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Abstract: Traditional tumor treatments have the drawback of harming both tumor cells and normal
cells, leading to significant systemic toxic side effects. As a result, there is a pressing need for targeted
drug delivery methods that can specifically target cells or tissues. Currently, researchers have made
significant progress in developing targeted drug delivery systems for tumor therapy using various
targeting ligands. This review aims to summarize recent advancements in targeted drug delivery
systems for tumor therapy, focusing on different targeting ligands such as folic acid, carbohydrates,
peptides, aptamers, and antibodies. The review also discusses the advantages, challenges, and future
prospects of these targeted drug delivery systems.

Keywords: targeted drug delivery system; targeting ligand; folic acid; carbohydrates; peptides;
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1. Introduction

Cancer is a chronic disease that presents a significant risk to human life. In 2020, the
global incidence of new cancer cases was estimated to have reached 19.3 million, leading to
approximately 10 million fatalities. This alarming statistic represents about one-sixth of all
global deaths [1,2]. To combat this life-threatening disease, numerous cancer treatments
have been discovered, including surgery, chemotherapy, immunotherapy, radiation therapy,
phototherapy, thermotherapy, and more. Alongside these treatments, various drugs have
been developed, such as small-molecule chemotherapeutic drugs and nanoparticles (NPs).
However, it has been observed that these drugs do not effectively differentiate between
pathological and normal cells, leading to toxicities [3,4]. Therefore, there is an urgent need
for new cancer therapies that are targeted and have reduced toxicity [5]. In recent decades,
targeted therapies have emerged as a promising approach to address the issues of high
cytotoxicity and lack of tumor specificity in alternative cancer treatments [6].

Targeting ligands, such as folic acid [7], carbohydrates [8], peptides [9], aptamers [10],
and antibodies [11], exhibit structural diversity and possess unique strengths and weak-
nesses. They play a crucial role in distinguishing between pathological and normal tissues.
These ligands specifically bind to receptors expressed on tumor cells, minimizing the
damage caused by cytotoxic drugs to normal cells. While each type of targeted ligand
is well-documented in the references provided, Table 1 offers a concise overview of each
group for easy reference. Despite their diverse targets and entry mechanisms into tumor
cells, these targeting ligands have demonstrated promising results in anticancer therapeutic
studies. By functionalizing small molecule drugs and nanoparticles that recognize targeting
ligands in cancer cells, a targeted drug delivery system can be created. This system enables
selective delivery of drugs to cancer cells, significantly enhancing therapeutic efficacy while
reducing toxicity [12].
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Table 1. Different types of targeting ligands: a summary of their structures, advantages and
disadvantages.

Targeting
Ligands Structure Advantages Disadvantages

Folic acid
Water-soluble vitamin composed of 3

ingredients: pteridine, p-aminobenzoic acid
and glutamic acid.

Small size, chemical simplicity,
biocompatibility and low cost

Limited aiming,
limited load capacity

Carbohydrates Organic compounds composed of the elements
carbon, hydrogen and oxygen

Naturally occurring,
biocompatible,

structural diversity

Structural complexity,
targeting and affinity variation

Peptides Compounds formed by the dehydration and
condensation of 10–100 amino acid molecules

Highly customizable,
good biodegradability

Poor stability,
high preparation cost,

hhort half-life

Aptamers A short sequence of oligonucleotides or a short
polypeptide obtained by in vitro screening

High specificity and affinity,
easy to synthesize,

easy for chemical modification,
good reproducibility

Lower immunogenicity,
metabolic instability

Antibodies A class of immunoglobulins that bind
specifically to antigens

High purity, high sensitivity, high
specificity, low cross-reactivity, high

immunogenicity

High preparation cost,
difficulty in chemical modification

The targeted drug delivery system is both simple and efficient. In recent years, several
targeting ligands, including folic acid, carbohydrates, peptides, aptamers, and antibodies,
have been utilized in targeted drug delivery systems [13] (Figure 1). These targeting
ligands accurately recognize and specifically bind to markers expressed on targeted tumor
cells. This recognition allows small molecule drugs that directly bind to the targeting
ligand or active drugs carried by targeting ligand-conjugated nanocarriers to be delivered
exclusively to cells expressing the appropriate receptor [14]. As a result, normal cells are
not affected by the targeting carriers. The successful use of these targeted drug delivery
systems has effectively enhanced the therapeutic efficacy of cytotoxic drugs and reduced
their toxic side effects. This innovation is being actively developed globally and is expected
to revolutionize current cancer treatment strategies.
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This review focuses on the research progress of targeted drug delivery systems based
on different targeting ligand-mediated delivery systems, including folic acid, carbohydrates,
peptides, aptamers, and antibodies. Additionally, we discuss the current challenges and
future prospects of these different targeting ligand-mediated drug delivery systems.

2. Folate-Mediated Targeted Drug Delivery System for Tumor Treatment

Folic acid (FA) is a small-molecule vitamin that plays a crucial role in the biosynthesis
of nucleotide bases and cell proliferation. It is transported through receptor-mediated
endocytosis using cell membrane-associated proteins or the folate receptor (FR) [15]. While
the folate receptor is expressed at low levels in normal tissues, it is overexpressed in a
variety of cancer types, including breast, ovarian, endometrial, renal, lung, head and
neck, brain, colon, and medullary cancers. Because of its small size, chemical simplicity
and lack of immunogenicity, folic acid is widely used as a tumor-targeting ligands for
precise delivery of therapeutic agents to diseased cells or tissues [16]. Currently, folate-
targeted ligand-guided drug delivery systems involve two different pathways: one involves
directly conjugating folic acid to small-molecule drugs to form folate drug-conjugates,
while the other involves combining folic acid with nanomaterials to form folate-conjugated
nanoparticles [17,18] (Figure 2).
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2.1. Folate-Drug Conjugates

Due to the superior tumor-targeting capabilities of folic acid over small molecule
chemotherapeutic drugs, researchers created folate-drug conjugates through the covalent
conjugating of the targeting molecule folic acid and the small molecule chemotherapeutic
drugs. These conjugates were then used to deliver the small molecule drugs to tumor cells
that expressed the folate-receptor (FR), thereby increasing the therapeutic efficacy of these
chemotherapeutic drugs [19].

In folate-drug conjugates, the amino group (NH2) on pteridine folate can be covalently
linked to the small molecule drug through chemical bonds such as acylhydrazone, amide,
and ester groups. In a study, researchers modified folic acid on dopamine, which is used
as a catechol linker (Cat), and then coupled it to the boronic acid of Bortezomib (BTZ)
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via a boronic acid ester bond to develop a novel pH-sensitive FA-modified BTZ coupler
(FA-Cat-BTZ) for cancer-specific drug delivery and therapy. The results showed that
the FA-Cat-BTZ formulation exhibited significantly enhanced proteasome inhibition and
induction of apoptosis. This improvement was attributed to FR-mediated endocytosis
and the rapid release of the drug triggered by intracellular pH changes. Comparative
analysis revealed that FA-Cat-BTZ outperformed BTZ, BTZ-mannitol derivatives, and
FA-PEG-Cat-BTZ in terms of FR+ cellular uptake, permeation, and anticancer activity.
These findings suggest that the FA-Cat-BTZ coupling exhibits broad promise as a tumor-
targeted proteasome inhibitor for achieving specific drug delivery to tumors and improving
the efficiency of cancer therapy [17]. Based on the promising antitumor activity and
low toxicity in preclinical models, researchers have taken folate drug conjugates through
clinical trials to further evaluate their therapeutic efficacy and safety in humans. One
such conjugate, EC145, which targets desacetylvinblastine hydrazide, has entered phase
2 trials for various types of cancers. Another conjugate, EC0489, has been developed
with a peptidoglycan spacer to reduce liver toxicity, and is currently being investigated in
phase 1 trials for metastatic solid tumors. Additionally, a folic acid-targeted double-bullet
drug called EC0225 is being studied in a phase 1 clinical trial for the same indications [20].
However, it has been observed that the use of folate drug conjugates in clinical trials
is more challenging compared with preclinical models, as some patients may develop
resistance to these conjugates, resulting in reduced treatment efficacy. Furthermore, folic
acid drug conjugates may also cause adverse effects such as nausea and vomiting. Therefore,
researchers need to continue exploring new folate drug conjugates for clinical trials to
overcome these difficulties.

Compared with non-targeted therapies, the folate-drug conjugate system offers greater
flexibility in terms of drug optimization, reduces the exposure of healthy cells to cytotoxic
drugs, and minimizes adverse toxicity. Despite these achievements, the number of folate-
drug conjugates is limited, and further evaluation of their efficacy is required. Additionally,
the exact mechanism of action for these conjugates remains unclear. Therefore, future
research should focus on continuous optimization of synthesis technology and further elu-
cidation of the mechanism, enabling their application in a wider range of cancer therapies.

2.2. Folate-Conjugated Nanoparticles

Folic acid may be one of the suitable options for targeting tumor cells in nanoparticle-
based cancer therapy [21]. This is due to the overexpression of folate receptors on the
surface of some tumor cells, making folate targeting an effective strategy to improve the
efficiency of cancer therapy. Therefore, the use of folate-conjugated nanoparticles to deliver
multiple drugs to tumor tissues has attracted increasing attention.

Folic acid can be attached to nanoparticles through covalent and noncovalent coupling
methods. Currently, researchers are using covalent bonds to attach folic acid to various
nanomaterials such as antitumor drugs, liposomes, lactosomes, carbon nanotubes, den-
drimers, and tumor-targeting polymers [22]. For instance, novel FA-PLGA nanoparticles
loaded with oxaliplatin have been developed for the treatment of colorectal cancer cells.
These nanoparticles have shown enhanced efficiency in regulating tumor progression, in-
creasing apoptosis, reducing drug resistance, and improving cytotoxicity and cell death [23].
In breast cancer models, loading adriamycin into folate-coupled magnetic nanoparticles
has been shown to significantly increase drug uptake by tumor cells, enhance drug accumu-
lation in the body and inhibit tumor growth [24]. Folic acid-conjugated silk nanoparticles
have also been used to target delivery of IB to cancer cell lines, taking advantage of the
overexpression of folic acid receptors on their surfaces. This approach has improved the
therapeutic effect of nanomedicines in tumor cells or tissues [25]. Additionally, folic acid
can be physisorbed onto nanomaterial surfaces to achieve targeted drug delivery. In a
study, researchers physisorbed carbon nanotubes loaded with raloxifene hydrochloride
(RLX) onto folate ligands for targeted treatment of breast cancer. The results demonstrated
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that this approach significantly increased cellular uptake through folate-folate receptor
interaction, thereby enhancing therapeutic efficacy [26].

Folate-conjugated nanoparticles have proven to be an effective strategy for anticancer
therapy. They not only selectively target tumor cells and facilitate intracellular targeting,
but also enhance drug utilization and improve the efficiency of cancer treatment [27].
Furthermore, the surface functionalization of nanoparticles with folic acid enhances their
stability, biocompatibility, biodegradability, non-toxicity, loading capacity, potential for
active tumor accumulation, ability to overcome drug resistance in cancer cells, and excellent
pharmacokinetic parameters [28]. Despite these advancements, most existing studies on
folate-conjugated nanoparticles have been limited to basic preclinical research, with clinical
trials remaining unrealized. Therefore, further investigation and formulation of new folic
acid-based drugs are warranted for future clinical exploration.

3. Carbohydrate-Mediated Targeted Drug Delivery System for Tumor Treatment

Carbohydrates (or saccharides) are one of the widespread and abundant biomolecules
in nature consisting of oxygen, carbon, and hydrogen. According to molecular size and
chemical properties, they can be categorized into a number of different groups such as
monosaccharides, disaccharides, and polysaccharides [29]. Some carbohydrates targeting
specific receptors such as glucose, galactose, and hyaluronic acid have multiple reactive hy-
droxyl groups that can be readily introduced onto the surface of drug carriers by chemical
modification [30]. The capacity of carbohydrates to bind to specific cell surface receptors
and their biocompatibility make them attractive candidates as targeting ligands for applica-
tions involving tailored delivery of medicines and genes to particular cells. This section
focuses on the application of carbohydrates as targeted ligands for drug delivery in tumor
therapy [31,32] (Figure 3).
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3.1. Carbohydrate-Drug Conjugates

It was known that cancerous cells exhibited an enhanced metabolism, greater need for
glucose, and elevated uptake of glucose, resulting in an augmented expression of glucose
transporter (GLUT) [33]. The intensified absorption of glucose or other saccharide by ma-
lignant cells implies that saccharide compounds with biologically active substances might
present themselves as hopeful prospects for targeted medications. Thus, glycoconjugates
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hold the capacity to be exclusively assimilated by cancer cells, while causing minimal
impact on normal cells [34].

Among carbohydrate-drug conjugates, Glycoconjugated prodrugs have been exten-
sively studied in the field of anticancer drugs. These prodrugs typically consist of a known
anticancer drug connected to a sugar unit through a glycosidic bond or various linkers
such as esters, amides, ureas, and succinic acids [35]. One of the earliest glycoconjugates,
Glufosfamide, was synthesized in 1995 by Wiessler et al. This groundbreaking design
involved linking β-D-glucose to the alkylating moiety of ifosfamide, resulting in increased
cancer-selective uptake of the conjugate mediated by GLUT [36]. Since then, researchers
have developed various glycoconjugates targeted to GLUT or Asialoglycoprotein receptor
(ASPGR), using cytotoxic molecules like chlorambucil, paclitaxel, and adriamycin [37].
For instance, Mao et al. reported the glucose conjugates of paclitaxel in 2018. Single or
double glucose moieties were affixed to paclitaxel via succinate linkers. The resulting single
glycosylated paclitaxel (GluSA-PTX) and double glycosylated paclitaxel (bis-GluSA-PTX)
conjugates demonstrated potent cytotoxicity against breast cancer cells and enhanced water
solubility in comparison to the original drug [38]. Furthermore, researchers successfully
synthesized a novel conjugate of methotrexate and glucose known as Glu-MTX in 2021.
The Glu-MTX compound was formed by connecting a sugar moiety through a glycosidic
linkage and an MTX moiety through a carbamate linkage. Through activity assays, it
was observed that the glycoconjugate MTX-Glu displayed potent cytotoxic effects in vitro
against a diverse range of cancer cell lines, much like unaltered MTX. This finding was
further corroborated by in vivo investigations conducted on mice with breast cancer. Of
utmost significance, the MTX conjugate exhibited minimal toxicity towards noncancerous
cells, thereby significantly enhancing the drug’s selectivity [31].

This type of glycoconjugate acts as a selective target for tumor tissues, reducing the
toxicity of anticancer drugs to normal tissues and aiding in the treatment of cancer. The
compound shows promise as a potential therapy due to the high glucose demand of cancer
cells and the presence of GLUT or ASPGR receptors in tumor sites. However, further
research is needed to fully understand the role of glucose as a targeting ligand, as most
studies have been conducted in vitro. Additional correlation tests are necessary to confirm
these findings.

3.2. Carbohydrate-Conjugated Nanoparticles

In recent decades, there has been increasing interest in utilizing carbohydrates as
active targeting ligands on the surface of nanoparticles [8]. These carbohydrates, with their
diverse chemical compositions and side chains, can be introduced onto NPs through non-
covalent or covalent bonds. This approach has shown promise in improving the therapeutic
efficacy of multifunctional nanocarriers by enhancing cellular uptake [39]. In carbohydrate-
targeted nanodrug delivery systems, specific carbohydrates such as galactose, lactate, and
hyaluronic acid can function as targeting ligands that are recognized by corresponding
receptors like ASGPR and CD44. It is possible to target particular organs, tissues, and cells
thanks to ligand-receptor-mediated active targeting [40].

First, Galactose (Gal) decorated nanoparticles (NPs) were widely used to deliver drugs
to cancer cells overexpressing asialoglycoprotein receptor (ASGR), such as liver cancer
cell [41]. Building upon this, Anter et al. developed a nanoplatform called ‘Apocynin (APO)-
loaded galactosylated chitosan(GC)-coated poly(d,l-propylene-ethylene-coated) nanoparti-
cles’ (APO-loaded GC-coated PLGA NP). They achieved this by covalently coupling the
galactose ligand, GC, with Apocynin (APO) for hepatocyte adhesion. The experimen-
tal results demonstrated that the system exhibited excellent hepatocyte targeting activity
and the highest anti-cancer effect on the HepG2 cell line [42]. Second, as a biodegrad-
able, biocompatible, and nontoxic disaccharide, lactic acid (LA) potentially can be used as
an active targeting ligand for drug-loaded nanoparticles [43]. Cheng and his colleagues
formed LA/CAT-DOX NPs by covalently concatenating the active targeting ligand LA and
the chemotherapeutic drug DOX with catalase (CAT) via an EDC concatenation reaction.
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These nanoparticles were then co-assembled with the photosensitizer dihydroporphyrinol
e6 (Ce6) via a straightforward mixing procedure to form LA/CAT-DOX-Ce6 nanoparti-
cles. This hybrid nano-enzymatic drug delivery system containing the cytotoxic drug
doxorubicin (DOX) can alleviate hypoxia in the tumor cell microenvironment and enhance
chemotherapeutic sensitivity [44]. In addition to mono- and disaccharide targeting ligands,
polysaccharide targeting ligands like hyaluronic acid (HA) and nanomaterials coupled
and synthesized to target HA-based drug nanoparticles have shown important effects
in improving drug delivery to cancer cells [45]. Hyaluronic acid can be conjugated to
nanocarriers in two different ways: covalent binding and non-covalent binding (e.g., elec-
trostatic interaction). The use of HA-based nanocarriers synthesized in different ways for
the treatment of tumors with increased expression of CD44 receptor has been shown to be
useful for improved drug delivery, increased cytotoxicity, and significant tumor growth
inhibition. Furthermore, it has high potential for targeted chemotherapy [46,47].

Carbohydrate-based nanocarriers provide a new pathway for targeted delivery of anti-
cancer drugs to tumors. With high specificity and multiple drug delivery capabilities, they
can improve delivery by improving solubility, prolonging circulation time, and allowing
the employed therapeutic agents to penetrate deeper into the tumor, and are promising
tools for achieving selective drug delivery to target cells after glycan-drug coupling agent-
mediated targeting [8]. However, the study of carbohydrate -modified nanoparticles is
in the preliminary stage and there are a large number of problems to be solved, but it is
believed that with the development of technology, carbohydrate -modified NPs can make
more progress.

4. Peptide-Mediated Targeted Drug Delivery System for Tumor Treatment

The peptide is a low molecular weight ligand composed of fewer than 50 amino
acids [48]. Peptides can bind specifically to receptors expressed on the cell surface, inside
the cell or in the extracellular matrix with high affinity, making them a very good targeting
ligand. Compared with antibodies or proteins, peptides are smaller in size (between small
molecules and antibodies) and have a greater ability to penetrate cells or tissues. Their
pharmacokinetics can be enhanced through chemical modifications, while their targeting
ability remains largely unaffected [49]. Currently, drug delivery systems based on two
peptide ligands, tumor targeting peptide and cell penetrating peptide, have been widely
developed for cancer therapy. These systems not only alleviate the systemic side effects
caused by chemotherapeutic agents but also significantly enhance therapeutic efficacy,
delivery, and cancer targeting (Table 2). This sub-section reviews two main peptide-
targeted drug delivery systems for cancer therapy applications: peptide-drug conjugates
and peptide-conjugated nanoparticles [50,51].

Table 2. Peptide-targeted drug delivery systems.

Type Peptide Peptide Name Drug Cancer Model References

Peptide-drug
conjugates

TTP
EDB-FN targeted peptides Doce and Dox Prostate cancer [52]

breast cancer cell targeting peptide Dox Breast cancer [53]

GPC3-targeting peptide Ce6 Hepatocellular
Carcinoma [54]

CPP
TAT peptide PTX Brain glioma [55]

LMW peptide and TAT peptide PTX Lung cancer [56]
T2 peptide PTX Breast cancer [57]

Peptide-conjugated
nanoparticles

TTP
P1c peptide DOX Glioblastoma [58]

RGD peptide PTX and HPPH Bladder cancer [59]
AR peptide ICG and DOX Breast cancer [60]

CPP
TAT peptide PTX Lung cancer [61]
TAT peptide PTX Breast cancer [62]

Sv peptide Gold Nanoclusters Refractory
lymphomas [63]

Abbreviations are as follows: (TTP): tumor targeting peptide, and (CPP): cell penetrating peptide.



Pharmaceutics 2024, 16, 248 8 of 19

4.1. Peptide-Drug Conjugates

In recent years, peptide-drug conjugates (PDCs) have gained attention as a promising
area of research in cancer therapy. A complete PDC consists of a peptide, a linker, and a
payload that covalently binds the peptide molecule to the small molecule drug through the
linker [64].

To be effective, PDCs need to meet the condition of not releasing the drug prematurely
during circulation and only releasing it at the tumor site. The choice of linker is crucial, as
it not only ensures the stability of the PDC during circulation but also enhances the effi-
ciency of cytotoxic drugs in killing tumor cells [65]. Linkers can be classified into cleavable
and non-cleavable categories based on their stability in the body and the mechanism of
cleavage at the tumor tissue. Cleavable linkers can further be divided into three types:
enzyme-sensitive, acid-sensitive, and reduction-sensitive linkers [9]. For instance, Liu et al.
proposed a novel doxorubicin peptide-drug conjugate (DOX PDC) that utilized a homod-
imeric HER-2 targeting peptide covalently conjugated with an acid-sensitive hydrazone
bond to enhance tumor targeting ability and anticancer activity. Both in vitro and in vivo
experiments demonstrated that this PDC effectively delivered DOX into HER2-positive
SKBR-3 cells, significantly improving anticancer efficacy and reducing the side effects of
DOX [66]. This research provides a new targeted delivery strategy for developing stable
PDCs for anticancer therapy. In contrast, non-cleavable linkers such as thioethers, oximes,
and triazoles do not undergo cleavage. These linkers rely on lysosomal/endosomal degra-
dation after internalization of the drug conjugate to activate the drug. For instance, Yu
et al. connected a cell-permeable peptide (Kip-related protein, (KRP)) with doxorubicin hy-
drochloride (DOX) through sulfide and amide bonds, resulting in a KRP-DOX conjugating.
This conjugating was intravenously injected into mice with osteosarcoma. The study found
that there was minimal release of free DOX in the bloodstream after intravenous injection,
indicating good tumor tissue selectivity and tumor cell internalization efficiency. This
was attributed to the stable covalent bond in the conjugating, which prevented premature
drug release in the blood. Most of the DOX entered the tumor cells through KRP [67].
In preclinical trials, peptide drug conjugates usually show good biological activity and
drug stability, but in the actual clinical setting, PDCs will also face some challenges, for
example, the heterogeneity of tumor tissues will affect the targeting effect of PDCs, the
existence of multiple metabolic enzymes and clearance mechanisms in the human body
may lead to the degradation or rapid clearance of PDCs, and in addition, PDCs may cause
an immune response in the body or produce toxic side effects. Thus, to date, there have
been only 96 clinical trials of PDCs targeting antigens overexpressed in solid tumors. PDC
clinical trials are only in phases I and II, which focus on the safety and efficacy of the drug
in patients [68]. Nonetheless, there have been some successes, such as in 2021, when the
FDA approved the first PDC, Pepaxto, for the treatment of relapsed or refractory multiple
myeloma [69].

Compared with ADCs or other macromolecular polymeric drugs, PDC drugs have
the advantage of smaller molecular size, stronger tumor tissue penetration ability, and en-
hanced permeability and retention effect [70]. However, the poor intrinsic pharmacokinetic
properties of peptides raise concerns about long-term safety and efficacy. Furthermore,
the development of new PDC modalities such as cyclotoxin conjugates, self-assembled
PDCs, etc. should be supported in the near future using new technologies. The field of
these drug conjugates continues to advance as promising drug delivery systems for cancer
treatment [50].

4.2. Peptide-Conjugated Nanoparticles

In recent years, peptide targeting ligands have been increasingly important in drug
delivery systems for nanomedicine applications. Self-assembled peptides or peptide-
nanomaterials show great potential because of their low toxicity and remarkable therapeutic
efficacy [71].
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Currently, there are two main methods of conjugating peptides to nanomaterial de-
livery systems: covalent interactions and non-covalent interactions. Covalent interactions
involve chemical linkage, where peptides are conjugated to nanocarriers through chemical
bonds like ester bonds and amide bonds. For instance, Hao et al. prepared a GSH-
responsive prodrug (PTX-SS-HPPH) by introducing a disulfide bond between paclitaxel
(PTX) and photosensitizer 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH), and
then synthesized PTX-SS-HPPH /Pt@RGD-NP by modifying PTX-SS-HPPH and PtNP
precursors with distearoyl phosphatidylethanolamine-polyethyleneglycol-RGD peptide
(DSPE-PEG-RGD) via EDC/NHS chemistry. This modification enhanced the tumor target-
ing ability and permeability of the precursors and improved the photodynamic therapeutic
efficiency of photodynamic therapy for bladder cancer [59]. On the other hand, non-
covalent interactions involve methods such as electrostatic adsorption of opposite charges
and hydrophobic interactions to form self-assembled peptide nanoparticles [72]. For ex-
ample, Jiang et al. designed a multifunctional peptide (P51) for programmed delivery
of the hydrophobic chemotherapeutic drug pyroxorubicin. First, these peptides act as a
linker between negatively charged sequences and 41-residue peptides containing α-helices,
which can self-assemble into stable spherical nanoparticles (P51-THP NPs) by entrapping
pyroxorubicin through electrostatic and hydrophobic interactions. They have more effective
tumor targeting, antitumor effects and reduced systemic toxicity [73]. Chen et al. co-loaded
dabrafenib (Da) and doxorubicin (Dox) onto a self-assembled peptide nanofiber (Biotin-
GDFDFDYGRGD, termed SPNs) via non-covalent interactions to form supramolecular
self-assembled peptide nanofibers (SPNs/Da/Dox) for targeted and synergistic treatment
of thyroid cancer. The experimental results showed that encapsulation in SPNs significantly
enhanced the killing ability of Da and Dox, and SPN/Da/Dox showed targeted killing of
cells with high BRAF V600E expression [74].

The use of peptide-modified nanoparticles for delivering drugs to cancer cells has
gained increasing interest. These peptide nanomaterial delivery systems utilize the EPR
effect to deliver prodrugs to targeted tumor tissues, resulting in higher aggregation at
the tumor site and more efficient intracellular uptake compared with a single polymer
chain, thus improving the effectiveness of tumor therapy. It also solves many problems in
current nanoparticle-based drug delivery systems, including low drug loading efficiency,
inherent nanoparticle toxicity, and limited targeting efficiency [75]. With the deepening
research on active targeting materials and nanocarriers, it is reasonable to believe that in
the near future, peptide-mediated targeted drug nanopreparations will enter the stage
of clinical application, which will provide preparation guarantee for precise delivery of
chemotherapeutic drugs and molecularly targeted drugs for tumor therapy.

5. Aptamer-Mediated Targeted Drug Delivery System for Tumor Therapy

Nucleic acid aptamers, which are short single-stranded DNA (ssDNA) or RNA oligonu-
cleotides, possess specific secondary and tertiary structures. These aptamers are generated
through systematic evolutionary screening for exponential enrichment of targeting ligands
(SELEX) [76]. Nucleic acid aptamers are called chemical antibodies, but with specificity
and affinity equal to, or better than, antibodies. Compared with traditional small molecule
targeting ligands, aptamers offer advantages such as easy synthesis, facile chemical modifi-
cation, good repeatability, high stability, and high specificity towards cell surface aptamer
targets. These features make them useful in various applications, including biosensors,
nanosystems (such as fluorescent/electrochemical probes and drug delivery vehicles),
cancer diagnosis, and therapy. By enhancing receptor reawakening and cellular uptake,
they contribute to improving therapeutic efficacy [77,78]. This subsection focuses on recent
advances and challenges in aptamer-mediated targeted drug delivery systems in cancer
therapy. It specifically discusses two main categories: aptamer-drug conjugates (ApDCs)
and aptame-conjugated nanoparticles [79,80] (Figure 4).
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5.1. Aptamer-Drug Conjugates

Aptamers have proven to be highly effective as small molecule delivery platforms in
cancer therapy. Similar to antibody drug conjugates, aptamer drug conjugates (ApDCs)
consist of three main components: aptamer, linker, and small molecule drug (often referred
to as payload). The conjugating of nucleic acid aptamers and small molecule drugs can
occur through covalent conjugating or physical interaction [81].

Covalent conjugating involves the formation of a covalent bond between the nucleic
acid aptamer and the drug by modifying the reactive group, such as amino, sulfhydryl, or
cyclooctyl. Zhang et al. developed UM (uveal melanoma) targeting ApDC by coupling the
XQ-2d aptamer with the small molecule monomethyl aurisatin E (MMAE). This aptamer-
drug coupling allowed specific binding of XQ-2d to UM cells through CD71 targeting.
The results demonstrated significant UM targeting and anti-proliferative activity against
UM both in vitro and in vivo, suggesting the potential of XQ-2dMMAE as a novel anti-
tumor drug for UM treatment [82]. Physical interactions, on the other hand, were an early
and widely used method for constructing aptamer-drug conjugates. Aptamers can bind
non-covalently to small molecule drugs through electrostatic interactions, hydrophobic
interactions, and other mechanisms. Henri et al. combined the EpCAM aptamer with



Pharmaceutics 2024, 16, 248 11 of 19

Adriamycin (DOX) through hydrophobic interactions to form an aptamer-drug conjugate.
This ApDC specifically binds to EpCAM proteins on the cell membrane of ovarian cancer
cells and is internalized into the lysosome. Within the acidic environment of the lysosome,
the ApDC releases Dox, leading to tumor cell death. The results demonstrated similar
cytotoxicity in reducing tumorigenicity as DOX release, with reduced side effects due to the
targeted nature of drug delivery [83]. In addition to targeting specific biomarkers, aptamers
can also be used as therapeutics to modulate their biological function. Pegaptanib, the
first therapeutic aptamer approved by the US FDA, is a polyethyleneglycolated anti-VEGF
aptamer used for the treatment of age-related macular degeneration (AMD) [84]. The DNA
aptamer AS1411 can work as a targeting ligand and therapeutic agent. It has shown the
capacity to inhibit tumor cell development in a range of cancer cell lines and was applied
in phase 1/2 clinical trials at the beginning of the 21st century [85].

Aptamer-drug conjugates and therapeutic aptamers have very promising clinical
applications because of their excellent efficacy in cancer treatment. Although many ApDCs
have been reported by researchers, few of them have made it to clinical trials. This is
due to the low in vivo specificity, low serum stability and rapid renal clearance of ApDCs.
Therefore, the development of ApDCs is in its infancy and there is a long way to go before
clinical translation.

5.2. Aptamer-Conjugated Nanoparticles

Aptamers, known for their high affinity and specificity, can be easily conjugated to the
chemical group ends of nanoparticles. This conjugation does not significantly increase the
size of the nanoparticles, while enhancing their drug loading capacity compared with chem-
ically conjugated targeted drugs. Consequently, aptamer-functionalized nanocarriers serve
as intelligent drug carriers with remarkable drug delivery and targeting properties [86].
The integration of aptamers and nanotechnology has facilitated the development of various
targeted drug delivery systems for clinical therapy and diagnostics.

Two primary strategies have been reported for efficiently incorporating aptamers into
nanocarriers: physical encapsulation via electrostatic interactions and chemical conjuga-
tion via covalent bonds [87]. Physical encapsulation, utilizing electrostatic interactions,
is the most commonly employed strategy due to the negative charges exhibited by ap-
tamers [88]. For instance, Darabi et al. designed and synthesized solid lipid nanopar-
ticles (SLN/DOX/Dexa) with positive charges, incorporating adriamycin (DOX) and
dexamethasone (Dexa). These nanoparticles were then bound to negatively charged
anti-EGFR/CD44 dual RNA aptamers through electrostatic interactions, resulting in
SLN/DOX/Dexa/CD44/EGFR nanoparticles. Experimental results demonstrated that
these nanoparticles effectively inhibited the proliferation of triple-negative breast cancer
cells and improved tumor therapy efficiency. This study suggests that the dual targeting of
DOX-SLN using two nucleic acid aptamers holds promise as a combination therapy [89].
Another strategy for binding nucleic acid aptamers to nanomaterials is through covalent
binding. Torabi et al. conducted a study where they loaded sunitinib onto magnetic
mesoporous silica nanoparticles and covalently coupled them with MUC-1 aptamers. This
novel approach aimed to develop a targeted delivery system for ovarian cancer cells
that overexpress MUC-1 glycoprotein. The experimental results demonstrated that this
aptamer-oriented targeting nanosystem specifically targeted advanced ovarian cancer cells.
Consequently, it enhanced the uptake of anticancer drugs by tumor cells, overcame drug
resistance, and significantly improved the efficiency of tumor treatment [90].

In preclinical experiments, aptamer-conjugated nanoparticles have demonstrated
encouraging outcomes for tumor therapy. These nanoparticles are able to bind to targets on
the surface of tumor cells via specific aptamers for precise drug delivery. However, there is
a lack of drugs with aptamer-functionalized nanoparticles on the market. This is mainly
due to the fact that there are some barriers to developing aptamer-coupled nanoparticles
for clinical applications. The selection of suitable aptamers as targeting ligands is critical. In
addition, future efforts need to focus on aptamer screening and biotechnology optimization
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to further improve the efficacy and safety of aptamer- conjugated nanoparticles. Targeted
therapies based on aptamers are expected to prolong survival times for cancer patients and
reduce drug resistance. Therefore, further research and development in this area is of great
clinical importance.

6. Antibody-Mediated Targeted Drug Delivery System for Tumor Therapy

Monoclonal antibodies (mAbs) have been successfully utilized in experimental and
clinical settings to target cancer-specific antigens, playing a crucial role in modern cancer
therapy [91]. In the 1970s, chemotherapy based on monoclonal antibodies (mAbs) became
available. Currently, the US Food and Drug Administration (FDA) has approved approx-
imately 30 antibodies for the direct treatment of cancer, rheumatoid arthritis, Crohn’s
disease, and antiviral prophylaxis [92]. However, cancer treatment extends beyond a single
drug, as different drugs can synergistically act together. By combining antibodies with
chemotherapeutic agents, improved therapeutic outcomes can be achieved. Moreover,
antibodies are also employed as targeting ligands for drug delivery systems. Their high
specificity enables them to selectively deliver drugs to cancer cells, minimizing damage
to normal tissue. In this review, we focus on two major strategies that are currently being
investigated or have received clinical approval for combining chemotherapeutics with anti-
bodies: antibody-drug conjugates (ADCs) and antibody-conjugated nanoparticles [93,94]
(Figure 5).
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6.1. Antibody-Drug Conjugates

Antibody-drug conjugates (ADCs) are emerging novel anticancer drugs consisting
of three components: a tumor-specific antibody or antibody fragment, a cleavable or
non-cleavable chemical conjugate and a potent cytotoxic molecule. Due to the targeting
advantages of monoclonal antibodies and the cytotoxicity of small molecule drugs, ADCs
are emerging as a new cancer treatment option [95,96].

Two main types of conjugation are commonly used in ADC design: conventional
conjugations and site-specific conjugations [97]. For a long time, the conventional approach
to ADCs has used lysine or cysteine residues that are exposed on the surface as anchoring
sites to join drug molecules. This choice is based on the fact that thiol groups are widely
present in living organisms and have a high capacity to interact with other biomolecules
such as proteins and enzymes. For instance, Ado-trastuzumab emtansine (T-DM1) is
one of the four approved ADCs on the market that utilizes side-chain lysines to link the
potent microtubule protein inhibitor DM1 to the HER2 antibody trastuzumab for the
treatment of HER2-positive metastatic breast cancer [98]. While this approach is easy
to apply, these conventional conjugation methods result in multiphase byproducts with
different drug distributions for each mAb, unspliced and overspliced mAbs. In contrast,
site-specific concatenation using genetically engineered sites is an effective method for
achieving more homogeneous ADCs. This method mainly links medications and antibodies
particularly by employing glycans, short peptide tags, unnatural amino acids, or specific
amino acids [99]. For instance, the homogenous anti-HER2 ADC ARX788, which was
created in 2020, produces a drug-to-antibody ratio of 1.9 by means of a non-removable
abelastatin (AS269) drug junction and a special unnatural amino acid affixation technique.
The study’s findings demonstrated that ARX788 outperformed T-DM1 in xenograft models
with HER2 overexpression and HER2 deficiency, and it effectively suppressed tumor
growth. Furthermore, ARX788 showed notable anti-tumor effect against HER2-positive
and HER2 low-overexpressing tumors, as well as efficacy in T-DM1-resistant models, in
xenograft experiments conducted on patients with breast and gastric malignancies [100].

ADCs are widely used in tumor therapy, and to date, the FDA has approved 14 ADCs
as single or combination agents for clinical use in the treatment of various types of cancer.
For example, Trastuzumab deruxtecan [101], TivdakTM (tisotumab vedotin-tftv) [102] and
mirvetuximab soravtansine (ELAHERE™) [103], etc. Meanwhile, there are more than
150 ADCs that are in various stages of clinical trials for the treatment of various types of
cancer alone and in combination with other chemotherapeutic agents and have shown good
results [104]. While there have been promising outcomes with antibody-drug couplers in
clinical trials, the application of ADCs in the clinical setting presents certain disparities and
challenges compared with preclinical trials. One such challenge is the limited ability of
ADCs to penetrate deeply into solid tumors due to the large size of the antibodies. And
the human immune system may generate an immune response to ADCs, resulting in their
degradation and clearance in vivo [105]. Additionally, the extended circulation cycle of
ADCs can lead to premature drug release and potential adverse effects on normal tissues
within the body [106].

The development of ADCs has brought significant therapeutic benefits to cancer
patients. Meanwhile, for the future prospect of ADC, it is believed that it can continue to
move forward by further changing the conjugating technology of ADC toward the direction
of directed coupling technology and synthesizing multivalent conjugated ADC drugs.

6.2. Antibody-Conjugated Nanoparticles

Antibody-conjugated nanoparticles are a promising medical platform for targeted
drug delivery [107]. There are two main strategies for synthesizing antibody-nanoparticle
conjugates: physical adsorption and covalent conjugation [108].

Physisorption, the first strategy, is a simple non-covalent immobilization method
that relies on hydrogen bonding, Van der Waals forces, hydrophobic, and electrostatic
interactions. This method does not require any chemical modification of the antibody or
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nanoparticle; instead, they are mixed together to attach the antibodies to the nanoparticle
surface [109]. For instance, Li et al. demonstrated the self-assembly of ce6-conjugated
hyaluronic acid (HC), dextro-1-methyl tryptophan-conjugated polylysine (PM), and aPDL1
into aPD-L1@HC/PM NPs through electrostatic adsorption. These nanoparticles enabled
tumor immunotherapy at the all-immune stage [110]. On the other hand, covalent coupling
is the most common approach for developing antibody-nanoparticle conjugates. It involves
techniques such as carbodiimide chemistry, maleimide binding, and click chemistry [111].
Compared with adsorption methods, covalent strategies provide stable and reproducible
antibody-nanoparticle couplings. For example, S. Jain et al. utilized EDC/NHS chemistry
and DSPE-PEG-COOH as a linker to conjugate VEGF antibodies to pH-sensitive DTX
liposomes, resulting in VEGF antibody functionalized PEGylated pH-sensitive liposomes
(VEGF-PEG-pH-Lipo-DTX). This development enhanced the therapeutic effectiveness of
DTX while reducing associated side effects [112].

On the market currently, there are many types of non-functionalized nanoparticles
that can be used to treat cancer. Antibody-functionalized nanoparticles, however, have a
limited number of studies, with most studies at the formulation, in vitro, and preclinical
investigation stages, including animal models based on xenografts. Only a few studies
have progressed to clinical trials, specifically phase 1 and 2 trials [113]. For instance, in
one open-label, phase 1 clinical study, doxorubicin-loaded immunoliposomes targeting
cetuximab Fab fragments were evaluated for their safety, pharmacokinetics, and efficacy.
The study found that the anti-EGFR immunoliposomes were well-tolerated at lower doses
(up to 50 mg doxorubicin per m²), with most adverse events attributed to tumor pro-
gression [114]. Currently, a phase 2 clinical trial is recruiting patients with advanced
triple-negative breast cancer to evaluate the effectiveness of doxorubicin-loaded anti-EGFR
immunoliposomes [115].

Antibody-nanoparticle conjugate systems have shown promise in enhancing tumor
targeting of therapeutic agents and minimizing toxic side effects, making them highly
regarded in cancer diagnosis and therapy. However, several fundamental issues related to
the preparation of these conjugates remain unresolved. These include understanding the
impact of linker length on cellular uptake, biodistribution, metabolism, and long-term toxi-
city of nanoparticles. Thus, future research should focus on selecting suitable modification
and conjugation strategies and reagents to achieve even more efficient tumor targeting.

7. Conclusions and Future Perspectives

With the increasing incidence of cancer, there has been a rise in research on cancer
treatments. However, the drug resistance of cancer cells, along with recurrence and metas-
tasis, presents challenges in eradicating cancer. The primary objective of cancer treatment is
to accurately target and eliminate cancer cells. Currently, small molecule chemotherapeutic
drugs and nanomedicines are widely used as cancer therapeutic methods. However, these
drugs often lack the ability to specifically target tumors, leading to high toxicity and side
effects on normal cells and tissues. Therefore, it is necessary to modify these drugs to
enhance the efficiency of cancer treatment [5]. Targeting ligands, which are drug carriers
that selectively target tumor cells, have effectively addressed these drug-related limitations.
By modifying small molecule chemotherapeutic drugs and nanomedicines, a targeted drug
delivery system can be created, enabling precise localization of tumor cells and controlled
drug release. This improves the drug’s effectiveness and reduces toxic side effects.

In this review, we provide a summary of recent research progress on various targeted
ligand-mediated drug delivery systems, each with its unique advantages and correspond-
ing limitations. However, there are many problems associated with targeted drug delivery
systems, such as decreased targeting due to the selection of inappropriate targeting ligands,
low therapeutic efficacy of drugs even when they reach the target (cancer cells) due to the
formation of protein corona on the surface of the targeted delivery system, and toxic side
effects, as well as the complexity and inefficiency of the targeted drug delivery system and
the clinical translational efficiency. Therefore, future research on targeted drug delivery
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systems needs to continuously explore new targeting ligands through molecular biology
methods, bioinformatics tools, and molecular engineering techniques to improve targeting
specificity based on ensuring targeting and biocompatibility. The interference of the protein
corona should also be minimized by surface modification of the nanocarriers, density
control of the targeting ligands, and the use of “invisible” materials (e.g., polyethylene
glycol (PEG)). Furthermore, simplifying the system design, conducting comprehensive
safety and efficacy assessments, and promoting interdisciplinary collaboration are crucial
for balancing the complexity of the targeted delivery system and facilitating its translation
from the laboratory to the clinic. This will ultimately enhance therapeutic efficacy and
ensure patient safety.
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