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Abstract: Genistein (GEN) is an active pharmaceutical ingredient that presents the challenges of
poor water solubility and low oral bioavailability. To tackle these challenges, a GEN solid dis-
persion was prepared by solvent rotary evaporation using polyvinylpyrrolidone K30 (PVP K30)
as a carrier. The optimal formulation was determined by drug loading efficiency and in vitro
release. The physical state of the solid dispersion was characterized by DSC, XRD, SEM and
FT-IR. And the results of the in vitro release study indicate that the drug release of SD (1:7) in-
creased 482-fold that of pure GEN at 60 min. Following oral administration to rats, the Cmax and
AUC0–24 of SD (1:7) was increased 6.86- and 2.06-fold to that of pure GEN. The adipose fat in-
dex and body weight of the SD (1:7) group were significantly lower than those of the GEN group
(p < 0.05). Meanwhile, the levels of TC and TG in the serum were significantly decreased in the SD
(1:7) group compared with the GEN group (p < 0.05). All experiments revealed that solid dispersion
could be a promising formulation approach to improve the dissolution rate, oral bioavailability, and
effect on the reduction of lipid accumulation in high-fat diet-induced obesity mice.

Keywords: genistein; solid dispersion; dissolution rate; bioavailability; obesity

1. Introduction

Genistein (4′,5,7-trihydroxyisoflavone, GEN, Figure 1a), the most abundant isoflavonoid
in traditional Chinese medicines such as kudzuvine root [1], soybean, and, especially, fer-
mented soybean products [2,3], has recently received considerable attention for the treat-
ment of lipid metabolic disorders [4–6] and reducing the effects of obesity [7]. However, as
a Biopharmaceutics Classification System (BCS) class II drug, the poor aqueous solubility
(0.029 mg/mL) of GEN causes low bioavailability, limiting its use in pure form [8–10].
Various methods have been developed to improve the low solubility of GEN, includ-
ing micelles [11], nanoparticles [12], solid-lipid nanoparticles [13], microemulsions [14],
cocrystals [1], and solid dispersions (SDs) [15,16]. Of these methods, an SD is formed by
incorporating the drug uniformly in a highly dispersed state in a solid carrier and has the
advantages of simplicity, convenience, and efficiency [17,18]. Genistein solid dispersion
has been successfully produced by the hot-melt extrusion method [16]. In SD systems, the
solubility of insoluble drugs can be improved by reducing particle size and enhancing
wettability and dispersibility by the formation of an amorphous state [19,20]. While the
in vitro solubility of these was significantly improved, the SD absorption in vivo has not
been studied. Polyvinylpyrrolidone (PVP) is a commonly used carrier material with the
advantages of non-toxicity, pH stability, temperature resistance, and good biocompatibil-
ity [21]. It is widely used in the pharmaceutical industry, food industry, cosmetics, and
other industries. Studies have shown that PVP is a safe pharmaceutical excipient and food
additive and that the daily intake proposed by WHO is 0–50 mg/kg weight. The K value
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of PVP indicates its average molecular weight, and the greater the K value, the higher
the viscosity and the better the solubilization effect [22]. However, a high K value will
lead to the excessive viscosity of the SD while a low K value cannot achieve the expected
solubilization effect. So, PVP K30 (Figure 1b) was chosen as the carrier material. An
alternative SD preparation method by solvent rotary evaporation has the advantages of a
simple operation and low cost [23]. The solvent can be removed at a lower temperature,
helping prevent the decomposition of the drug or carrier [24]. In this work, GEN SD was
successfully synthesized by solvent rotary evaporation using PVP K30 as a carrier. The
SD characterization, dissolution behavior, pharmacokinetic properties, and stability, and
its effect on serum lipid levels, the liver index, and the histopathological examination of
HFD-induced obese mice were investigated.
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2. Materials and Methods
2.1. Materials

GEN (purity ≥ 98%) was acquired from Biopurify Phytochemicals Ltd. (Chengdu,
China). GEN standard (purity ≥ 99.5%) was purchased from the National Institute for
Food and Drug Control (Beijing, China). PVP K30 was obtained from Shanghai Aladdin
Bio-Chem Technology Co., Ltd. (Shanghai, China). Chromatography-grade methanol was
provided by Thermo Fisher Scientific Inc. (Shanghai, China) and other chemicals were
obtained from commercial suppliers and used directly.

Male Sprague-Dawley rats (240–260 g in weight, 8–9 weeks of age) and male ICR
mice (15–20 g in weight, 5–6 weeks of age) were supplied by SPF Biotechnology Co., Ltd.
(Beijing, China). The animals were kept in a controlled environment (temperature and
humidity). The use of animals in this study was approved by the Institutional Animal Care
and Ethical Committee of Hebei Agricultural University.

2.2. Preparation of GEN SDs and Physical Mixtures (PMs)

GEN SDs were prepared by the solvent rotary evaporation method. GEN and PVP K30
were weighed in ratios of 1:1, 1:3, 1:5, 1:7, and 1:9 (w/w), respectively, and then dissolved in
ethanol and evaporated to dryness using a rotary evaporator (RE-52AA, YaRong, Shanghai,
China) on a water bath at 45 ◦C at a pressure of −0.01 MPa. The materials after rotary
evaporation (denoted SD (1:1–9)) were dried in a fume hood at 25 ◦C to remove the
residual solvent.

The PMs of GEN and PVP K30 in the same ratios as above (PM (1:1–9)) were made by
grinding with a vortex meter (Vortex-5, Kylin-Bell Ltd., Haimen, China).

The SDs and PMs were milled through a 100-mesh sieve (75–100 µm) and stored in a
desiccator for further use.

2.3. Powder X-ray Diffraction (PXRD) and Differential Scanning Calorimetry (DSC)

An X-ray diffractometer (D8 Advance, Bruker, Billerica, MA, USA) was used to obtain
the PXRD patterns of pure GEN, polymer PVP K30, SDs, and PMs. Samples were scanned
over the 2θ range of 5 to 35◦, with a 0.01◦ step size and a residence time for each step of
0.1 s while using a radiation source (Cu-Ka, λ = 1.5418 Å) at 15 mA and 40 kV.
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A differential scanning calorimeter (Q2000, TA Instruments, New Castle, DE, USA)
was used to study the thermal properties of the samples. Powders (3–5 mg) of pure GEN,
polymer PVP K30, SDs, and PMs were placed in an aluminum crucible with holes punched
in the crucible lid in advance. The measurement was performed at a heating from 25 to
320 ◦C under a nitrogen purge of 50 mL/min rate with a heating rate of 10 ◦C /min.

2.4. High-Performance Liquid Chromatography (HPLC) Analysis

The concentration of GEN was measured by a model 1525 HPLC system (Waters
Corporation, Milford, MA, USA) with a model 2998 photodiode array (PDA) detector
(Waters, Milford MA, USA) and a C18 reversed phase column (5 µm, 250 mm × 4.6 mm).
For in vitro dissolution testing and pharmacokinetics studies, the mobile phase was com-
posed of methanol–water (pH adjusted to 2.4 with phosphoric acid) at a ratio of 70:30 and
60:40 (v/v, respectively). The flow rate was 1.0 mL/min. The column temperature was
maintained at 37 ◦C and the UV detection wavelength was 261 nm.

2.5. Drug Loading Efficiency of SDs

Approximately 20 mg of SDs was dissolved in 5 mL of ethanol. Then, the concentration
of GEN was measured using the UV spectrophotometer 6850 (Jenway, Chicago, IL, USA).
The calculation was performed using Equation (1) [25].

Drug loading% =
Weight of drug in SD

Weight of SD
× 100 (1)

2.6. Saturation Solubility and In Vitro Dissolution Testing

The solubility of GEN in SDs with pH 6.8 phosphate buffer was measured using a
shake-flask method. An excess amount of GEN was added to the above solutions, which
were transferred to an air bath thermostatic shaker at 37 ◦C for 24 h. The solution was
filtered through a 0.22 µm membrane filter [26]. The GEN concentration was measured at
λmax 261 nm using a UV spectrophotometer 6850 (Jenway, Chicago, IL, USA).

The dissolution tests were performed by a D-800LS dissolution tester (Tianjin, China)
produced by the Precision Instrument Factory of Tianjin University. Excess pure GEN, SD,
and PM samples (containing 100 mg of GEN) were placed in a phosphate buffer solution
(900 mL, pH 6.8). The test mixture was maintained at 37 ± 0.5 ◦C with the paddle speed at
250 rpm [1]. An aliquot of the dissolution medium was withdrawn at 2, 5, 10, 20, 30, 60, 90,
120, 240, 360, and 480 min. An equal volume of temperature-equilibrated blank medium
was then added to the beaker. The samples were filtered using a 0.22 µm filter, diluted to
the appropriate concentration, and the drug concentration was analyzed by HPLC. Each
sample was measured in triplicate.

2.7. Fourier Transform Infrared Spectroscopy (FT-IR)

The Fourier transform infrared spectra of pure GEN, PVP K30, SD (1:7), and PM (1:7)
were collected using an infrared spectrometer (Nicolet iS5, ThermoFisher, Waltham, MA,
USA). The samples (2 mg) were mixed with KBr (200 mg), applying a pressure of 10 MPa
for 1 min to compress into pellets. The scanning range was 4000 to 500 cm−1, 64 scans per
sample for collection, with a resolution of 2 cm−1.

2.8. Scanning Electron Microscopy (SEM)

The morphologies of samples GEN, PVP K30, SD (1:7), and PM (1:7) were characterized
using a SEM (Hitachi, S4800, Tokyo, Japan). Prior to examination, the samples were directly
dispersed on an electrically conductive adhesive tape and made conductive by gold coating.
The difference between the sample powders was observed at an excitation voltage of 5 kV.
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2.9. Physical Stability Studies

To assess the physical stability, SDs (1:7) were placed into open glass vials and exposed
to 40 ◦C/75% relative humidity (RH) for 180 days. The samples were subsequently analyzed
by PXRD at days 0, 15, 30, 60, 90, and 180.

2.10. In Vivo Pharmacokinetic Studies

Healthy Sprague-Dawley rats had free access to food and water until 12 h before the
experiments, when they were randomly divided into two groups to receive pure GEN or
SD, prepared by dispersing the powders in peanut oil at a dose of 50 mg GEN/kg. About
500 µL of blood samples were collected from the orbital sinus at 0.083, 0.25, 0.5, 0.75, 1, 2, 3,
4, 6, 8, 12, and 24 h after administration. Normal heparin was used as an anticoagulant.
Blood samples were centrifuged at 6000 rpm for 10 min, and the plasma samples were
stored at −20 ◦C until further analysis. The plasma samples (100 µL) were then mixed with
acetonitrile (200 µL). The denatured protein precipitate was separated by vortex for 120 s
and centrifuged at 12,000 rpm for 10 min. The supernatant was collected and filtered with
a 0.22 µm filter membrane prior to HPLC analysis.

The maximal plasma concentration (Cmax), the time to reach maximum concentration
(Tmax), the half-life (t1/2), and the area under the plasma concentration time curve (AUC0−t)
were calculated by analyzing the plasma concentration time profile using a noncompart-
mental model with DAS 2.0 (Mathematical Pharmacology Professional Committee of China,
Shanghai, China).

2.11. Pharmacodynamic Studies
2.11.1. Preparation of High-Fat Model Mice

After one week of adaptation, the mice were randomly divided into 2 groups. The
mice of the normal control (NC) group (n = 10) were fed a standard diet (365 kcal per 100 g
feed) provided by SPF Biotechnology Co., Ltd. (Beijing, China). The remaining mice were
fed a high-fat diet consisting of 55% standard commercial laboratory diet, 20% lard, 10%
egg yolk power, 8% sugar, 6% soybean oil, and 1% cholesterol (503 kcal per 100 g feed) [27].
The body weight of the mice was measured at the end of the modeling time (8 weeks).
After 8 weeks, blood samples were collected from the orbital sinus to test the serum total
cholesterol (TC) to confirm that the high-fat diet (HFD) obese mice model was established.

2.11.2. Administration of Animals and Treatment

After establishing the high-fat model, the successfully-modeled mice were divided
into 4 groups, namely the high-fat model control (HC) group, GEN-treated (GT) group,
GEN SD (1:7)-treated (ST) group, and GEN PM (1:7)-treated (PT) group. Including the
NC group, the study was conducted on 5 groups of animals. The treatments of the ST
group and PT group, equivalent to a 40 mg/kg dose of GEN, were suspended in peanut
oil, and the treatments were administered to the mice through oral gavage. Body weights
were measured weekly. At the end of the experiment (12 weeks), all mice were fasted for
12 h to eliminate the influence of food, and then were anesthetized by an intraperitoneal
injection of sodium pentobarbital. Blood samples were drawn from the orbital sinus. The
serum was immediately prepared from the plasma and was stored at −80 ◦C. The serum
TC and triglyceride (TG) levels were measured using the enzymatic colorimetric method
(UV-) with commercial assay kits (Nanjing Jiancheng Institute of Bioengineering, Nanjing,
China) according to the manufacturer’s instructions. The liver, kidney, and epididymal
adipose tissues were removed and quickly immersed in normal saline to remove blood,
blotted with filter paper to remove the excess water on the surface, and then weighed and
recorded. The liver tissues were fixed in 10% formaldehyde, embedded in paraffin, and
sliced to determine the morphology by hematoxylin and eosin (H&E) staining. The liver
index, kidney index, and adipose fat index were calculated [28,29].
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2.12. Statistical Analysis

All data were analyzed using one-way analysis of variance (ANOVA) to compare
whether there were significant differences between groups, and then Duncan’s multiple
comparison analysis was used. Data analyses were carried out with SPSS 20.0 software
(IBM Inc., Armonk, NY, USA). p ≤ 0.05 was considered statistically significant.

3. Results and Discussion
3.1. Characterization of Prepared Samples

PXRD was used to determine the absence of crystalline GEN. Except for the 1:1 ratio,
the characteristic PXRD peaks of GEN could not be observed in any ratio powders but
were clearly observed in all PMs (Figure 2). These results indicate that GEN exists in an
amorphous state in all the SD powders except sample (1:1).
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Figure 2. PXRD patterns of GEN, PVP K30, and (a) SDs/ (b) PMs of GEN:PVP K30 in ratios of 1:1 to
1:9.

The DSC thermal behaviors of the GEN, PVP K30, SD (1:1–9), and PM (1:1–9) samples
are shown in Figure 3. Pure GEN exhibited a sharp-melting endotherm at 302 ◦C, confirm-
ing the crystalline form [30]. PVP K30 displayed a broad endothermic peak between 75
and 135 ◦C, demonstrating a loss of water from the hygroscopic polymer [31]. The PMs
in all five ratios exhibited a low intensity melting endotherm, which could be due to the
polymer dilution effect [32]. No endothermic peaks were observed in any ratio powders
except for the 1:1 ratio, implying that GEN had been incorporated in an amorphous form,
consistent with the PXRD results.
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3.2. Drug Loading Efficiency of SDs

According to Table 1, the practical drug loading efficiency of SD (1:3) and SD (1:5)
differed greatly from the theoretical drug efficiency. However, the practical drug loading
efficiency of SD (1:7) and SD (1:9) was basically equal with the theoretical drug efficiency.

Table 1. The practical drug loading efficiency of all the SDs.

Weight Ratio of GEN and
PVP K30

Theoretical Drug Loading
Efficiency of SDs (%)

Practical Drug Loading
Efficiency of SDs (%)

1:3 25.0 19.0 ± 0.4
1:5 16.7 13.5 ± 0.7
1:7 12.5 11.0 ± 0.4
1:9 10.0 9.2 ± 0.6

3.3. Saturated Solubility and In Vitro Dissolution Testing

According to Table 2, compared with GEN, the saturated solubility of SDs was im-
proved. The efficiency of solubilization was as follows: SD (1:9) > SD (1:7) > SD (1:5) > SD
(1:3). It was found that the solubility of SDs increased when the proportion of the PVPK30
increased. A higher amount of the hydrophilic carrier present in the surrounding of the
drugs will further enhance the wettability and support saturated solubility of the drug.

Table 2. Saturated solubility of GEN and all the SDs.

Solubility (µg/mL) Fold

GEN 1.8 ± 0.1 -
SD (1:3) 141.3 ± 8.5 78.5
SD (1:5) 768.1 ± 107.9 426.7
SD (1:7) 1846.6 ± 97.8 1025.9
SD (1:9) 3981.5 ± 139.6 2211.9

The result of the in vitro GEN dissolution of the SD and PM samples in pH 6.8 are
shown in Figure 4. The release of GEN within 480 min is only 0.17%. The GEN release from
PM- (1:3, 1:5, 1:7 and 1:9) reaches 12, 13, 14, and 16%, respectively (Figure 4b). This may be
due to the surface activity and crystallization inhibition of PVP K30, which can, to some
extent, slow down the crystallization of GEN, thus maintaining the supersaturation of the
drug [33].
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The GEN release from SD (1:3) tends to equilibrate at 20% after 360 min, from SD
(1:5) at 46% after 30 min, from SD (1:7) at 82% after 60 min, and from SD (1:9) at 99% after
480 min (Figure 4a). At 60 min, the drug release of SD (1:7) increased by 482 times compared
to the GEN raw material. Erizal et al. developed an amorphous SD with PVP K30 by a
solvent co-evaporation method, but the drug release of GEN-PVP K30 (1:2) SD increased
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by only 4.36 times after 60 min [34]. The cumulative solubility increases for SD with an
increasing polymer carrier ratio. This may be since PVP K30 is a hydrophilic polymer that
forms a concentrated polymer layer on the drug dissolving surface. The drug must pass
through the polymer layer before being released into the solution medium [35]. Two modes
of drug release have been proposed, namely carrier-controlled and drug-controlled.

In a carrier-controlled release, the drug particles are well dispersed in the polymer
layer and diffuse into the solution medium as solvated molecules. In a drug-controlled
release, the drug is not completely dissolved in the polymer layer and is released into
the solution medium as solid crystalline particles [36]. In a drug-controlled release, the
drug solubility is determined by the nature of the drug itself, while for a carrier-controlled
release, it is determined by the nature of the carrier. Both types of drug release may operate
simultaneously [37]. Thus, as the carrier ratio increases, the thickness of the polymer layer
increases, the drug is better dispersed, and the SD amorphous drug is better stabilized
and dissolved in the polymer layer. Molecular diffusion into the solution is favored by the
higher solubility of the amorphous solid form, leading to a concentration in excess of the
saturation solubility of crystalline GEN. In addition, when the proportion of the carrier
increases, the viscosity of the SD in the solution increases, thus reducing the aggregation
of drug particles and inhibiting drug crystallization [38]. Therefore, it can maintain the
supersaturation of the drug during dissolution for a longer period of time and improve the
cumulative solubility.

These results demonstrate that the SD improved the saturation solubility and dissolu-
tion rate of GEN compared with pure GEN and the PM.

However, SD (1:9) has a lower drug load since the amount of carrier PVP K30 is propor-
tionally large and the preparation process takes a long time. Therefore, after consideration,
SD (1:7) was selected for subsequent pharmacokinetic and pharmacodynamic studies.

3.4. Structure of GEN SD

The FT-IR spectra of GEN, PVP K30, SD (1:7), and PM (1:7) are shown in Figure 5. The
stretching vibration of the O-H and C=O groups of GEN appear at 3410 and 1652 cm−1,
respectively [1]. PVP K30 shows C-H and C=O stretches at 2976 and 1656 cm−1, respectively.
The carbonyl group of PVP K30 tends to hydrogen bond with favorable functional groups
of drugs, usually leading to bathochromic shifting or the broadening of the peaks [39]. In
the spectrum of SD (1:7), the stretching vibration of the O-H of GEN and the C=O of PVP
K30 disappears at 3410 cm−1 and 1656 cm−1, respectively. Meanwhile, broad bands at 3423
and 1670 cm−1 attributed to the intermolecular hydrogen bonding between GEN and PVP
K30 appeared. In PM (1:7), the FT-IR spectrum did not show significant alterations to the
characteristic peaks of GEN, indicating the absence of a molecular interaction between
GEN and PVP K30.
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3.5. Morphology Evaluation

The morphological characteristics of GEN, PVP K30, SD (1:7), and PM (1:7) are shown
in Figure 6. A scanning electron microscope can visually observe the surface morphology
of the material. The image revealed that raw GEN has a well-defined prism-shaped crystal
structure (Figure 6a) [1]. PVP K30 occurred as spherical particles that were irregularly sized
(Figure 6b), and these two particles formed can coexist in a simply mixed formation in the
PM (1:7) (Figure 6d). However, GEN crystals were not observed in the SD (1:7) (Figure 6c),
but showed irregular lumps that were different from the morphology of raw GEN and PVP
K30 [40].
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3.6. Stability Studies

The drug in the SD exists in an amorphous state with high energy, tending to convert
into a more stable crystalline state with time [41]. It has been shown that the strong
hydrophobic drugs-PVP K30 hydrogen bonds can inhibit the hygroscopicity of PVP K30 to
a certain extent, thus maintaining the stability of SDs [42]. Therefore, PXRD was used to
observe the stability of SDs. The results in Figure 7 showed that no crystal diffraction peaks
appeared in the SDs at different times, proving that SD (1:7) was stable at 40 ◦C /75% RH.
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3.7. In Vivo Pharmacokinetics

The mean plasma concentration–time profiles and the pharmacokinetic parameters
after the oral administration of GEN and SD (1:7) in SD rats are present in Figure 8 and
Table 3. The Cmax value of the SD (1:7) group was 4.4 ± 0.5 µg/mL, whereas that of the
GEN group was 0.6 ± 0.1 µg/mL. This finding indicates that SD (1:7) could significantly
increase oral GEN absorption compared with pure GEN. The GEN in SD was highly
dispersed in the soluble carrier PVP K30. Because of its high dispersion, the drug was
easier to dissolve and release in vitro. SD can induce super-saturated drug dissolution
and enhance absorption. Therefore, after oral administration, the SD will dissolve in the
intestinal segment and be absorbed by the gastrointestinal tract in the form of a solution,
thus improving bioavailability [43]. The AUC0–24 of SD (1:7) (10.7 ± 1.6 µg/mL·h) was
higher than that of GEN (5.2 ± 0.8 µg/mL·h), and the bioavailability of GEN in the SD was
106% greater than that of pure GEN. Meanwhile, the Tmax of SD (1:7) was only one sixth
that of GEN (0.8 ± 0.1 and 4.7 ± 0.9 h, respectively). These results indicated that the SD
accelerates the absorption of GEN and improves bioavailability consistent with the in vitro
dissolution data.
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Table 3. Main pharmacokinetic parameters of GEN and SD (1:7) after a single 50 mg/kg oral dose.

Pharmacokinetic Parameter GEN SD (1:7)

AUC0~24 (µg/mL·h) 5.2 ± 0.8 10.7 ± 1.6 *
Cmax (µg/mL) 0.6 ± 0.1 4.4 ± 0.5 *

Tmax (h) 4.7 ± 0.9 0.8 ± 0.1 *
T1/2 (h) 6.7 ± 0.2 4.5 ± 1.4

Notes: Each value is the mean ± standard error, n = 5. * Represents the significant difference at p < 0.05 vs. GEN.

3.8. Gen SD Supplementation to Reduce Obesity

The changes in the TC level and body weight in the NC group and HC group before
and after modeling are shown in Figure 9. After modeling, the TC level in the NC group
mice did not change notably while the TC in the HC group mice changed significantly. At
the end of the modeling, the average body weight of the HC group mice was >15% higher
than that of the NC group mice, indicating the successful modeling of obese mice [44].
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modeling. (NC group: normal control group; HC group: high-fat model control group; * p < 0.05).

A long-term high-fat diet can induce obesity and promote lipid accumulation in the
liver and kidneys [28,45,46] while increasing the size of fat cells in adipose tissue and the
corresponding organ weight [47]. In addition, the weight of the adipose tissue around
the perirenal and epididymal of the animal accounted for a certain percentage of the total
adipose tissue weight [29]. Therefore, the ratio of the weight of the liver, kidney, perirenal,
and epididymal adipose tissue to the body weight of the mice was selected to reflect the
obesity status. The liver index, kidney index, adipose fat index, body weight, and liver
histological observation are shown in Table 4 and Figure 10. It is clear from the results that
the HC group mice had a significantly higher lipid ratio and body weight than the NC
group mice. The adipose fat index and body weight of the ST group were significantly
lower than those of the GT group and PT group (p < 0.05). In addition, the kidney index
of the ST group was lower than that of the GT group, although there was no significant
difference. The ST group exhibited a lower liver index and kidney index than those of
the PT group, but no significant difference was observed. The ST group showed the best
effect on the reduction of lipid accumulation compared to the GT group and PT group.
In a histological liver analysis by H&E staining, compared with the NC group, the HC
group had enlarged hepatocytes and presented round vesicles indicative of significant lipid
accumulation. However, the GT group, ST group, and PT group significantly alleviated
hepatic lipid accumulation. These results demonstrate that GEN treatment can reduce lipid
accumulation and control body weight and, moreover, that SD (1:7) can enhance the effect
of GEN on fat accumulation in HFD-induced obese mice.

Table 4. Effect of GEN, SD (1:7), and PM (1:7) on the levels of liver index, kidney index, adipose fat
index, and body weight in HFD-induced obesity mice.

Groups Liver Index Kidney Index Adipose Fat
Index Body Weight

NC group 4.4 ± 0.3 1.3 ± 0.1 1.6 ± 0.4 +* 43.7 ± 1.9 *
HC group 5.2 ± 0.4 1.6 ± 0.1 6.9 ± 1.6 + 53.2 ± 2.7
GT group 4.5 ± 0.5 * 1.4 ± 0.1 * 4.7 ± 1.6 *+ 45.2 ± 2.8 *+

ST group 4.5 ± 0.2 * 1.3 ± 0.1 * 3.8 ±1.3 * 44.6 ± 2.0 *
PT group 4.6 ± 0.4 1.5 ± 0.1 * 4.6 ± 0.8 + 47.0 ± 2.0 *+

Notes: NC group: normal control group; HC group: high-fat model control group; GT group: GEN-treated group;
ST group: GEN SD (1:7)-treated group; PT group: GEN PM (1:7)-treated group; each value is the mean ± standard
error, n = 10 per group. * Represents the significant difference at p < 0.05 vs. MG. + Represents the significant
difference at p < 0.05 vs. SG.
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Figure 10. Liver histology with hematoxylin-eosin (H&E) staining. (a) NC group, (b) HC group,
(c) GT group, (d) ST group, and (e) PT group. (NC group: normal control group; HC group: high-fat
model control group; GT group: GEN-treated group; ST group: GEN SD (1:7)-treated group; PT
group: GEN PM (1:7)-treated group; 200× magnification; Scar bar: 50 µm).

Obesity leads to dyslipidemia, usually in the form of high serum levels of TC and
TG [48]. As can be seen in Figure 11, the TC and TG levels were significantly higher in the
HC group than in the NC group. Meanwhile, the TC and TG levels of the GT group, ST
group, and PT group were significantly lower than the HC group (p < 0.05). Furthermore,
the TC and TG levels of the ST group were significantly lower than those of the GT group
and PT group (p < 0.05). This suggests that SDs improve the ability of GEN to lower
blood lipids.
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Figure 11. Effect of GEN on the levels of TC (a) and TG (b) in serum of different groups. (NC group:
normal control group; HC group: high-fat model control group; GT group: GEN-treated group;
ST group: GEN SD (1:7)-treated group; PT group: GEN PM (1:7)-treated group; TC: total cholesterol;
TG: triglycerides; n = 10 per group; * indicates significant difference between groups, p < 0.05).

4. Conclusions

In the present study, an SD of GEN with PVP K30 as the carrier has been successfully
prepared using a solvent rotary evaporation method. The SDs can improve the cumulative
dissolution extent and rate of GEN and enhance its oral bioavailability. Moreover, the SDs
improve the ability of GEN to control obesity symptoms. Thus, the potential for clinical
applications has been demonstrated for GEN SDs in treating lipid metabolism disorders to
improve obesity control.
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