which 27 were used for model training and 5 were reserved for model testing. The
LPM parameters, i.e., the apparent heat generation rate Qgen and the apparent overall heat
transfer coefficient times surface area UA, were obtained by direct fitting of the LPM to the
experimentally measured temperature profiles via SigmaPlot. The parameters estimated
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for the 27 process runs enabled us to train the power law (PL) and the machine learning
(ML) model. By using the trained models, we predicted Qgen and UA of the five test runs.
Minitab was used for the PL predictions, whereas Google Colab was used for the ML
predictions. By inserting the predicted Qgen and UA values in the LPM, the temperature
profiles of the test runs were simulated. The advantages and disadvantages of the LPM
and the EBM as well as the limitations of the LPM were discussed. Not only will this
study reveal the fitting capability of the LPM as compared with the EBM, but it will also
enable us to assess their comparative predictive capabilities and usefulness for process
development and understanding. Overall, this study provides pharmaceutical engineers
with a validated, simple model (LPM), which simulates the temperature evolution during
the production of drug nanosuspensions and predicts the impact of process parameters,
thereby eventually helping engineers to control and optimize the process.

2. Materials and Methods
2.1. Materials

A BCS Class II API, fenofibrate (FNB) was used as a model poorly water-soluble
drug, which was purchased from Jai Radhe Sales (BP grade, Ahmedabad, India). FNB is
a lipophilic compound with a molecular weight of 360 g/mol and an aqueous solubility
of 0.8 mg/L at room temperature [55]. Hydroxypropyl cellulose (HPC) was used for
stabilizing the drug suspension as a non-ionic polymer, which was generously donated
by Nisso America Inc. (L grade, New York, NY, USA). Its L grade has a molecular weight
of 140,000 g/mol [56] and is readily water-soluble [57]. HPC is known to adsorb onto
FNB particles, thereby imparting steric stability [58]. Moreover, an anionic surfactant,
sodium dodecyl sulfate (SDS), was used for wettability enhancement, and it was purchased
from GFS chemicals (ACS grade, Columbus, OH, USA). SDS has a molecular weight of
288 g/mol and a critical micelle concentration of 8 mM [55].

2.2. Methods
2.2.1. Wet Stirred Media Milling

The suspension formulation was the same for all runs where the w/v% of the ingredi-
ents was 10% FNB, 8% HPC-L, and 0.05% SDS with respect to 200 mL of deionized water.
Based on our prior studies, this formulation is known to be physically stable during milling
and storage [30,50]. A pre-suspension was prepared by adding the powders to deionized
water gradually under constant mixing with a shear stirrer (Cat#. 14-503, Fisher Scientific,
Pittsburgh, PA, USA) operating at 300 rpm for 2 h. The theoretical batch size was fixed for
all processing runs: 236 g. Pre-suspensions were stored at 8 °C overnight prior to milling
to let it settle and get rid of the foaming that occurred during shear mixing. On the milling
days, suspensions were stirred on a magnetic stirrer until they equilibrated close to room
temperature.

A Microcer wet-stirred media mill (Netzsch Fine Particle Size Technology, LLC, Exton,
PA, USA) was used for milling the pre-suspensions. It has an 80 mL chamber volume
lined with zirconia, a zirconia shaft, and stainless-steel screens whose openings are of half
the size of the yttrium stabilized zirconia beads (YSZ, Saint Gobain ZirPro, Malvern, PA,
USA). A Cole-Palmer peristaltic pump (Master Flex, Vernon Hills, IL, USA) recirculated
the suspension between the holding tank and mill chamber at a 126 mL/min flow rate,
which was kept the same for all processing runs. The milling conditions are shown in
Table 1, where 27 experiments were used as training runs and 5 additional runs were
used for testing the model prediction capability. Stirrer speed, bead loading, and bead
size were varied at 3 levels for the training runs. The low-high values of the stirrer speed
and the bead loading were selected based on our prior wet media milling studies using
FNB [36,59], the limitations of our milling equipment, and the objective of preparing drug
nanosuspensions with a median particle size below 0.5 um within 60 min. A stirrer speed
lower than 2000 rpm and/or a bead loading lower than 0.4 could result in extremely low
breakage rates, and in turn coarser particles with a median size greater than 0.5 um. Hence,
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they were excluded. The design limit of the equipment (4200 rpm) dictates 4000 rpm as
the high value with a safety margin. The bead loading above 0.60 could cause significant
pressure build-up and mill shut-down, and it is also constrained by the maximum packing
limit of the beads (~0.63 for the randomly packed monodispersed spherical beads). The
bead size range of 200-800 pm covers the range of the most widely used bead sizes in
WSMM (refer to [60,61] and the references cited therein). Whereas the use of beads smaller
than 200 um can be advantageous for the production of sub100 nm particles [60], bead
sizes of 50 and 100 um in size have not been widely used in pharmaceutical manufacturing
because of practical clogging issues [62] as well as dust-handling issues.

Table 1. Process parameters for the milling of FNB suspensions.

Run No. Stirrer Speed, w (rpm) Bead Loading, c (-) Bead Size, Dy, (um)
11! 2000 04 200
21 2000 0.4 400
31 2000 0.4 800
41 2000 0.5 200
51 2000 0.5 400
61 2000 0.5 800
71 2000 0.6 200
g1 2000 0.6 400
91 2000 0.6 800
101 3000 0.4 200
111 3000 0.4 400
121 3000 0.4 800
131 3000 0.5 200
141 3000 0.5 400
151 3000 0.5 800
161 3000 0.6 200
171 3000 0.6 400
181 3000 0.6 800
191 4000 0.4 200
201 4000 0.4 400
211 4000 0.4 800
221 4000 0.5 200
231 4000 0.5 400
241 4000 0.5 800
251 4000 0.6 200
261 4000 0.6 400
271 4000 0.6 800
282 2500 0.45 400
292 2500 0.55 400
302 3500 0.45 400
312 3500 0.55 400
322 4000 0.35 100

I Runs that were used in the training set, 2 Runs that were used in the test set.

Despite the use of a chiller with an initial temperature of 6.1 °C, the temperature rise
during the process was inevitable due to heat generation as the drug suspension with the
beads was stirred. Milling was started when the chiller temperature reached 6.1 °C, and
the mill outlet temperature was equal to or below 18 °C. Even though keeping the initial
temperatures for both the chiller and the mill outlet the same would be a better approach,
only the initial chiller temperature could be kept the same; the initial temperature at the mill
outlet varied in a narrow range (13-18 °C) because of variation in the ambient temperature,
the pre-suspension temperature, and operator practice. During the experiments, the mill
outlet temperature was recorded every minute (Runs 1-17) or every 30 s (Runs 18-27). The
effective milling time was the same for all runs (60 min), whereas the operating time was
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variable (60-380 min) because of intermitting milling to prevent temperature exceeding
the gelation temperature of the polymer (45 °C) [57]. In an intermittent milling cycle, the
mill was shut down while cooling continued, and whenever the mill outlet temperature
reached 18 °C, the milling continued. Note that we considered only the first milling cycle
in the simulations. The average power consumption P was calculated by dividing the total
energy consumption read in the mill panel by the effective milling time.

2.2.2. Formulation of the Lumped-Parameter Model (LPM)

During the milling of drug suspensions, heat is generated because of the conversion
of mechanical energy input by the stirrer of the mill. The heat generated is removed by a
coolant passing through the jacket of the milling chamber. Ignoring the enthalpic effects
associated with the suspension recirculation between the holding tank and the milling
chamber, we can come up with a simple, low-fidelity model that retains the essential
elements of the heat generation-transfer. The difference between the heat generation
rate and heat removal rate will cause the internal energy build-up in the mill as milling
continues and temperature in the mill rises. Applying the lumped capacity method [63],
within the context of a transient enthalpy balance on the mill chamber, we derived the
following semi-theoretical lumped-parameter model:

ar
meE = Qgen — UA(T — Ty,) D)

where ¢ is milling time, m is the mass in the mill chamber, C;, is the specific heat capacity,
T is the temperature at the mill outlet, Qgen is the apparent heat generation rate during
milling, UA is the apparent overall heat transfer coefficient times surface area, and T,
is the chiller temperature. Strictly speaking, Equation (1) represents a transient enthalpy
balance for a perfectly mixed batch process. The perfect mixing implies that the mill outlet
temperature is equal to the temperature of the suspension in the mill chamber. The well-
mixedness in the milling chamber has been established as a valid approximation to the
residence time distribution in small mills (small length-to-diameter ratio) [64]. Hence, for a
recirculation mill operating with a fixed batch size and recirculation rate, Qgen and UA may
only represent the heat generation rate and overall heat transfer coefficient times surface
area, in some approximate, apparent, and statistical manner because they are obtained by
fitting to experimental data directly. Although UA can be estimated based on heat transfer
correlations for the internal and external convective heat transfer coefficients [33], such
correlations are approximate, and none exists for the specific stirrer-mill chamber geometry.
We also assumed time-invariant, constant Qgen, Cp, UA, and T, (6.1 °C).

Upon separating the variables in Equation (1), integrating both sides, and imposing
the initial condition, i.e., t = 0, T = T, the following equation for the time-wise evolution
of mill outlet temperature (shortly temperature hereafter) was obtained:

_ o Qgen B B Qgen _LA
T—T(t)—(TCh+ UA>+<TO Ten UA>eXp< mcpt> (2)

Here, m and C, were determined considering the materials in the mill chamber: the
beads (zirconia, Cp, = 0.46 J/g °C [65]), the suspension (10% FNB with respect to water,
Cp =3.93]/g °C), and the stirrer element (zirconia, Cp = 0.46 J/g °C). Whereas the stirrer
element mass was constant, the bead and suspension mass varied when bead loading was
changed in various runs (refer to Table 1). The C, was calculated as the weighted average
of the Cp, of individual materials and the mCp, was found to be 465.6, 455.2, 444.8, 460.4,
450.0, and 470.9 J/°C for 0.4, 0.5, 0.6, 0.45, 0.55, and 0.35 bead loadings, respectively.

2.2.3. Fits by the LPM and Predictions by the LPM Augmented with the PL and
ML Models

By fitting Equation (2) to the experimental T vs. ¢ data in SigmaPlot 12, Qgen and UA
were estimated. Then, these parameters were mathematically expressed as a function of
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the process parameters for the 27 training runs and predicted as a function of the process
parameters for the 5 test runs using a power law (PL) model and a machine learning
(ML) model. Minitab was used for the PL predictions, whereas Google Colab was used
for the ML predictions. Among the several applied machine learning approaches using
Google Colab, as shown in Table S1 of Supplementary Materials, k-nearest neighborhood
(KNN) [66] with k = 5 was selected because of its low mean squared error (MSE) and mean
absolute error (MAE) compared to other methods for the test runs. Therefore, ML refers to
KNN (k = 5) for the rest of this study.

3. Results and Discussion
3.1. Properties of the Milled Suspensions and Particles

As the scope of this study is the simulation of temperature rise during WSMM via
a lumped-parameter model, readers are referred to previous investigations for full char-
acterization of particle sizes, viscosity, crystallinity, and morphology of the particles after
milling [33,34]. Here, it suffices to summarize the key findings. All runs yielded nanoparti-
cles upon 60 min milling, where the median particle sizes varied between 149-400 nm (refer
to Table S2 of Supplementary Materials). The HPC-SDS combination successfully stabilized
the drug nanoparticles by mitigating their aggregation during milling and storage. The
nanoparticles were visible in SEM, confirming the laser diffraction results. XRD results of
the nanoparticles showed the characteristic peaks of as-received FNB, indicating the crystal
structure of the FNB was largely preserved during the milling.

3.2. Fitted LPM Parameters and the Origin of Temperature Rise during the Milling

The data on the timewise evolution of the mill outlet temperature was fitted by
the LPM, as represented by Equation (2) for each training run (Runs 1-27). The fitted
parameters are presented in Table 2 along with the root-mean-squared error (RMSE). The
RMSE values ranged between 0.15-0.90 °C. Such low RMSE values suggest that the LPM
has excellent fitting or descriptive capability of the temperature profiles despite having
only two parameters. Figure 1 demonstrates that the apparent heat generation rate Qgen
is linearly and strongly correlated with the average mechanical power consumption P
(R? = 0.97). The value of the constant slope of the linear correlation in Figure 1 indicates
that about 64% of the power consumption (rate of shaft work) dissipates as heat. This is
not surprising at all: only a small fraction of the mechanical energy spent on mixing the
suspension-bead mixture is used to deform the particles [31]. Most is converted into heat
through dissipative processes such as viscous losses, inelastic bead—bead and bead-wall
collisions, etc. [67]. Some of the shaft work is also spent on generating new particle surfaces
(surface energy), sound, and the elastic parts of bead-bead and bead—wrall collisions [33].

14 L T T I T T T T T T T T |
£ 12} = =
g 10 : Qgen: 0.64P & //// & E
S f R'=097 o & F
5 g L <& -5 ]
% g 8 » /// o
ong C 27 ]
B = G E 9@/ _
] & r il
=8 r ,/2 ]
5 4t /// B
5 5 - 9/@00 ]
o C O//g & =
< r oY ]

0 - A R LG a i 7
0 5 10 15 20

Average power consumption, P (kJ/min)

Figure 1. Correlation between apparent heat generation rate Qgen and power consumption P.
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Table 2. Fitted parameters of the LPM and associated statistics for the training runs.
Run No: Identifier Qgen (J/min) UA (J/min °C) RMSE (°C)
1: 2000 0.4 200 755.2 47.79 0.40
2: 2000 0.4 400 1616 103.5 0.46
3: 2000 0.4 800 787.4 48.08 0.56
4: 2000 0.5 200 441.4 25.82 0.32
5: 2000 0.5 400 720.8 40.18 0.33
6: 2000 0.5 800 1296 72.88 0.39
7: 2000 0.6 200 1343 68.63 0.44
8: 2000 0.6 400 2625 131.9 0.15
9: 2000 0.6 800 1822 89.95 0.50
10: 3000 0.4 200 1402 53.92 0.55
11: 3000 0.4 400 2938 107.0 0.57
12: 3000 0.4 800 2798 101.0 0.66
13: 3000 0.5 200 1837 61.49 0.40
14: 3000 0.5 400 3243 107.3 0.72
15: 3000 0.5 800 3307 107.4 0.83
16: 3000 0.6 200 2624 94.08 0.43
17: 3000 0.6 400 4598 128.2 0.76
18: 3000 0.6 800 4542 124.4 0.80
19: 4000 0.4 200 5075 135.1 0.42
20: 4000 0.4 400 6266 162.7 0.41
21: 4000 0.4 800 6245 162.5 0.51
22: 4000 0.5 200 6116 162.7 0.90
23: 4000 0.5 400 8490 220.0 0.30
24: 4000 0.5 800 9359 238.1 0.60
25: 4000 0.6 200 8383 208.9 0.62
26: 4000 0.6 400 10,600 261.7 0.28
27: 4000 0.6 800 10,740 171.9 0.34

("C)

rise

T

Temperature rise,

Before we delve into the experimental temperature profiles and their fitting by the
LPM, let us quickly assess how the temperature rise T} in the mill at 6 min was affected
by the apparent heat generation rate Qgen parameter of the LPM. Based on Equation (1),
we expect that Qgen is the driving force for the temperature rise, which was illustrated in
Figure 2. Overall, the temperature rise was more pronounced for higher Qgen or higher P,
in view of Figure 1. The Gompertz growth function in Equation (3) fitted the temperature
rise well (R? = 0.95). As Qgen approaches zero, it predicts a negligibly small temperature
rise (~0.7 °C).

Tyise = 26.67 exp|— exp (1.30 —6.02 x 10—4Qgen)]

30 ¢
25 F B W
20 F
15 b
10 F #  Experimental data
& —— Fit by Equation (3)
5F
0 F N |

0 1500 3000 4500 6000 7500 9000

Apparent heat generation rate, ng (J/min)

®)

Figure 2. Temperature rise at 6 min as a function of the apparent heat generation rate (Runs 1-25).
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It is worth mentioning the caveat that the LPM is too simplistic with a multitude of
assumptions; therefore, the Qgen values do not reflect the actual heat generation rate; by and
large, Qgen is a fitting parameter affected by the accuracy of the experimental measurements
and the assumptions made in the model development. On the other hand, Figures 1 and 2
and the correlations therein strongly associate Qgen With the underlying physics of the
conversion of shaft work (power consumption) into heat and ensuing temperature rise.
The upshot of these findings is that the LPM differs from a purely empirical model. The
latter would fit temperature evolution as a function of time with parameters that have no
connection to the physics of the heat generation—transfer phenomena.

3.3. LPM-Fitted Temperature Profiles and LPM—PL/LPM-ML Predictions in the Training Runs

Figures 3-5 depict the experimental time-wise evolution of the temperature profiles at
various bead loadings and sizes for stirrer speeds of 2000, 3000, and 4000 rpm, respectively,
and their direct fitting by the LPM. In agreement with the low RMSE values (Table 2), the
fitted profiles visually corroborate that the LPM has excellent fitting capability despite
its simplicity. A cursory look at the experimental temperature profiles suggests that the
mill outlet temperature rose during the milling due to the conversion of the shaft work
into heat and ensuing heat generation. Although the temperature rise was monotonic, the
temperature attained a steady-state value for 2000 and 3000 rpm runs. The heat generation
rate was so high at 4000 rpm that the mill was shut down earlier than 60 min and many
intermittent milling cycles were conducted. In all profiles, the slope of the temperature
profile decreased during the milling. Guner et al. [34] attributed the decreasing rate of
temperature rise to a decrease in the instantaneous power consumption during the milling,
which originates from the reduction of viscosity at the higher temperatures and particle
size reduction during the milling [68,69]. Figures 3-5 also imply that a higher stirrer speed
led to higher heat generation rate; stirrer speed is the dominant process parameter, whereas
the impact of the bead size is the weakest.
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Figure 3. Experimental temperature profiles, direct fits by the lumped parameter model (LPM),
and predictions by the LPM coupled with a power law (PL) model and a machine learning (ML)
model. (Left)-to-(right): increasing bead size, (top)-to-(bottom): increasing bead loading, stirrer
speed: 2000 rpm.
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Figure 4. Experimental temperature profiles, direct fits by the lumped parameter model (LPM),
and predictions by the LPM coupled with a power law (PL) model and a machine learning (ML)
model. (Left)-to-(right): increasing bead size, (top)-to-(bottom): increasing bead loading, stirrer
speed: 3000 rpm.
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