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Abstract: Reaching target exposure of busulfan-based conditioning prior to hematopoietic stem cell
transplantation is vital for favorable therapy outcomes. Yet, a wide inter-patient and inter-occasion
variability in busulfan exposure has been reported, especially in children. We aimed to identify
factors associated with the variability of busulfan pharmacokinetics in 124 consecutive patients
transplanted at the University Children’s Hospital Zurich between October 2010 and February 2020.
Clinical data and busulfan plasma levels after twice-daily intravenous administration were analyzed
retrospectively by population pharmacokinetic modeling. The volume of distribution correlated with
total body water. The elimination rate constant followed an age-dependent maturation function,
as previously suggested, and correlated with the levels of serum albumin. Acute lymphoblastic
leukemia reduced busulfan clearance by 20%. Clearance significantly decreased by 17% on average
from the start to the third day of busulfan administration, in agreement with other studies. An
average reduction of 31% was found in patients with hemophagocytic lymphohistiocytosis and
X-linked lymphoproliferative disease. In conclusion, we demonstrate that in addition to known
factors, underlying disease and serum albumin significantly impact busulfan pharmacokinetics in
pediatric patients; yet, substantial unexplained variability in some patients remained. Thus, we
consider repeated pharmacokinetic assessment essential to achieve the desired target exposure in
twice-daily busulfan administration.

Keywords: intravenous busulfan; pediatric HSCT; pharmacokinetics; PK modeling

1. Introduction

Allogeneic hematopoietic stem cell transplantation (HSCT) is an established ther-
apy for malignant and non-malignant disorders of the hematopoietic system. Busulfan,
which mainly targets hematopoietic stem and progenitor cells, remains the backbone of
many myeloablative conditioning regimens for both autologous and allogeneic HSCT [1–3].
Oral dosing of busulfan is complicated by its high variability in oral bioavailability. In-
travenously administered, it not only demonstrates better tolerability but also reduces
inter-patient variability of pharmacokinetics (PK) [4,5].

Assessment of individual PK is critical, as both intended and adverse biological effects
of busulfan correlate with the cumulative exposure assessed by the area under the plasma
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concentration-time curve (AUC) or concentration at a steady-state [6,7]. Overexposure to
busulfan correlates with higher toxicity (e.g., sinusoidal obstruction syndrome (SOS) and
mucositis), increased risk of acute graft vs. host disease, and transplantation-related mor-
tality [8,9], while underexposure is associated with increased incidence of graft failure and
disease relapse [10–12]. The optimal level of cumulative busulfan exposure (cAUC) is still
under debate. Bartelink and colleagues recently demonstrated an association of a cAUC in
the range of 78–101 mg · h/L with superior event-free survival for patients with malignant
and non-malignant diseases [13]. Yet, submyeloablative cAUCs (between 45–65 mg · h/L)
were sufficient for excellent results in primary immunodeficiencies [11,14–17].

Generally, multiple doses of busulfan are required to reach the target exposure. The
starting dose is either established by weight-based nomograms or extrapolated from the
PK of a pre-conditioning test dose [18–21]. Although improved outcome was associated
with lower AUC of the first dose [17], it is generally accepted that cAUC is relevant for the
safety and efficacy of busulfan [13]. Also, in addition to significant inter-patient variability,
inter-occasion alterations of busulfan PK argue for repeated AUC assessment of the indi-
vidual doses, especially in pediatric patients [7,11,18,22]. Population PK models based
on patient data allowed the establishment of improved dosing predictions [18,23,24].
Nevertheless, a substantial fraction of patients elude accurate prediction of the AUC of
the first and subsequent doses, which is evidence of substantial between-subject and
-occasion variability. The large inter-patient variability of busulfan PK, especially in
pediatric patients, is influenced by various factors including age, body weight, disease,
drug interactions, and hepatic metabolism [18,25–30]. In addition, as a large fraction of
busulfan irreversibly binds to leukocytes, erythrocytes, and plasma proteins (mainly
albumin) [31,32], these patient-intrinsic factors should be considered, as they may con-
tribute to busulfan elimination.

The conjugation of busulfan to glutathione (GSH) mediated by particular isoforms of
the glutathione-S-transferase (GST) results in its inactivation. Inter-individual variability in
hepatic busulfan clearance (CL) is influenced by differential expression levels of GST, as
well as by the abundance of GSH, which is depleted by busulfan and other drugs [28,33–36].
N-acetylcysteine (NAC), the precursor of GSH, repletes intrahepatic GSH levels and may
thus aid in the prevention of busulfan-induced liver toxicity seemingly without interfering
with the desired myeloablative effects of busulfan [37].

In this single-center study, we interrogated the effects of patient factors, co-medications,
and laboratory parameters with potential biological significance on busulfan clearance
of the first and subsequent doses. Strict twice-daily administration of busulfan in the
whole primarily pediatric cohort, a high number of plasma concentration measurements
of successive doses in individual patients, and the incorporation of biologically relevant
data allowed for the identification of factors contributing to inter-patient and inter-occasion
variability of busulfan clearance.

2. Methods
2.1. Study Design and Patients

In this retrospective single-center study, we analyzed PK and clinical data from
124 consecutive patients undergoing allogeneic or autologous HSCT after a strict twice-
daily busulfan-based conditioning regimen between October 2010 and February 2020 at the
University Children’s Hospital Zurich, Switzerland.

2.2. Busulfan Treatment Regimen

The initial busulfan dose was calculated using recommended weight-based dosing
nomograms. Between October 2010 and January 2016, the European Medicines Agency
recommendation for weight-based busulfan dosing was used [19], while from January
2016 to February 2020, the individualized dosing table by Bartelink et. al. [18] was applied.
For the twice-daily busulfan dosing used in our study, the recommended daily dose was
divided into two doses [18,19].
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Busulfan was administered twice-daily (starting at 4 or 5 a.m./p.m.) as an intravenous
infusion over either four hours (from October 2010 to September 2014) or three hours
(from October 2014 to February 2020; Figure S1). The initial dose was intended to target
an exposure, expressed by the AUC, of 9–12 mg · h/L according to Bartelink et al. [13].
Patients with non-malignant diseases (except patients with metabolic diseases) received a
reduced intensity conditioning (RIC) regimen, targeting a cumulative exposure (expressed
as cAUC) of 45–70 mg · h/L [14,15]. Patients with malignant and metabolic diseases
were targeted with a cAUC of 80–100 mg · h/L, which was considered myeloablative
conditioning (MAC) [13]. To achieve the target cumulative exposure, patients received
between four and ten doses over two to five consecutive days.

2.3. Co-Medication

Figure S2 provides an overview of the co-medication. Prior to the start of condition-
ing, oral amphotericin B, gentamicin, vancomycin, and polymyxin B were given for gut
decontamination. Ondansetron was administered daily to prevent and treat chemotherapy-
induced nausea. All patients received mainly clonazepam or rarely levetiracetam as
prophylaxis for busulfan-associated seizures. A high dose of NAC (200 mg/kg BW) was
given repeatedly to most of our patients (69%) as a once- or twice-daily infusion (2–3 h)
with the intent to mitigate busulfan-mediated liver injury. Paracetamol and corticosteroids
were given as co-medications of serotherapy (alemtuzumab or anti-thymocyte globulin,
Figure S2), while paracetamol was also used as a common analgesic and antipyretic agent.

2.4. Busulfan Sampling and Dose Adjustments

Busulfan plasma concentrations (C(t)) were measured after the morning infusion.
Heparinized blood samples were taken right before drug administration and at 0, 30, 60,
120, 240, and 360 min after the end of the respective infusion. The plasma was immediately
separated from blood cells by centrifugation and stored at −80 ◦C until further analysis
on the day of sampling. C(t) were measured after protein precipitation with methanol
at the Institute for Clinical Chemistry at the University Hospital of Zurich by liquid-
chromatography coupled to tandem mass spectrometry (LC-MS/MS). The method was
fully validated and accredited according to ISO 17025.

Subsequent busulfan doses were, if necessary, adjusted based on calculated exposure
expressed as the AUC to reach the previously mentioned target cAUC. Repeated TDM was
performed based on the physician’s decision (Figure S1).

2.5. Population Pharmacokinetic Analysis

Population PK modeling was performed with an open one-compartment model with
infusion, using the open-source software environment R (R-project, version 4.2.0) with the
saemix package (version 3.0) for non-linear mixed effects modeling [38,39]. The saemix
package builds on stochastic approximation expectation maximization [40]. The R-scripts
of this study are deposited on gitlab.ethz.ch (https://gitlab.ethz.ch/skraemer/busulfan_20
22.git, accessed on 17 December 2023). Fit PK parameters were the natural logarithm (ln) of
the volume of distribution (V) and the ln of the elimination rate constant (k). Two additional
parameters (dk and ln(κk)) were introduced to account for a change in k from the first to
subsequent dosing intervals. Parameter dk is the amplitude of the exponential function
describing the difference between k at time 0 and hypothetical k at infinity. Parameter κk is
the exponent of this exponential change. ln(2)/κk is thus the half-life of the change in k. The
fit function for an individual patient with N dosing intervals, before including covariates
and random effects, is shown in Equation (1).

C(t) = ∑N
j=1

R0,j
k′(t)×V ×

(
(1 − exp(−k′(t)× tinf))×

(
tinf ≤ Tinf,j

)
+

(
1 − exp

(
−k′(t)× Tinf,j

))
×((

Tinf,j + t0,j
)
< t

))
× exp(−k′(t)× tel)

(1)

k∗(t) = k × (−dk × (exp(−kk × tmid)− 1) + 1) (2)

https://gitlab.ethz.ch/skraemer/busulfan_2022.git
https://gitlab.ethz.ch/skraemer/busulfan_2022.git
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k′(t) =
(
(1 + dk)× k × t − dk × k + (k ∗(t)− (1 + dk)×k)

κk

)
/t (3)

tinf =
(
t − t0,j

)
×

((
t − t0,j

)
≤ Tinf,j

)
×

((
t − t0,j

)
≥ 0

)
(4)

tel =
(
t − t0,j − Tinf,j

)
×

((
t − t0,j − Tinf,j

)
≥ 0

)
(5)

In Equations (1)–(5), t denotes time, R0,j is the infusion rate in mass/t of the j-th
infusion, k∗(t) is the time-dependent k as calculated with the mid-time point (tmid) of
the respective dosing interval (Equation (2)), and k′(t) is the average rate constant at the
individual dosing interval (Equation (3)), as calculated from the integral of k∗(t). tinf is
the time during infusion (Equation (4)), Tinf,j is the infusion duration of the j-th infusion
(3 h or 4 h), t0,j is the start time of the j-th infusion, and tel is the time after infusion stop
(Equation (5)). In Equations (1)–(5), terms with logical expressions equal 1 if true and 0 if
false. Additional details on the calculation of k′(t) are provided in the R script kchange.R
on gitlab.ethz.ch.

Random effects were included on patients’ levels as described under Section 2.7 and
in the Section 3. In all tested models, the error model was “additive”, i.e., a constant
value, as described in more detail by the authors of the saemix package [39]. Applying a
proportional error model (in the absence of covariates and before including dk and ln(κk) as
fit parameters) failed to compute -2LL and resulted in an asymmetrical distribution of the
residuals (predicted C(t) at the subject level minus observed C(t)). Alternative error models
were not tested, considering the relatively narrow range of the observed concentrations
(Figure S3). Initial values for ln(V) and ln(k) were randomly sampled from varying ranges
around values estimated from individual fits of C(t) vs. t of the first dosing interval (2.5 for
ln(V) and −1 for ln(k) with V in L and k in 1/h). The ranges for the final model were ±1 of
these values. The start values for dk and ln(κk) were 0 and −3.5, respectively. An ln(κk) of
−3.5 corresponds to a 24 h half-life of the change in k (ln(ln(2)/24 h) = −3.5). In the final
model, the number of iterations set in the options of saemix (nbiter.saemix) were 2000 for
the exploration phase and 300 for the smoothing phase. For model building, they were
600 and 100, respectively. Higher numbers had no significant effects on the results.

2.6. Non-parametric Estimation of AUC, Cmax, CL, V, t1/2, and MRT

One-compartment model elimination rate constants kij were calculated for each indi-
vidual patient (i) and individual dosing interval (with measurements of plasma concentra-
tions) (j) as the negative slope of the linear regression of the respective descending phase
of ln(C(tij)) vs. tij. The respective AUCij was estimated with the trapezoidal method. The
AUC of the first dosing interval (AUCi1) was calculated as the sum of the trapezoids up to
tn, where tn is t at the last C(t) measurement of the 1st dosing interval plus the extrapolated
area from tn to infinity. The latter was calculated as C(t) of the last measurement before
the second infusion (C(tn)) divided by the minus slope of the last 3 ln(C(t)) vs. t of the first
dosing interval (kn). C(tn)/kn is the integral of C(tn) × exp(−kn × (t − tn)). The AUCij of
subsequent dosing intervals was calculated from the trapezoids between two infusion starts
assuming that a steady state was reached (no corrections for residual areas). Missing C(t)
before the next infusion start were extrapolated from the last 3 C(t) measurements of the
respective dosing interval (linear extrapolation of ln(C(t)) ~ t to t of the start of the second
infusion). Cmax,ij was defined as the maximal observed C(t) of a dosing interval. CLij
was calculated as doseij/AUCij and Vij as doseij/(AUCij × kij). The elimination half-life
t1/2,ij was calculated as ln(2)/kij and the mean residence time (MRTij) as AUMCij/AUCij,
where AUMCij is calculated similarly to the AUCij but with C(t) × t replacing C(t) and
C(tn) × t/kn + C(tn)/(kn)2 as the extrapolated AUMC from tn to infinity [41].

2.7. Covariate Analysis

For model building, we followed the strategies presented by [42,43]. To identify the
basic model, we started without any covariate and then included individual parameters
as potential covariates. Potential covariates were identified by plotting the random effects



Pharmaceutics 2024, 16, 13 5 of 22

of each PK parameter as well as the non-parametric PK parameters against all available
patient-specific data. These included several body size metrics such as body weight (W),
body height (H), calculated body surface area (BSA, Equation (6); [44]), calculated total
body water (TBW, Equation (7), [45]), and calculated fat-free mass (FFM, Equation (8), [23]).
Patient-specific data furthermore included age and an age-dependent maturation func-
tion for busulfan CL (Fmat, Equation (9); [23]), for which postmenstrual age (PMA) was
calculated by adding a fixed value of 40 weeks to the patient’s postnatal age. They fur-
thermore included sex (defined by external sex characteristics) and underlying disease.
Depending on their condition requiring HSCT, patients were allocated to nine disease
groups (acute lymphoblastic leukemia, ALL; acute myeloid leukemia, AML; chronic granu-
lomatous disease; hemoglobinopathies; hemophagocytic lymphohistiocytosis/X-linked
lymphoproliferative disease, HLH/XLP; primary immunodeficiencies; metabolic diseases;
neuroblastoma; and others; as shown in Table 1) and these were tested as potential co-
variates. We investigated the potential influence of plasma protein levels (total protein
and serum albumin), hematocrit, and white blood cell (leukocytes) count on busulfan PK.
We evaluated treatment-related factors, namely whether C(t) measurements were from
the uneven or even dose numbers (whether the first busulfan dose was in the morning or
evening, with PK measurements performed only after the morning infusions), busulfan
dosing schemes [18,19], and conditioning regimen (RIC vs. MAC), and whether Tinf was 3 h
or 4 h. When a value of a covariate was missing, it was set to the respective reference value
used in the model. Reference values were chosen close to their respective median in the
studied population (see Section 3). We finally searched for potential effects of co-medication
administered within 24 h before the respective busulfan infusion (plotting the difference
between observed and predicted C(t) (residues) against co-medication, as well as plotting
the observed vs. predicted C(t)). We chose a time frame of 24 h, as the t1/2 of most drugs is
shorter than that, resulting in a low or negligible effect after a longer time period.

BSA
[
m2

]
= (H[cm]× W[kg]/3600)0.5 (6)

TBW[L] = exp(−2.952 + 0.551 × ln(W[kg]) + 0.796 × ln(H[cm])
+0.008 × age[y] + female × (−0.047))

(7)

FFM[kg]
= (female × 37.99 + male × 42.92)× (H[m])2

×W[kg]/
(
(female × 35.98 + male × 30.93)× (H[m])2 + W[kg]

) (8)

Fmat = 1/
(

1 + (PMA[weeks]/46)−2.3
)

(9)

Terms in square brackets in Equations (6)–(9) indicate the unit of the respective value.
The terms female and male are 1 if true and 0 if false.

Table 1. Patient characteristics.

Patients (n = 124) Demographics

2015 (2010–2020) Year of transplantation
4.3 (0.2–27.0) Age (years)

23 (18%) Age <1 (years)
95 (77%) Age 1–18 (years)

6 (5%) Age >18 (years)
17.2 (4.3–85.0) Body weight (kg)

0.71 (0.25–2.06) Body surface area (m2)
Sex

89 (72%) Male
35 (28%) Female

Indication
42 (34%) Malignant disease
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Table 1. Cont.

Patients (n = 124) Demographics

13 (10%) ALL
12 (10%) AML

6 (5%) Neuroblastoma
11 (9%) Others
4 (3%) JMML
5 (4%) MDS
1 (1%) Ewing sarcoma
1 (1%) Lymphoma

82 (66%) Non-malignant disease
32 (26%) CGD
14 (11%) HLH or XLP
12 (10%) Hemoglobinopathies

6 (5%) β-Thalassemia major
6 (5%) Sickle cell anemia

14 (11%) Primary immunodeficiencies
6 (5%) SCID
3 (2%) Wiskott–Aldrich syndrome
5 (4%) Others 1

8 (6%) Metabolic diseases
4 (3%) MPS
2 (2%) X-ALD
1 (1%) Other leukodystrophy
1 (1%) Alpha-mannosidosis
2 (2%) Thrombocytopenia

Conditioning
82 (66%) Bu/Flu
13 (10%) Bu/Flu/TTP

4 (3%) Bu/Flu/Mel
1 (1%) Bu/Flu/CP
10 (8%) Bu/Clo
7 (6%) Bu/Mel
6 (5%) Bu/CP/Mel
1 (1%) Bu/CP

Serotherapy
57 (46%) Alemtuzumab
54 (44%) ATG
13 (10%) No

Stem cell source
78 (63%) Bone marrow
36 (29%) Peripheral blood stem cell
10 (8%) Umbilical cord blood

HLA compatibility
50 (40%) MUD
38 (31%) MMUD
24 (19%) MRD

5 (4%) Haplo
7 (6%) Auto

Laboratory parameters
0.3 (0.17–0.41) Hematocrit (L/L)
4.0 (0.16–20.9) White blood cells (G/L)

61 (34–84) Serum total protein (g/L)
34 (19–50) Serum albumin (g/L)

1 Others: immunodeficiency DD WHIM syndrome, GATA-2 deficiency, IL-10 receptor-beta deficiency, hypere-
osinophilic syndrome, hyper-IgM syndrome. ALL, acute lymphatic leukemia; AML, acute myeloid leukemia; ATG,
anti-thymocyte globulin; Auto, autologous; Bu, busulfan; CGD, chronic granulomatous disease; Clo, clofarabine;
CP, cyclophosphamide; Flu, fludarabine; Haplo, haploidentical; HLH, hemophagocytic lymphohistiocytosis;
JMML, juvenile myelomonocytic leukemia; MDS, myelodysplastic syndrome; Mel, melphalan; MMUD, mis-
matched unrelated donor; MPS, mucopolysaccharidosis; MRD, matched related donor; MUD, matched unrelated
donor; SCID, severe combined immunodeficiency; TTP, thiotepa; X-ALD, X-linked adrenoleukodystrophy; XLP,
X-linked lymphoproliferative disease. Data are shown in median (range) or number (%).
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In each search round for covariates, the covariate that reduced −2 × ln(likelihood by
important sampling) (-2LL) the most was kept in the model as long as the reduction was
larger than 3.84, i.e., the critical value of χ2 at 1 − p with p = 0.05 at one degree of freedom
(df) difference. Covariates were excluded if their maximal effect in the final model was
small (comparing the effect at the lowest and highest covariate value in the population),
namely between −0.1 and +0.1, or if their p-value was >0.05. All included covariates were
subsequently evaluated individually by backward elimination. Covariates were kept in the
model if their elimination increased the -2LL by more than 6.63, i.e., the critical value of
χ2 at 1 − p with p = 0.01. Comparing two models with an equal number of fit parameters
(equal df), the model with the lower -2LL was preferred. Random effects were included if
the respective shrinkage as calculated from the respective saemix function as 1—variance
(subject predicted parameter—population predicted parameter)/variance(predicted inter-
individual variability) was lower than 0.4 in the basic model [46].

As co-medications varied during the therapy of an individual patient (Figure S2), we
included the effects as fit parameters in the objective function rather than as covariates.
During co-medication (within 24 h before infusion start), the test ln(PK parameter) in the
objective function was adjusted to ln(PK parameter) + ln(effect of drug).

2.8. Simulations of CL with Time

To simulate the relative change in the CL over t (CL(t)/CL), which is equivalent to
k′(t)/k, as V did not change with t and CL = k × V, a series of k′(t)/k were calculated
according to Equations (2) and (3) as dk × exp(−κk × t) from a set of 100,000 randomly
sampled values in a normal distribution of the fit dk, with SD as the square root of the fit
variance of the random effects of dk. For κk, the 100,000 values were randomly sampled
from a normal distribution of the fit κk where the SD of the normal distribution equalled
the fit SE of κk multiplied by the square root of the number of subjects (as no random effects
were fit for κk).

2.9. Model Evaluation

The final model was evaluated by plotting the observed vs. the predicted C(t), inspect-
ing the distribution of the individual weighted residuals obtained with the conditional
estimates (conditional individual weighted residuals, icwres) and of the normalized predic-
tion distribution errors (npde), a visual predictive check (vpc) plot, the distribution of the
fit parameters, the reproducibility of the results, analysis of resampled data (bootstrapping),
and splitting the data into a training and a test set.

The icwres and npde (10,000 simulations) were calculated with the respective func-
tions in the saemix package. The vpc plot was generated with the median and 5 and
95% percentiles of the observed C(t) and simulated C(t) using the saemix function
simul.saemix with the fit saemix object of the final model for 1000 simulations.

For the bootstrapping, resampled datasets had the same size as the original dataset,
allowing subjects to be present multiple times in a resampled dataset (function sample
with attribute replace = TRUE in R). Start values for the analysis of the resampled datasets
were 2.5 for ln(V), −1 for ln(k), ln(ln(2)/24) for ln(κk), and 0 for all other parameters with V
in L, k, and κk in 1/h (no random sampling of the start values, which is in contrast to the
main analysis). The number of iterations were as described under Section 2.5 (Methods)
for the final model. Confidence intervals (95%) of the resampled results were defined
as the fit parameters at the 2.5 and 97.5% positions of the sorted fit parameters of the
resampled datasets.

To simulate an external evaluation of the model, we split the data (R function sample)
into a training and a test set with 93 and 31 patients, respectively (ratio 75/25), built the
model with the training set, and inspected the predictions for the test set by plotting the
observed vs. predicted C(t) and calculating the sum of squared residues (SSRs) divided by
the number of C(t) values for training and test set.
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3. Results
3.1. Patient Characteristics

The characteristics of the 124 patients included in this study are presented in Table 1.
The majority of the patients, namely 118, were younger than 18 years, and 23 were younger
than 1 year (postnatal age). The distributions of age, W, BSA, plasma albumin, hematocrit,
and leukocyte count (Leu) are shown in Figure S1. As mentioned in the Section 2.5, four to
ten busulfan doses were required to reach the target cAUC. C(t) measurements of busulfan
were performed for a minimum of one dose and a maximum of five doses per patient (a
median of three doses with C(t) measurements, Figure S1G). In total, 2376 busulfan plasma
concentrations from 373 busulfan infusions were measured and used for population PK
analysis. No data were excluded from the analysis. Figures S4–S9 show the non-parametric
PK parameters plotted against the patient characteristics.

3.2. Population Pharmacokinetic Analysis

The key steps in model building for the population PK analysis are described in Table 2.
An open one-compartment model is typically defined by two PK parameters, namely V
together with either k or CL. We first evaluated the correlations between the non-parametric
parameters CL, V, and k (Figure S10). Furthermore, we analyzed the data by population PK
with both a model based on V and k and a model based on V and CL, without including any
covariate. Both analyses (non-parametric and one-compartment model) revealed a stronger
relationship between V and CL than between V and k. We chose the model with lower
correlation between the fit parameters, namely the model based on V and k, for further
analysis of the data. Building the model on V and CL would result in two parameters with
similar covariates (as concluded from their correlation), potentially masking the covariates
for k and consequently for t1/2 (t1/2 = ln(2)/k) of busulfan in our study.

From both non-parametric analysis and population PK modeling, we observed that
both k and CL, in general, decreased from the first to subsequent dosing intervals (t1/2
increased). This is shown for non-parametric k and CL in Figures S11 and S12. To account
for this change, we replaced the constant k in the population PK model with a dynamic
parameter, allowing an exponential change in k with t, as described in Equations (1)–(3).
According to Equations (1)–(3), k′(t) can only change from one dosing interval to the next
but not within a dosing interval. This prevents the model from masking a 2-compartment
model by changing k within a dosing interval.

Fitting a two-compartment model to the data did not reduce -2LL compared to the
above-described one-compartment model with dynamic k′(t) without including covariates
(Table 2). We, therefore, used the above-described one-compartment model with ln(V),
ln(k), dk, and ln(κk) as fit parameters (Equation (1)) for all subsequent analyses. The data
were first analyzed with the above-described basic model (model 3* in Table 2) without
including any covariate. The resulting random effects for ln(V), ln(k), and dk are plotted
against potential covariates in Figures S13–S15. Random effects of ln(κk) were omitted
to avoid overparameterization, as judged from the shrinkage of the fit parameters. The
shrinkage for ln(κk) in the basic or final model, if including ln(κk) random effects, was >60%,
indicating overparameterization (Table 2).

For the plots in Figures S13–S15, numeric (continuous) covariates (X) were transformed
to ∆ln(X) = ln(X/Xref), where Xref is the reference value of X, i.e., a rounded value close to
the population median of X. The respective reference values are shown in Table 3. These
plots (Figures S13–S15) revealed strong correlations between ∆ln(TBW) and the random
effects of both ln(V) and ln(k). ∆ln(TBW) was included as a covariate for both parameters.
Before including additional covariates, the data were inspected for correlations between
potential covariates (Figure S16). This facilitated the choice of alternative covariates for
comparison, e.g., ∆ln(TBW) compared to ∆ln(W) or ∆ln(BSA) as a covariate for ln(V),
as shown in Table 2. Stepwise forward selection and backward elimination of potential
covariates according to Table 2 resulted in model 16**, without testing for potential effects
of co-medication yet.
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Table 2. Stepwise model building.

Step 1: Building the Basic Structural Model (a)

Model Number of
Compartments

PK
Parameters

Random
Effects for df (b) ∆-2LL (c) Ref. Model (d) Comment Parameters

in Table 3

1 * 1 ln(V), ln(k) ln(V), ln(k) 4 0 -

2 1 ln(V), ln(k),
dk , ln(κk)

ln(V), ln(k),
dk , ln(κk) 8 −2245 1 *

Excluded,
Shrinkage for
ln(κk) >40%

3 * 1 ln(V), ln(k),
dk , ln(κk)

ln(V),
ln(k), dk

7 −2128 1 *
Critical ∆-2LL for
∆3 parameters:
−7.82(p = 0.05)

θV1
, θk1

, θdk1
, θκk,

all Ω2

4 2 ln(V), ln(k),
ln(V1), ln(k1)

ln(V), ln(k),
ln(V1) 7 −163 1 *

Step 2: Search for covariates by forward inclusion based on model 3 *
Inclusion criteria: ∆-2LL (c) ≤−3.84 (p = 0.05) and effect (absolute value, |θ|) ≥ 0.1 (≥ 10% in linear scale)

Model Step 2a: Testing alternative body size metrics as
covariates for ln(V) df ∆-2LL Ref. model Reason for not

including
Parameter
in Table 3

5 ln(W) on ln(V) 8 −294.2 3 * Model 9 *

6 ln(BSA) on ln(V) 8 −304.6 3 * Model 9 *

7 ln(H) on ln(V) 8 −284.5 3 * Model 9 *

8 ln(FFM) on ln(V) 8 −288.3 3 * Model 9 *

9 * ln(TBW) on ln(V) 8 −305.4 3 * θV2

Step 2b: Including additional covariates

10 Model 9 * with Tinf on ln(V) 9 −31.7 9 * θV3

11 Model 10 with Tinf on ln(k) 10 −15.2 10 θk6

12 Model 11 with ALL on ln(k) 11 −14.8 11 θθk5

13 Model 12 with HLH/XLP on dk 12 −6.94 12 θdk2

14 Model 13 with Alb on ln(k) 13 −6.09 13 θk4

15 Model 14 with ln(TBW) on ln(k) 14 −6.54 14 θk2

16 ** Model 15 with ln(Fmat) on ln(k) 15 −11.4 15 θk3

17 Model 16 ** with ln(Leu) on ln(k) 16 −5.42 16 ** Step 3

18 * Model 17 with ln(Hct) on ln(V) 16 −5.25 16 ** Step 3

Step 3: Evaluation of covariates by backward exclusion Exclusion criterium: ∆-2LL ≥ −6.63 (p = 0.01)

17 Model 18 *, excluding ln(Hct) on ln(V) 15 −5.25 18 ∆-2LL ≥ −6.63

16 ** Model 17, excluding ln(Leu) on ln(k) 15 −5.42 18 ∆-2LL ≥ −6.63

Excluding individual covariates from model 16 ** 14 ≤−7.40 16 **

Step 4: Search for the effects of co-medication

19 NAC on ln(k) 16 −0.03 16 ** ∆-2LL > −3.84

20 NAC on ln(V) 16 −112.8 16 ** |θ| < 0.1 (0.099) (f)

21 Clofarabine with NAC on ln(k) 16 −1.48 16 ** ∆-2LL > −3.84

22 Clofarabine with NAC on ln(V) 16 +0.62 16 ** ∆-2LL > −3.84

23 Paracetamol w/o NAC on ln(k) 16 −4.33 16 ** |θ| < 0.1 (0.02)

24 Paracetamol w/o NAC on ln(V) 16 −18.5 16 ** |θ| < 0.1 (−0.05)

25 Fludarabine on ln(k) 16 +0.47 16 ** ∆-2LL > −3.84

26 Fludarabine on ln(V) 16 +1.57 16 ** ∆-2LL > −3.84
(a) *, Model selected in each step; **, final model. (b) df, degrees of freedom. (c) -2LL of test model minus -2LL
of reference model. (d) Ref. model, model compared to. (f) Fit parameter (effect). Alb, albumin; ALL, acute
lymphoblastic leukemia; BSA, body surface area; FFM, fat-free mass; Fmat, maturation of busulfan elimination
process(es); H, body height; HLH/XLP, hemophagocytic lymphohistiocytosis/X-linked lymphoproliferative
disease; Hct, hematocrit; k, first-order elimination rate constant; Leu, leucocyte count; NAC, N-acetylcysteine; Tinf,
duration of infusion; TBW, total body water; V, distribution volume; W, body weight; Ω2, variance of the random
effects of a particular fit parameter; θ, fit parameter (fixed effect, i.e., population level).
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Table 3. Fit parameters of the final model.

Fixed Effects

Parameter (a) Reference
Value (b) Fit Value SE (c) Range in

Population (d)
Untransformed

Fit Value (e) p (f) CI (95%) from
Bootstrapping (g)

ln(V) = θV1 + θV2 × (ln(TBW)− ln (10L)) + θV3 × (Tinf − 3h)V = eθV1 × (TBW/(10L))θV2 × eθV3×(Tinf−3h)

θV1, ln(V, L) at reference values 2.459 0.0189 11.70 L - 2.432, 2.491

θV2, effect of ∆ln(TBW, L) 10 L 0.931 0.0233 −1.21; 1.40 - <0.001 0.872, 0.987

θV3, effect of ∆Tinf (h) 3 h 0.226 0.0356 0; 0.23 1.254 <0.001 0.134, 0.329

ln(k) = θk1 + θk2 × (ln(TBW)− ln(10L)) + θk3 × ln(Fmat) + θk4 × (ln(Alb)− ln(30g/L)) + θk5 × ALL + θk6 × (Tinf − 3h)k =

eθk1 × Fmat
θk2 × (TBW/(10L))θk3 × (Alb/(30g/L))θk4 × eθk5×ALL × eθk6×(Tinf−3h)

θk1, ln(k, h−1) at reference values −1.007 0.0329 0.365 h−1 - −1.065, −0.952

θk2, effect of ∆ln(TBW, L) 10 L −0.189 0.0411 −0.28; 0.24 - < 0.001 −0.291, −0.106

θk3, effect of ln(Fmat) 0 0.697 0.2001 −0.40; 0 - < 0.001 0.348, 1.061

θk4, effect of ∆ln(Alb, g/L) 30 g/L 0.331 0.1073 −0.15; 0.16 - 0.001 0.090, 0.653

θk5, effect of ALL No ALL −0.210 0.0592 −0.21; 0 0.810 < 0.001 −0.398, −0.030

θk6, effect of ∆Tinf (h) 3 h −0.161 0.0420 −0.16; 0 0.851 < 0.001 −0.264, −0.085

k′ = k × (−dk × (exp(−k × t)− 1) + 1); dk = θdk1 + θdk2 × HLH/XLP; k = eθk

θdk1, dk (h−1) at no
HLH/XLP - −0.167 0.0191 −0.167 - −0.198, −0.122

θdk2, effect of HLH/XLP No HLH/XLP −0.145 0.0540 −0.15; 0 −0.145 0.0035 −0.255, −0.030

θk , ln(κk, h−1) - −2.965 0.1094 0.0516 h−1 - −3.204, −2.390

Inter-individual variability: variance Ω2 (standard deviation Ω) of the random effects

Parameter Fit Ω2 (Ω) SE of Ω2 Shrinkage

Ω2 (Ω) of ln(V) - 0.029
(0.169) 0.0039 5.5%

Ω2 (Ω) of ln(k) - 0.033
(0.182) 0.0048 12.5%

Ω2 (Ω) of dk - 0.032
(0.180) 0.0047 12.5%

Residual error

Residual error with SE - 0.076 0.0008 - -
(a) k, first-order elimination rate constant; V, distribution volume; dk, amplitude of a change in k with time; κk,
exponent of a change in k with time. Reading examples: θV1, ln(V, in L) at reference values for the covariates,
i.e., TBW = 10 L and Tinf = 3 h. θV2, effect of ∆ln(TBW, in L), i.e., ln(TBW) − ln(10 L), on ln(V). θV3, effect
of ∆Tinf (h), i.e., difference of Tinf to 3 h, which is 0 for Tinf = 3 h and 1 h for Tinf = 4 h, on ln(V). For more
details, see equations in the gray table inserted above the respective parameters. Ω2 and Ω, variance and
standard deviation of the random effects of the indicated fit parameters. (b) Reference values, rounded values
close to the median of the population. (c) SE, standard error of the fit value. (d) Range in population, e.g.,
range of θV2 × (ln(TBW)− ln(10L)); (e) untransformed fit values where meaningful: exp(θ) if θ corresponds to
a logarithmic (ln) parameter, otherwise directly θ. (f) p of the fit parameter. (g) See Section 3.3. Alb, albumin;
ALL, acute lymphoblastic leukemia; Fmat, maturation function of busulfan elimination process(es); HLH/XLP,
hemophagocytic lymphohistiocytosis/X-linked lymphoproliferative disease; TBW, total body water; Tinf, duration
of infusion.

The covariate ln(Fmat) for ln(k) became apparent and significant after introducing
∆ln(TBW) as a covariate for ln(k), indicating that it is a correction factor for TBW in our
model at an age lower than ~1 year with a value of 0.85 at 98 weeks of postmenstrual
age (Fmat is a sigmoidal function from 0 to 1 of postmenstrual age with a value of 0.5
at 46 weeks of postmenstrual age [23]). ln(Fmat) was also significant as a covariate if
∆ln(W) was used instead of ∆ln(TBW) as a covariate for ln(k). Replacing ∆ln(TBW) as a
covariate on ln(k) by other body size metrics in model 16** did not further reduce -2LL.

The plots of the random effects vs. potential covariates of model 16** in Table 2
(Figures S17–S19) suggested an effect of ln(hematocrit) on ln(V) and of ln(Leu) on ln(k).
However, neither parameter fulfiled the criteria for being included in the final model
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(Table 2). Neither sex, conditioning regimen, nor busulfan dosing scheme had an additional
significant effect on busulfan PK, as concluded from plotting the random effects of model
16** (Figures S17–S19) or the non-parametric PK parameters (Figures S4–S9) against the
patient properties. No significant effect was observed whether the first busulfan dose was
administered in the morning or evening.

Regarding co-medication, we compared observed vs. predicted C(t) from model 16**
in the presence and absence of co-medication, as well as predicted minus observed C(t)
with and without co-medication. Potential effects were detected for NAC (underestimation
of low C(t)), clofarabine in the presence of NAC (overestimation of C(t); however, there
were only a few data), and paracetamol in the absence of NAC (underestimation of C(t)).
Figure S20 shows the respective observed vs. predicted C(t). The figure also includes
the data for fludarabine, a drug in discussion for affecting busulfan PK [18,24,33,47–51].
However, none of the administered co-medications reached the criteria for inclusion in
the model; either ∆-2LL or the effect (absolute value) was too low (Table 2). The effect of
NAC on ln(V), increasing V by ~10%, was close to reaching the inclusion criteria (Table 2).
Whether NAC was co-administered or not had no effect on the parameter dk, i.e., on the
change in k (and CL) over time at the subject level (Figure S21). None of the other drugs
showed an effect on C(t). Model 16** in Table 2 was, therefore, considered the final model
for busulfan population PK modeling with the available data. The respective fit parameters
are shown in Table 3.

While the effect of ∆ln(TBW) on ln(V) was close to 1 in the final model (0.931 in
Table 3) and in agreement with a proportional change in V with TBW, the effect on ln(k)
was weaker, with an effect size of −0.189. Doubling the TBW thus results in a reduction in
k by 12% (factor 2−0.189) at a postnatal age > ~1 year where Fmat becomes close to 1. ALL
significantly reduced k by 20% on average (100 × (1 − 10−0.21), while the reduction in k
over time was amplified from 17% (−0.167 in Table 3) to 31% (−0.167 + (−0.145)) if the
diagnosis belonged to the HLH/XLP group. Furthermore, k increased with albumin level
with a n in k for a 5 g/L change in albumin concentration (for the range 25 to 35 g/L, e.g.,
(25/30)0.331). Parameters V and k were affected by Tinf. We hypothesize that shortening
Tinf from 4 h to 3 h uncovered a distribution phase in the C(t) vs. t curve, corresponding
to a two-compartment model. This would result in a higher apparent k at 3 h Tinf at a
correspondingly smaller V, as supported by the opposite effect sizes (−0.161 for ln(k) and
0.226 for ln(V), Table 3). The calculated CL (=k × V) is thus virtually independent of Tinf.

The correlations between C(t) predicted with the final model and observed C(t) on
both population and subject (including random effects) levels are shown in Figure 1.
The remaining random effects of ln(V), ln(k), and dk of the final model are shown in
Figures S17–S19. They were close to normally distributed as concluded from the histograms
and QQnorm plots in Figure S22.

Considering that CL is the product of V and k, covariates for both ln(V) and ln(k) affect
CL, except if canceled out, as in the case of Tinf. Busulfan CL was thus dependent on TBW,
Fmat as a maturation function of age, serum albumin, and underlying disease, namely ALL
and HLH/XLP. Table S1 shows a summary of the fit PK parameters on population and
subject levels.

To visualize the effects of ALL and albumin on busulfan CL, we recalculated the model
without the two covariates. The respective CL of the individual subjects are shown in
Figure 2 as multiples of the respective population predictions.
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(C,D) Logarithmic axes scales. Dotted black lines, lines of identity. Broken blue lines, linear regressions.
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Figure 2. CL at the subject level relative to the respective predicted CL at the population level
calculated before including the effects for ALL and albumin (on k) in the final model. (A) Boxplot for
the effect of ALL; dotted line at 1, i.e., identity between predicted CL at subject and population level;
p-value for Student’s t-test. (B) Scatter plot for the effect of serum albumin; dotted line, linear regression;
p-value for the slope (slope = 0) of the linear regression.
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3.3. Model Validation

Each model was run at least 15 times with random start values (see Methods) to
check for the reproducibility of the fit parameters. Applying the final model, typically
all 15 runs converged with non-significant differences between the -2LL and robust fit
parameters (Figure S23). Figures S24 and S25 show the distributions of the icwres and npde,
respectively. The residues had a close to symmetrical distribution around 0, independent
of the size of the predicted value or of time. This indicates that the structural model was
adequately chosen. The tendency of a U-shape in the icwres plotted vs. observed C(t)
justified the testing of a two-compartment model. However, -2LL was not significantly
reduced with a two-compartment model compared to the final structural model 3** (Table 2).
The histograms of the icwres and ndpe slightly deviated from a normal distribution (Figures
S24 and S25). We investigated whether a proportional error model would bring the residues
closer to a normal distribution. However, models 1 and 3** both revealed large Ω2 for ln(V)
and an asymmetrical distribution of the residues and failed to calculate -2LL, indicating
that the structural model 3** with an additive error model was adequate.

Figure 3 shows the vpc plot. At most time points, the 5th and 95th percentiles of the
observed data were within the respective percentiles’ 95% confidence intervals of the data
simulated with the final model, indicating that the model was adequately built.
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3.4. Inter-Individual and Inter-Occasion Variability of Busulfan CL

The distribution of CL, as calculated from the fit V and k of the final model and
normalized to W in mL/min/kg is shown in Figure 4. The significant effect of dk on k in
the population PK model was in agreement with the reduction in non-parametric k with t
(Figure S11). To test whether in addition to k also V was time-dependent, we expanded
the final model in Table 3 by the parameters dV and κV in analogy to dk and κk. To avoid
overparameterization, κV was kept constant at the fit value of κk in Table 3. The fit dV
was 0.073, indicating that V, in contrast to k (dk changed from −0.167 to −0.273), did not
substantially change over time (-2LL increased). As CL = k × V, the time dependence of k
is directly translated to CL. The fit dk value of −0.167 with an SD of the random effects of
0.180 (Table 3) indicates an average reduction in k and CL by 16.7 ± 18.0% at a steady state.
The fit κk of exp(−2.965) indicates a half-life of ~13.4 h (ln(2)/exp(−2.965)) for the change
in k and CL with t. This indicates that CL reaches constant values after 2–3 days of therapy.
The simulated change in CL with t is shown in Figure 4.
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3.5. Dose Adjustments and Busulfan Exposure 
Dose adjustments were required for several patients in our study in order to reach 

the target cAUC. These dose adjustments were, in general, realized for the second and 
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3.5. Dose Adjustments and Busulfan Exposure

Dose adjustments were required for several patients in our study in order to reach
the target cAUC. These dose adjustments were, in general, realized for the second and
subsequent doses based on the AUC of the first dosing interval with C(t) measurements.
The data of these patients allowed us to assess the effect of the dose on busulfan PK at
minimal influence of potentially confounding effects. As shown in Figure 5, the AUC
normalized to dose (AUC/dose) was hardly affected by the dose.

Figure 5 shows that eight of the thirteen patients with ALL required a dose reduction,
while none of them required a dose elevation. This agrees with the reducing effect of ALL
on k (and CL) in the final model (Table 3), resulting in a higher AUC than expected.
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and dose ratios with a p-value for the slope, indicating that the slope is not significantly different
from 0. Dotted line, ratio of 1. Data with AUC measurements of even dose numbers are not included
(N = 11). This includes one patient with ALL without dose adjustment.

4. Discussion

We retrospectively analyzed PK and clinical data in a primarily pediatric population
undergoing busulfan-based conditioning for HSCT. To the best of our knowledge, this
is the largest single-center study with strict twice-daily busulfan application in pediatric
patients and serial PK measurements. Twice-daily administration of intravenous busulfan
offers the advantage of higher flexibility in dose adjustment to reach the target cAUC. The
high number of repeated measurements allowed for a detailed evaluation of endogenous
and exogenous factors with respect to their effects on busulfan PK.

To identify parameters explaining the inter-patient and inter-dose variability of busul-
fan PK in this pediatric cohort, we employed a non-linear mixed effects model. The
relatively large dataset allowed us to search for covariates without prior inclusion of
fixed allometric scaling exponents. Figure 6 provides a schematic summary of our find-
ings. Not surprisingly, our data confirmed the dependency of busulfan CL on body size
metrics [18,25,30,52]. This dependency resulted mainly from the correlation and near
proportionality between V of busulfan and the TBW, calculated from W, H, age, and sex.
The near agreement between V and TBW in our model suggests that busulfan is mainly
distributed in the body water, as suggested in a previous analysis [53]. In our study, BSA
performed similar to TBW as a covariate for V. Considering the near agreement between V
and TBW and its (potential) physiological meaning (namely that busulfan distributes in
total body water), we preferred keeping TBW as a covariate rather than the more commonly
used parameter BSA or W. In addition to the effect of TBW on V, we identified several
covariates for k, as summarized in Figure 6. Most previous population PK studies used CL
and V as fit parameters [30], while we based our model on the elimination constant k and V.
As CL is the product of V and k, covariates for both parameters also affect CL. Takahashi
et al. recently published a comprehensive review on busulfan population PK studies [30].
Covariates for busulfan CL included W, BSA, FFM, normal-fat mass, ideal body weight,
age, GSTA1 variants, and co-medication with fludarabine or fludarabine together with
clofarabine, aspartate transaminase, and the time after first busulfan administration [30].

Including a function for the age-dependent maturation of k improved our model.
The reduction in k and thus CL in patients < 1 year of age is in agreement with previous
findings [18,23–25,54] and implies a maturation of the elimination mechanisms [55], which
needs to be taken into account. Several approaches have been published to describe the mat-
uration of busulfan CL [18,25,52]. The function introduced by McCune et al. [23] is based
on postmenstrual age. As this simple one-parameter function significantly improved our
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model and as the residual random effects did not suggest any further common influencing
factor, we did not test alternative maturation functions in our study.
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Figure 6. A schematic summary of the findings of this study. CL equals the product of V and k. V had
a higher variability in the study population than k, as indicated by the size of the ellipses. The effects
of patient characteristics on V and k, and thus CL, are indicated by the arrows and the respective
color (blue, influencing V; red, influencing k). HLH/XLP amplifies the time-dependent reduction
in k (indicated by the overlap of the respective symbols). Alb, albumin; ALL, acute lymphoblastic
leukemia; Fmat, maturation function of busulfan elimination process(es); HLH/XLP, hemophagocytic
lymphohistiocytosis/X-linked lymphoproliferative disease; TBW, total body water. The artefactual
effect of infusion time is not included.

A contribution of disease and intensity of the associated pre-conditioning treatment
to the metabolism of busulfan was previously suggested [26,56]. In our cohort, ALL
significantly reduced k without affecting V (resulting in a reduction in CL). The effect on
k indicates a reduction in busulfan metabolism in these patients. The overall decrease
in k and CL was on average 20% compared to patients without ALL. In agreement with
this finding, dose reductions were frequently necessary in patients with ALL, while the
diagnosis AML—another heavily pretreated group of patients—did not impact k. It remains
speculative as to which factors contribute to the observed disease-associated difference in
CL. As diagnosis and subsequent therapy of genetic diseases in children show age-related
peaks, the impact of age and W on the CL of each disease group needs to be considered.
Including TBW as the body size metric and the age-dependent maturation function as
covariates in our model, we adjusted for these potential confounders.

Based on frequently performed PK measurements, which often exceeded the second
day of busulfan application, we were able to profoundly analyze the inter-occasional
variability of busulfan CL. By replacing the elimination rate constant k in the population
PK model with a dynamic parameter, we were able to account for a change in k and CL
with time. In our model, we used an exponential function to describe the change in k with
time, while other studies used a step function [23,24], e.g., from the first to subsequent
days, or a saturation function [54]. The half-life of the change in k in our analysis was
13.4 h, resulting in a constant CL 2–3 days after the start of busulfan therapy, which is in
agreement with the reduction after the first day described in other studies [23,24]. The
average reduction in CL was 16.7% in total. The corresponding estimated average reduction
24 h after therapy started is 12%. This result from population PK modeling was confirmed
by the analysis of the individual patients’ datasets with a reduction in non-parametric
k and CL from the first day to subsequent days. Here, we demonstrate that the CL of
consecutive busulfan doses is significantly decreasing over time. However, CL and k were
not reduced in all patients over time, as concluded from the variance of the random effects
for dk and the comparison of the individual non-parametric k or CL. Our finding that CL
was reduced in most (but not all) patients after one day of treatment is consistent with
other large PK studies in pediatric patients, which demonstrated that CL on the first day
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was 8% to 15% higher [18,23,24,52,54,57] than subsequent days. This contrasts with PK
studies in adult patients, where usually minimal inter-occasion variability of busulfan CL
was observed [47,48,58,59]. As busulfan is metabolized by GSH conjugation, the depletion
of intracellular GSH stores during therapy could, at the same time, explain both the overall
decrease in CL and the variability in the change in CL over time [34,48,60]. A large fraction
of our patients (69%) received at least two doses of NAC concomitantly with busulfan
application with the intent to replenish GSH stores [37] and thus reduce (hepatic) side
effects. We detected an effect of NAC on the observed C(t). Its effect in the PK model was
slightly below our set limit for clinical relevance, albeit reaching significance. Its effect
would correspond to a 10% increase in V and thus CL. In our study, NAC had no effect on
the reduction in CL with time.

Patients with HLH/XLP as underlying conditions showed an even stronger decrease
in busulfan CL (on average −31%) in follow-up doses, even though the initial CL did
not differ from the remaining population. This may result from impaired liver function
in these patients [61]. The capacity for replenishing GSH may be reduced, resulting in a
stronger decrease in busulfan CL over time in these patients. Whatever the cause, the risk
of overdosing and thus excessive toxicity of busulfan is considerably higher in HLH/XLP
patients. Indeed, the observed incidence of SOS is increased in this population [15,62,63],
and Marsit et al. reported a general association of significant decrease (>20%) in busulfan
CL over multiple doses and subsequent occurrence of SOS [57].

As same-day therapeutic drug monitoring was performed during conditioning therapy,
follow-up doses were adjusted based on the previously measured busulfan concentrations.
Retrospectively, we analyzed the effect of the dose adjustment on busulfan PK. We expected
a reduction in CL and a corresponding increase in AUC/dose with increasing the dose
according to recently described saturation phenomena in GSH conjugation, either by
saturating the involved GST or exceeding the capacity of replenishing GSH [34,48,60].
However, the observed effect was marginal, if any.

Furthermore, we analyzed a possible contribution of drug–drug interactions on the
variability in busulfan CL, as patients undergoing conditioning for HSCT receive a substantial
number of co-medications either as part of the conditioning regimen or adjuvant therapies.
As discussed above, the depletion of GSH stores due to consumption in the course of busulfan
metabolism was postulated as a cause for a reduction in busulfan clearance [24], and some of
the administered co-medications are known to affect GSH levels, with paracetamol contribut-
ing to GSH depletion [36]. Our study showed no significant or clinically relevant effect of any
of the administered co-medications on inter-patient, as well as inter-occasional variability of
busulfan CL, as also reported in previous studies [57,64–68]. In particular, the administration
of paracetamol prior to busulfan did not significantly affect busulfan CL in the PK model,
irrespective of NAC administration. However, inspecting the observed vs. predicted C(t),
we detected a slight underestimation of high C(t) if paracetamol was administered without
NAC. While several reports disclosed a decrease in busulfan CL when combined with flu-
darabine [24,33,47,49,51], despite their proposed differential use of elimination routes [69], our
findings corroborate studies suggesting no interaction [18,48,50].

In blood, almost 80% of busulfan is bound irreversibly to blood cells and plasma
proteins, while the non-covalent binding of busulfan to plasma constituents is insignificant
and unaffected by the busulfan concentration [31]. In our study, we observed a positive
correlation between albumin levels and k (and thus CL). As albumin stoichiometrically
and irreversibly binds to and thus inactivates busulfan, increased albumin levels could
contribute to a more pronounced elimination of the drug [31,70]. Additionally, serum albu-
min is an indicator of liver function. Thus, lower albumin levels may suggest a disturbed
hepatic function correlating with impaired busulfan metabolism. Both irreversible binding
(resulting in loss of binding capacity) and an indication of liver dysfunction could explain
the positive correlation between albumin levels and busulfan CL. However, albumin levels
are influenced by a number of factors, including renal loss, inflammation, and nutritional
status. A routine assessment of hepatic coagulation parameters (including antithrombin
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III)—likely a more sensitive indicator of acute liver dysfunction than albumin—in this
patient cohort prior to conditioning did not reveal significant abnormalities.

Similarly to albumin, busulfan concentration in plasma is dependent on the hematocrit
and potentially leukocyte concentration, as almost half of the active drug binds irreversibly
to blood cells [31]. Our study showed a marginal change in busulfan PK with altered blood
cell counts. While blood cell counts significantly improved our PK model in the forward
inclusion phase of model building, they were excluded again in the backward elimination
phase due to lack of significance.

No pharmacogenetic information was available in our retrospective study. Ben Hassine
et al. [24] found a 12% reduction in CL for GSTA1 poor metabolizers and a 10% increase in
CL for GSTA1 rapid metabolizers. Both groups each accounted for ~18% of the studied
population. For comparison, the effect of the GSTA1 phenotype is of similar size as the
effect we found for ALL. Including information on GSTA1 activity in our model might
explain some, but not all, of the variability, as substantial unexplained variability remained
in the study by Hassine et al. [24].

To conclude, we applied non-linear mixed effects modeling to evaluate the effects
of patients’ clinical and laboratory parameters, as well as treatment-related factors, on
busulfan PK in a pediatric cohort receiving strict twice-daily intravenous administration
of busulfan. In addition to previously identified factors, plasma albumin level had a
significant effect on busulfan CL and t1/2. Underlying disease emerged as a contributor to
inter-patient and inter-occasional variability in CL and t1/2. In comparison to the initial
dose, the majority of children demonstrated a substantial reduction in busulfan CL in
subsequent dosing intervals. It remains speculative as to which factors contribute to the
observed decrease in busulfan CL over time. Concomitant medication did only marginally
impact busulfan CL or its inter-dose variability but was not significant in the final model.
Our model was able to describe the busulfan PK of most patients in our study and may
be useful in defining the initial dosing scheme more precisely. However, the remaining
unexplained variability remained too high for a model-only approach for the prediction of
cumulative busulfan doses. Consequently, the repeated TDM of busulfan with subsequent
dose adjustment remains critical to achieve the desired disease-specific exposure in pediatric
patients undergoing conditioning for autologous or allogeneic HSCT.
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