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Abstract: Accurate perception is crucial for autonomous vehicles (AVs) to navigate safely, especially
in adverse weather and lighting conditions where single-sensor networks (e.g., cameras or radar)
struggle with reduced maneuverability and unrecognizable targets. Deep Camera-Radar fusion
neural networks offer a promising solution for reliable AV perception under any weather and lighting
conditions. Cameras provide rich semantic information, while radars act like an X-ray vision, piercing
through fog and darkness. This work proposes a novel, efficient Camera-Radar fusion network called
NeXtFusion for robust AV perception with an improvement in object detection accuracy and tracking.
Our proposed approach of utilizing an attention module enhances crucial feature representation for
object detection while minimizing information loss from multi-modal data. Extensive experiments on
the challenging nuScenes dataset demonstrate NeXtFusion’s superior performance in detecting small
and distant objects compared to other methods. Notably, NeXtFusion achieves the highest mAP score
(0.473) on the nuScenes validation set, outperforming competitors like OFT (35.1% improvement)
and MonoDIS (9.5% improvement). Additionally, NeXtFusion demonstrates strong performance in
other metrics like mATE (0.449) and mAOE (0.534), highlighting its overall effectiveness in 3D object
detection. Furthermore, visualizations of nuScenes data processed by NeXtFusion further demon-
strate its capability to handle diverse real-world scenarios. These results suggest that NeXtFusion is a
promising deep fusion network for improving AV perception and safety for autonomous driving.

Keywords: CondenseNeXt; sensor fusion; object detection; autonomous vehicle; PyTorch

1. Introduction

There has been a rapid advancement in the development of sensing systems for au-
tonomous driving that has notably elevated the effectiveness of perception tasks, such as
object detection, in recent years. Despite these achievements in research and development,
there remains a lack of widespread adoption of level 4 or 5 autonomous driving capabili-
ties in commercial vehicles due to autonomous vehicles (AVs)’ reliance on single-sensor
perception of the real world and a substantial commitment to research and development
to guarantee the continuous evolution and enhancement in the technology over time [1].
Furthermore, the prediction and decision—making processes in AVs that rely on a single
sensor can be hampered by external factors such as bad weather, occlusion, or poor lighting
conditions because cameras struggle in low-light environments, whereas radars cannot
detect objects with rich visual features. This limitation in cameras and radar, and the poten-
tial consequences of reliance on a single sensor for object detection in AVs, has generated
significant attention in the field of research toward the utilization of multi-modal based
sensing in the automotive domain, especially in perception systems that fuse camera and
radar inputs [2–4].

An ideal fusion system utilizing both the cameras and radar sensor information can
effectively leverage the advantages of both these sensors, concurrently addressing the
limitations inherent in each. While a camera as a sensor input offers detailed texture and
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semantic information, its performance diminishes with long-range small objects, occlusions,
and poor lighting conditions, whereas radar as a sensor input exhibits the ability to offer
reliable performance in all weather and lighting conditions, detect small objects at long
ranges, and operate without hindrance from issues related to occlusions. However, radar
sensors encounter difficulties in precisely identifying objects due to the absence of detailed
texture and semantic features [2,5,6]. The work presented within this paper revolves around
the primary objective of determining how we can effectively harness the benefits of both
modalities (camera and radar sensors) to attain precise and dependable object detection.

An optimal Camera-Radar fusion network must capitalize on the advantages offered
by both sensors. Simultaneously, it should also guarantee that the limitations of one sensor
do not impact the performance of the other. Previous studies in the fusion of camera and
radar modalities have often employed the mapping of radar data onto the camera’s data [7].
However, working within this technique imposes limitations on performance, particularly
in scenarios involving object occlusion, thus resulting in inefficient use of radar sensor data.
More sophisticated and cutting-edge methodologies engage in fusion at the feature level
instead of directly mapping features. For instance, the approach proposed for the AVOD
network [8] extracts bird-eye view features concurrently from the camera and the radar’s
sensor input. This approach then merges these features on a per-object basis to capitalize
on the unique information extracted by each of these modalities to perform camera-radar
sensor fusion. However, it is observed that the concurrent approach of extracting features
and performing fusion does not hold true for instances where the camera sensor becomes
unreliable in situations such as occluded objects or adverse conditions, like rain or fog. In
such scenarios, radar-based sensors are not affected and work well, but the reliability of
camera-based sensors can significantly decrease, resulting in a notable overall performance
decline in the AV system for object detection in such adverse conditions.

Evidently, there is a necessity to enhance the dependability of camera-radar systems to
attain satisfactory performance, particularly in situations where the quality of camera input
is compromised due to external factors. The multi-modal sensor fusion network proposed
within this paper posits that by independently extracting valuable information from both
camera and radar sensors, one can leverage the advantages of each modality without
compromising either in situations of degraded performance due to external factors. This
innovative multi-modal fusion approach is rooted in the acknowledgment that cameras and
radars offer complementary attributes. The detailed texture and semantic-rich information
from cameras can be utilized to identify multiple different objects, while radars offer
the advantage of detecting objects over long distances, unobstructed by occlusion, and
are reliable in adverse weather conditions such as fog or rain. Thus, this potential to
individually extract information serves as a method to enhance the overall reliability of
the proposed neural network for 3D object detection and tracking names as NeXtFusion,
proposed within this paper.

NeXtFusion network utilizes point-cloud data representation for object detection,
extracting all information obtained from radar sensor(s), whereas the semantic information
obtained from camera sensor(s) primarily serves to distinctly identify objects within an
input image/video. Drawing inspiration from this paper’s authors’ most recent work,
NeXtDet [9], significant advancements are being proposed in this paper where the literature
on camera-based semantic information extraction is relied upon to independently and
efficiently extract these semantic-rich features from camera-based RGB images and fuse
them with radar’s point-cloud data as illustrated in Figure 1. The structure of this paper
is organized as follows: Section 2 offers the reader information on related literature and
studies. Section 3 provides information about the methodology for the proposed multi-
modal sensor-fusion 3D object detection model called NeXtFusion. Section 4 assesses the
performance of the proposed network through benchmarking on a multi-modal large-scale
autonomous driving dataset and visualizing the results. Finally, Section 5 presents the
concluding remarks for this paper.
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Figure 1. An overview of the proposed NeXtFusion multi-modal sensor fusion neural network.

2. Literature Review on Relevant Studies
2.1. Camera-Based Object Detection

A convolutional neural network (CNN) represents a subset of the broader deep neural
network (DNN) extensively utilized in the realm of AI. It is frequently employed for
devising inventive methodologies and algorithms within the OpenCV realm, facilitating
complex tasks such as image classification and object detection. This is achieved through
the utilization of multiple layers of neurons, simulating the natural visual perception
of human beings [10]. Object detection involves a computer vision process aimed at
identifying instances of objects belonging to a specific class, categorizing the types of
objects, pinpointing their locations, and precisely labeling them within an input image
or video.

A state-of-the-art object detector essentially pinpoints the position and type of objects
within an image [9]. It is a system with three main modules (parts):

1. Backbone: This module acts as the foundation, extracting salient features from the
image and producing a compressed representation through a robust image classifier.
Imagine it like a skilled photographer capturing the essence of a scene.

2. Neck: This module acts as the bridge, connecting the backbone and skillfully merging
features extracted from different levels of the backbone. Consider it like a data sculptor,
gathering and harmonizing different perspectives to create a richer understanding.

3. Head: This module is the decision maker responsible for drawing bounding boxes
around objects and classifying their types. Think of it as a detective, analyzing the
combined information and identifying what each object is and where it lies.

Modern object detectors employ a specialized component known as the head, tasked
with both object localization and classification, as aforementioned. Two predominant
approaches prevail in head design: single-stage and two-stage architectures.

Single-stage detectors, epitomized by YOLO [11], SSD [12], RetinaNet [13], CornerNet [14],
and CenterNet [15], prioritize speed and efficiency. They execute both tasks—generating bound-
ing boxes and classifying object types—within a single, unified module. This streamlined
approach enables faster inference, making them attractive for real-time applications on compu-
tationally constrained platforms like edge devices. However, their focus on efficiency might
compromise detection accuracy compared to their two-stage counterparts. In contrast, two-stage
detectors, exemplified by the R-CNN family (including Fast R-CNN [16], Faster R-CNN [17],
Mask-RCNN [18], Cascade R-CNN [19], and Libra R-CNN [20]), prioritize accuracy over speed.
These detectors follow a two-step process: First, a dedicated region proposal network (RPN)
generates potential object regions within the image. Subsequently, these proposed regions are
forwarded to a separate module for classification and precise bounding box refinement. This
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division of labor leads to superior detection performance but incurs a higher computational
cost, limiting their real-time capabilities.

When choosing an object detector, striking a balance between accuracy and inference
speed is crucial. single-stage detectors like YOLO offer impressive speed, making them
suitable for real-time applications like autonomous vehicles. However, for tasks demanding
high accuracy, two-stage detectors like Faster R-CNN might be preferred despite their
slower performance [21]. Ultimately, the optimal choice hinges on the specific requirements
and resource constraints of the application.

The neck of an object detector acts as a bridge, meticulously combining features ex-
tracted from various depths within the backbone. This intricate network of interconnected
pathways, both descending (top-down) and ascending (bottom-up), allows for the seam-
less integration of multi-scale information. Popular strategies employed within the neck
include the addition of specialized modules, like spatial pyramid pooling [22], which
further enhance feature fusion capabilities. Alternatively, path-aggregation blocks such as
feature pyramid networks [23] or path-aggregation networks [24] may be employed. The
backbone architecture typically relies on a resilient image classifier for implementation,
such as CondenseNeXt [25]. It serves as an effective and resilient image classification
network developed to efficiently utilize the computational resources needed for real-time
inference on edge devices with limited processing power. The CondenseNeXt CNN is
employed in the NeXtDet object detection network as the backbone and has been further
modified to achieve even greater lightweight characteristics than its original design for
image classification purposes by deprecating the final layers of classification to ensure
compatibility and facilitating linking the backbone to the neck module of NeXtDet. Thus,
the NeXtDet network will serve as the foundational reference point for the multi-modal
sensor-fusion research and enhancements presented within this paper.

2.2. Radar Point Cloud and Camera-Based Sensor Fusion for Object Detection

Radar sensors actively perceive the surroundings and analyze the reflected waves to
determine the position and the speed of objects by constantly emitting radio waves. The
world of radar signal processing for autonomous vehicles offers a rich tapestry of tech-
niques to extract meaningful information from the sensor’s output, for example, doppler
processing [26], occupancy grid maps [27], multi-input multi-output (MIMO) radar [28],
and representations using radar point clouds [29]. The work presented in this paper focuses
on radar point-cloud data representation for radar signal processing using the proposed
deep neural network for 3D object detection.

Typically, radars in automotive applications determine objects as 2D reference points
in bird’s eye view (BEV), synthesizing information on the radial distance to/from the object.
In each radar detection, information is provided about the object’s instantaneous velocity
in the radial direction, along with the azimuth angle. The azimuth angle represents the
horizontal angle of the object concerning the observer, which, in this case, is the radar
sensor. The azimuth angle is crucial for determining the location of detected objects in the
radar’s field of view. Figure 2 provides a graphical representation of the difference between
the radial velocity and the true velocity.
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3. The Proposed NeXtFusion 3D Object Detection Network

This paper introduces NeXtFusion, a novel approach to 3D object detection for au-
tonomous vehicles. It leverages sensor fusion, combining camera and radar data within a
unified framework. By building upon the efficient NeXtDet framework [9], NeXtFusion
prioritizes both performance and resource efficiency, making it particularly suitable for real-
time applications. The key contribution of the work presented in this paper is in adapting
the NeXtDet network for multi-modal sensor fusion and significantly improving 3D object
detection through a lightweight object detection architecture. Section 4 provides details
about extensive nuScenes experiments performed in order to demonstrate the proposed
NeXtFusion network’s ability to surpass existing benchmarks. These results pave the way
for more robust and resource-conscious object detection for fully autonomous driving
applications. Figure 3 illustrates the NeXtDet architecture that serves as the foundation for
the proposed NeXtFusion network.
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3.1. Backbone

The core of any cutting-edge object classifier is a powerful image-processing module
called the backbone. This module scans an input image and distills features at different depths
(levels of detail). Backbones typically rely on a resilient image classifier for implementation,
which serves as an effective and resilient image classification network developed to efficiently
utilize the computational resources needed for real-time inference on edge devices with limited
processing power. NeXtDet utilizes CondenseNeXt CNN [25] in its backbone module, which
also serves as the backbone for the proposed NeXtFusion network.

CondenseNeXt belongs to the DenseNet [30] family. It utilizes an innovative approach
to capture spatial details from individual layers and transmit them in a feed-forward man-
ner to all subsequent layers. This process enables the extraction of information at varying
coarseness levels. At the core of CondenseNeXt are several dense blocks. Additionally, it
incorporates depthwise separable convolution and pooling layers between these blocks to
alter feature-map dimensions accordingly. This strategy facilitates more effective extrapo-
lation of features at diverse resolutions from an input image. Subsequently, the obtained
information is then fused to mitigate the vanishing-gradient issue, resulting in efficient
inference and reduced size of the trained weights because of a reduction in both the number
of parameters and floating-point operations per second, as seen in [10].

3.2. Neck

In modern object detectors, the neck module plays an important role as a feature
fusion hub. It collects feature maps extracted at different depths within the backbone, often
using pyramid networks like feature pyramid networks (FPNs) [23] and path-aggregation
networks (PANs) [24]. NeXtDet [9], for instance, leverages a combined PAN-FPN architec-
ture. While FPNs generate feature maps of various sizes to capture diverse information,
merging them can be challenging due to size discrepancies. To bridge this gap, a PAN is
integrated with an FPN and upsampled using nearest-neighbor interpolation. This allows
bottom-up features, rich in positioning information, to connect with top-down features,
strong in semantic understanding. This fusion, visualized in Figure 4, ultimately enhances
the network’s performance.
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Spatial pyramid pooling (SPP) [22] presents an innovative max-pooling technique
designed to enhance the accuracy of the CNNs. It achieves this by pooling the responses
of each filter within individual local spatial bins, preserving the spatial information. This
concept draws inspiration from the well-known bag-of-words approach [31] in computer
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vision. The strategy employs three distinct sizes of max-pooling operations to discern
analogous feature maps, regardless of the diverse resolutions of input feature patterns.

After applying max pooling, the resulting information is flattened and merged before
being fed into the fully connected layer. This final layer delivers an output of fixed size,
independent of the initial input dimensions, as shown in Figure 5. Notably, it is the
fully connected layer, not the convolution layer, that restricts the final output size of
CNNs. This integration typically occurs in the later stages of feature fusion. For a visual
representation, Figure 5 showcases the SPP block employed within the neck of the proposed
NeXtFusion architecture.
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3.3. Head

The final stage of an object detector, the head module, takes center stage in defining
bounding boxes and generating detailed detection results like object class, confidence
score, location, and size. To achieve this, modern detectors often employ multiple head
modules working together. These modules share features extracted earlier in the network
and specialize in accurately identifying objects and predicting their confidence scores. In
the NextDet architecture [9], three distinct heads, each equipped with a spatial attention
module (SAM), tackle this crucial task. The SAM module, originally introduced in the
convolutional block attention module (CBAM) [32], plays a key role in feature aggregation.
It accomplishes this by creating a spatial attention map that highlights critical areas within
the image. This map is generated by analyzing the relationships between different features
using both max-pooling and average-pooling operations along the channel axis.

3.4. Bounding-Box Regression

The object detection task can be streamlined by dividing it into two simpler sub-
tasks: identifying objects and pinpointing their locations. Finding these objects relies
on a technique called bounding-box regression (BBR). This method essentially draws a
rectangular box around the predicted object location within the image, maximizing the
overlap with the actual object. The extent of this overlap is measured by mean squared
error (MSE) or the intersection-over-union (IoU) losses. This popular metric evaluates the
similarities and differences between two arbitrary shapes. Mathematically, it represents
the ratio between the area shared by the predicted bounding box (denoted as A) and the
ground-truth bounding box (B) as follows:

IoU(A, B) =
A ∩ B
A ∪ B

(1)
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While IoU loss is widely used in BBR, it encounters a challenge when the predicted
bounding box and the actual object’s ground-truth box do not intersect, i.e., when IoU
of A and B equals zero, it fails to provide an overlap ratio. To overcome this limitation,
the NextDet object detector has integrated a more robust approach called generalized IoU
(GIoU) [33]. GIoU addresses this issue by actively encouraging a greater overlap between
the predicted and ground-truth boxes, effectively steering the prediction closer toward the
target. Mathematically, GIoU loss (LGIoU) is expressed as follows:

LGIoU = 1 − IoU +
|C − A ∪ B|

|C| (2)

Here, C represents the smallest enclosing box that incorporates both the predicted
bounding box (A) and the ground-truth box (B). As defined in [33], experiments reveal
that GIoU loss delivers superior performance compared to both mean squared error (MSE)
and standard IoU losses. Notably, it also demonstrates effectiveness in tackling vanishing
gradients when the predicted and ground-truth boxes fail to intersect. Figures 6 and 7
provide a visual overview of the difference between IoU and GIoU.
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Figure 7. Two sets of examples (a,b) where (a) represents a perfect overlap between the predicted
bounding box (A) and the ground-truth bounding box (B) and (b) represents a non-overlapping
case of A and B, which solves the IoU’s disjoint problem by introducing a third smallest enclosing
bounding box called C that encompasses both A and B bounding boxes.

3.5. Extracting Radar Features

The proposed multi-modal object detection network in this paper utilizes features
of each object within the image to predict all other properties associated with the object.
To maximize the utilization of radar point-cloud data associated with the object in this
context, it is essential to initially establish a connection between radar detections and their
corresponding objects of interest detected within the image.
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An autonomous vehicle’s movement can be visualized using the right-handed co-
ordinate system as it travels in the forward direction. A commonly employed method
to determine the right-hand rule involves extending the index finger along the positive
x-direction, bending the middle finger (and/or ring and pinky fingers) inward to indicate
the positive y-direction, and raising the thumb to represent the positive z-direction, as
denoted by Figure 8. In this configuration, the x-axis denotes the direction of motion,
the y-axis runs parallel to the front axle of the vehicle, acting as the reference point, and
the z-axis runs perpendicular to the x- and y-axes and points out through the roof of
the vehicle.
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For handling and analyzing point-cloud data representations, i.e., data obtained from
radar sensors, a polar coordinate system is being used. In this type of system, a point
in space is represented by a distance (d) from a reference point (origin) and an azimuth
angle (∝) measured from a reference direction (usually the positive x-axis). This system is
particularly suitable for representing spatial information in scenarios where the distance
and angle of objects from a reference point are essential, as is often the case with radar
measurements and point-cloud data. By determining the distance (r) of an object from
point A and its azimuth (∝) from the radar, one can make an approximation of the location
of the object of interest (A) within the global coordinate system [34].

Within the global coordinate system of x, y, and z, each radar detection is expressed as
a 3D point relative to the sensor’s position, thus characterizing it as

(
x, y, z, vx, vy

)
, where

x, y, and z denote the position of the point in a 3D space, and vx and vy signify the stated
radial speed of the object along the x and y axes. For each scenario, three sequential radar
point-cloud sweeps are combined, with a 0.25 s interval between each. Each camera within
the nuScenes dataset is pre-calibrated, featuring both intrinsic and extrinsic parameters.

The intrinsic parameter is a 3 × 3 matrix that defines the internal characteristics of
the camera, including focal length, principal point, and distortion coefficients, which are
typically acquired through specialized calibration procedures that involve checkerboard
patterns or similar techniques and can be defined as follows:

Intrinsicparam = Ip =

 fx 0 cx
0 fy cy
0 0 1

 (3)

Here, fx and fy represent the focal lengths in the x and y planes, respectively, and cx
and cy represent the offset points of the camera in the x and y planes, respectively. On the
other hand, the extrinsic parameter is a combination of a rotation matrix and a translation
vector that define the camera’s position and orientation with respect to the vehicle position
and, thus, plays a vital role in the projection of radar detections from global coordinates
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onto the camera’s image plane. Extrinsic parameters for a camera in the nuScenes dataset
can be defined as follows:

Extrinsicparam = Ep =


rxx rxy rxz tx
ryx ryy ryz ty
rzx rzy rzz tz
0 0 0 1

 (4)

Here, the nine elements, rxx to rzz, represent the 3× 3 rotation matrix that describes the
camera’s orientation relative to the world coordinate system, and the three elements, tx to
tz, represent the translation vector that describes the camera’s position in 3D space relative
to the world coordinate system. These calibration data are provided by the nuScenes
dataset [35] and are utilized along with the camera-radar dataset for experiments outlined
in Section 4 of this paper. The radar detections can, therefore, be associated with their
corresponding representations obtained from the camera sensor. Following this map-
ping process, detections located outside the image are discarded. The projection of radar
detections from global coordinates onto the camera’s image plane can be defined as follows:

Pcamera = Ip × Ep × Pworld (5)

Here, Pcamera is a 3 × 1 vector representing a 3D coordinate system of the camera, i.e.,[
x y z

]T , and Pworld is a 4 × 1 vector representing a 3D point in the global coordinate

system, i.e.,
[
X Y Z 1

]T .

3.6. Assosciating Radar Data to the Image Plane

The proposed NeXtFusion network utilizes a modified frustum generation mechanism
to associate image data with radar data, similar to CenterFusion’s approach [36]. This
technique leverages the object’s two-dimensional bounding box from the camera sensor
along with estimations of the object’s three-dimensional size, depth, and orientation from
the radar sensor. By doing so, a tightly defined region of interest (RoI) is constructed
around the object of interest called frustum. This frustum then facilitates the filtering of
radar detections. Only radar detections located within the frustum are then considered for
association (concatenation) with the camera-detected object.

Instead of utilizing only one radar detection for each object proposal individually,
as described in [36], the proposed NeXtFusion network utilizes a modified mechanism
that utilizes an entire cluster of radar detections that fall within the object’s designated
RoI. This allows the network to make use of collective information within the cluster,
resulting in a more robust camera-radar data association because it was observed that the
entire radar detection cluster, encompassing its shape, size, and orientation, holds valuable
information resulting in an improvement in multi-modal object detection compared to the
approach described in [36] which focuses solely on individual detections that only provide
information about their specific location and velocity.

Figure 9 provides a visual representation of the architecture of the proposed NeXtFu-
sion multi-modal (sensor fusion) 3D object detection network. The design of the proposed
network incorporates several modifications to the baseline single-modal (camera-based)
NextDet [9] architecture. The proposed architecture comprises two CondenseNeXt [25]
CNNs integrated into the backbone module to extract feature map representations from
data acquired through camera and radar sensors. These feature maps are subsequently
transmitted to the neck for feature fusion, facilitated by connections indicated by dashed
lines. Furthermore, the design of the network incorporates a strategy called early fusion,
where feature maps from cameras and radars are concatenated at an initial stage. This
merges information from both sensors (camera for visual details and radar for object dis-
tance and presence) to create a richer feature representation for object detection. Thus, by
combining these features early on, the network can learn a more robust representation of
the environment for object detection.
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Inspired by the work of [37], the design of NeXtFusion incorporates these connections
in the network, which aims to improve gradient backpropagation, alleviate gradient fading,
and minimize the loss of feature information, especially in scenarios involving small objects
in adverse weather conditions, resulting in an improved and robust performance of the
proposed object detection network.

4. Experiments and Results

A modern object detector is usually designed to identify the location and type of
object present in each input image. Typically, such a detector undergoes training on a
dataset consisting of labeled images, referred to as ground-truth values. In this section,
the proposed network, NeXtFusion, is evaluated on the nuScenes dataset as part of the
research presented within this paper. A comparative analysis is conducted on the proposed
network and compared to the other existing object detection neural networks in Section 4.4.
Additionally, samples from the nuScenes dataset are visualized in Section 4.5 to better
understand the object detection and tracking performance of the proposed network.
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4.1. Dataset

Extensive experiments are performed on the nuScenes dataset [35], a multi-modal
dataset for autonomous driving, which provides challenging urban driving scenarios
using the full suite of sensors from a real autonomous vehicle. It offers annotated images,
bounding boxes, and point-cloud radar data suitable for object detection, tracking, and
forecasting tasks related to autonomous driving, everyday objects, and humans using
cameras and radar sensors. Figure 10 provides a sample from the nuScenes dataset.
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4.2. Evaluation Metrics

This paper establishes two main criteria for an object detector to be considered suc-
cessful in identifying target objects using the proposed multi-modal detection approach.
Notably, a GIoU threshold of 0.5 is consistently applied across all models and datasets
examined, employing a grid-based search approach to ensure consistency. This met-
ric extends IoU by considering the minimum bounding box that can enclose both the
predicted and ground-truth boxes, as explained in Section 3.4 within this paper. This
technique penalizes predictions that are far away from the ground truth, even if they have
some overlap.

Evaluating the performance of object detectors requires a variety of metrics [38]. A
popular choice for both assessment and comparison is the mean average precision (mAP).
This metric represents the average performance across all object categories, calculated by
taking the mean of the average precision (AP) for each class. AP itself is derived from
the area under the precision-recall (PR) curve. Within this curve, precision (P) reflects a
model’s ability to correctly identify true objects, indicating the percentage of predictions
that are positive. Conversely, recall (R) assesses a model’s ability to find all actual positive
instances present in the ground-truth data. These metrics can be expressed mathematically
as follows:

P =
TP

TP + FP
(6)

R =
TP

TP + FN
(7)

AP =
ΣP

number o f objects
(8)
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mAP =
ΣAP

number o f classes
(9)

Here, the variables represent the following:

• True positive (TP) represents correctly identified objects where the predicted bounding
box overlaps with the ground-truth box.

• False positive (FP) denotes erroneous detections where the predicted box has some
overlap with the ground truth but falls, indicating an incorrect identification.

• False negative (FN) occurs when the model fails to detect a valid object present in the
scene, resulting in a missed target.

Additionally, training parameters for experimental analyses are outline in Table 1 and
average errors in different aspects of 3D object detection are evaluated on the nuScenes
dataset in Table 2. The benchmarking metrics utilized for these analyses are as follows:

• Mean average translation error (mATE): This metric represents the average Euclidean
distance (in meters) between the predicted and ground-truth 3D translation (x, y, z) of
an object across all objects and scenes in the dataset.

• Mean average scale error (mASE): This metric represents the average absolute dif-
ference between the predicted and ground-truth scale (measured as the product of
length, width, and height) of an object across all objects and scenes.

• Mean average orientation error (mAOE): This metric represents the average minimum
yaw angle difference (in radians) between the predicted and ground-truth orientation
of an object across all objects and scenes. It is typically calculated on a per-class basis
due to variations in object types.

• Mean average velocity error (mAVE): This metric represents the average absolute
difference between the predicted and ground-truth velocity (magnitude in m/s) of an
object across all objects and scenes. It is usually calculated on a per-class basis.

• Mean average attribute error (mAAE): This metric represents the average absolute
difference between the predicted and ground-truth attributes (depending on the
specific attribute considered) of an object across all objects and scenes. It is typically
calculated on a per-class basis and depends on the specific set of attributes considered
for the object category.

These metrics are commonly used in the nuScenes dataset to evaluate the performance
of object detection and tracking algorithms, particularly when dealing with 3D object detec-
tion and perception tasks. They provide insights into the overall accuracy and robustness
of the algorithms regarding various aspects like their ability to localize objects correctly,
estimate their size and orientation accurately, track their movement, and even predict
certain attributes depending on the task.

4.3. Training Infrastructure

Experiments outlined in this paper utilize the Carbonate supercomputer’s GPU parti-
tion, a powerful research cluster specialized for deep-learning tasks. Located at Indiana
University, this resource offers 24 GPU-accelerated nodes, each equipped with cutting-edge
hardware as follows:

• NVIDIA Tesla V100 GPU: Delivers high-performance graphics processing for efficient
training.

• Intel Xenon Gold 6248 20-core CPU: Provides robust central processing power for
computations.

• 1.92 TB solid-state drive: Ensures fast data storage and retrieval.
• 768 GB of RAM: Supports large model training and data handling.

This research was supported in part by Shared University Research grants from
IBM Inc. and Lilly Endowment Inc. and by Indiana University’s Pervasive Technology
Institute [39]. Additionally, the experiments employed the following:

• PyTorch 1.12.1: A deep-learning framework for model development and training.
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• Python 3.7.9: The general-purpose programming language used for the research.
• CUDA 11.3: Enables efficient utilization of the NVIDIA GPUs for computations.

4.4. Experiment Results

To assess the performance of the proposed multi-modal 3D object detection network
and understand the benefit of multi-modal over single-modal object detection networks,
NeXtFusion has been compared to the camera-based 3D object detection networks, ortho-
graphic feature transform (OFT) [40] and monocular 3D object detection (MonoDIS) [41],
as well as InfoFocus [42], which is a LiDAR-based 3D object detection neural network, and
benchmarked on the nuScenes dataset.

The effectiveness of any object detection network relies heavily on its training process.
Table 1 presents the training parameters used for both the existing and the proposed object
detection networks analyzed in this study. As is evident from this table, all network models
employ the Adam optimizer, a learning rate of 0.0001, batch size of 64, weight decay of
0.0005, momentum of 0.85, and trained for 400 epochs.

Table 1. Training prameters for experimental analysis on the nuScenes training dataset.

Object Detection
Network

Training
Dataset Optimizer Learning

Rate Batch Size Weight
Decay Momentum # of Epochs

OFT Y Adam 0.0001 64 0.0005 0.85 400

MonoDIS Y Adam 0.0001 64 0.0005 0.85 400

InfoFocus Y Adam 0.0001 64 0.0005 0.85 400

NeXtFusion Y Adam 0.0001 64 0.0005 0.85 400

Table 2 presents a comparison of several 3D object detection methods on the nuScenes
validation dataset, indicating performance metrics such as mAP, mATE, mASE, mAOE,
mAVE, and mAAE described in Section 4.2 of this paper. The models compared are 3D
object detection networks that utilize data primarily from camera or lidar sensors such
as OFT, MonoDIS, and InfoFocus. As is evident in this table, the proposed NeXtFusion
network achieves a remarkable performance, securing the highest mAP score among all
compared 3D object detection networks. This metric signifies the overall accuracy of the
proposed multi-modal object detection model across different confidence levels.

Table 2. Comparison of 3D Object Detection Methods on the nuScenes Validation Dataset (↑ indicates
Higher = Better, ↓ indicates Lower = Better, and Y indicates the use of nuScenes validation dataset).

Object Detection
Network

Validation
Dataset mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓

OFT Y 0.122 0.819 0.359 0.848 1.727 0.479

MonoDIS Y 0.301 0.737 0.266 0.544 1.531 0.140

InfoFocus Y 0.396 0.361 0.263 1.130 0.617 0.394

NeXtFusion Y 0.473 0.449 0.261 0.534 0.538 0.139

Compared to its single sensor-based 3D object detection competitors, the proposed
NeXtFusion network exhibits significant improvements in mAP. Notably, it outperforms
MonoDIS by 9.5% and surpasses OFT by a margin of 35.1%. While InfoFocus exhibits a
very strong mAP score, its reliance solely on LiDAR data limits its capabilities compared
to NeXtFusion’s fusion of multiple sensor modalities. This multi-sensor (multi-modal)
approach enables NeXtFusion to achieve a significant improvement in velocity error com-
pared to camera and lidar-based methods, demonstrating the added value of utilizing
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diverse sensor information for a more comprehensive understanding of the environment in
adverse external environmental conditions.

4.5. Ablation Studies

Table 3 outlines ablation studies conducted on the nuScenes validation dataset to
evaluate the effectiveness of the proposed multi-modal fusion network in this paper. This
table outlines the single-modal object detection performance of two networks: MonoDIS
and NeXtDet. It serves as a baseline for understanding how NeXtFusion, which builds
upon the efficient NeXtDet architecture, makes use of additional sensor (radar) data to
improve object detection performance. While both networks achieve reasonable mean
average precision (mAP) scores, indicating their ability to identify objects, NeXtDet demon-
strates a 16.61% improvement over MonoDIS. This suggests that NeXtDet’s architecture is
better suited for extracting relevant features obtained from the sensor data, resulting in an
increased accuracy in object detection (mAP). However, the differences in other metrics are
very subtle. While MonoDIS exhibits slightly lower errors in terms of mATE, mASE, and
mAOE, these differences are negligible. Conversely, NeXtDet shows a slight improvement
in mAVE and mAAE.

Table 3. Results of the ablation studies on nuScenes validation dataset (C: camera, R: radar, NM:
naïve method, and FAM: frustum association method).

Network C R NM FAM mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓

MonoDIS
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is associated with that object. NM is compared to the modified frustum association 
method (FAM) outlined in Section 3.5 of this paper and utilized in the design of the pro-
posed NeXtFusion network. The results of this study demonstrate the potential benefits 
of sensor fusion. Compared to the camera–only results, NeXtFusion achieves significant 
improvements in several key metrics when utilizing FAM, demonstrating a substantial 
increase in the network’s ability to correctly identify objects. Additionally, there are con-
siderable reductions in errors related to object location, scale, and orientation, as observed 
in Table 3. 

4.6. Visualization of Samples 
The nuScenes dataset, with its diverse collection of 1000 driving scenes, captures var-

ious scenarios that provide a platform to evaluate, benchmark, and compare 3D object 
detection algorithms. Each scene in this dataset is roughly 20 s long and provides infor-
mation, including camera images, radar data, and meticulously labeled objects. Although 
LiDAR data are also represented as a point–cloud representation, similar to radar data in 
this dataset, LiDAR and radar point–cloud data are fundamentally different despite both 
appearing as point clouds. LiDAR provides highly detailed 3D representations while ra-
dar excels at long–range detection, and therefore, the work presented within this paper 
focuses on camera–radar sensor fusion. Hence, LiDAR data are not utilized for experi-
ments outlined in this section. 
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method (FAM) outlined in Section 3.5 of this paper and utilized in the design of the pro-
posed NeXtFusion network. The results of this study demonstrate the potential benefits 
of sensor fusion. Compared to the camera–only results, NeXtFusion achieves significant 
improvements in several key metrics when utilizing FAM, demonstrating a substantial 
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method (NM), where each radar detection point is projected directly onto the image plane 
using the sensor calibration information. Therefore, if the projected radar point falls 
within the two–dimensional bounding box of the detected object inside an image, then it 
is associated with that object. NM is compared to the modified frustum association 
method (FAM) outlined in Section 3.5 of this paper and utilized in the design of the pro-
posed NeXtFusion network. The results of this study demonstrate the potential benefits 
of sensor fusion. Compared to the camera–only results, NeXtFusion achieves significant 
improvements in several key metrics when utilizing FAM, demonstrating a substantial 
increase in the network’s ability to correctly identify objects. Additionally, there are con-
siderable reductions in errors related to object location, scale, and orientation, as observed 
in Table 3. 

4.6. Visualization of Samples 
The nuScenes dataset, with its diverse collection of 1000 driving scenes, captures var-

ious scenarios that provide a platform to evaluate, benchmark, and compare 3D object 
detection algorithms. Each scene in this dataset is roughly 20 s long and provides infor-
mation, including camera images, radar data, and meticulously labeled objects. Although 
LiDAR data are also represented as a point–cloud representation, similar to radar data in 
this dataset, LiDAR and radar point–cloud data are fundamentally different despite both 
appearing as point clouds. LiDAR provides highly detailed 3D representations while ra-
dar excels at long–range detection, and therefore, the work presented within this paper 
focuses on camera–radar sensor fusion. Hence, LiDAR data are not utilized for experi-
ments outlined in this section. 
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method (NM), where each radar detection point is projected directly onto the image plane 
using the sensor calibration information. Therefore, if the projected radar point falls 
within the two–dimensional bounding box of the detected object inside an image, then it 
is associated with that object. NM is compared to the modified frustum association 
method (FAM) outlined in Section 3.5 of this paper and utilized in the design of the pro-
posed NeXtFusion network. The results of this study demonstrate the potential benefits 
of sensor fusion. Compared to the camera–only results, NeXtFusion achieves significant 
improvements in several key metrics when utilizing FAM, demonstrating a substantial 
increase in the network’s ability to correctly identify objects. Additionally, there are con-
siderable reductions in errors related to object location, scale, and orientation, as observed 
in Table 3. 

4.6. Visualization of Samples 
The nuScenes dataset, with its diverse collection of 1000 driving scenes, captures var-

ious scenarios that provide a platform to evaluate, benchmark, and compare 3D object 
detection algorithms. Each scene in this dataset is roughly 20 s long and provides infor-
mation, including camera images, radar data, and meticulously labeled objects. Although 
LiDAR data are also represented as a point–cloud representation, similar to radar data in 
this dataset, LiDAR and radar point–cloud data are fundamentally different despite both 
appearing as point clouds. LiDAR provides highly detailed 3D representations while ra-
dar excels at long–range detection, and therefore, the work presented within this paper 
focuses on camera–radar sensor fusion. Hence, LiDAR data are not utilized for experi-
ments outlined in this section. 
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The second half of the ablation study focuses on the proposed NeXtFusion network 
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objects in the image plane, especially for multi–modal networks. The first is the naïve 
method (NM), where each radar detection point is projected directly onto the image plane 
using the sensor calibration information. Therefore, if the projected radar point falls 
within the two–dimensional bounding box of the detected object inside an image, then it 
is associated with that object. NM is compared to the modified frustum association 
method (FAM) outlined in Section 3.5 of this paper and utilized in the design of the pro-
posed NeXtFusion network. The results of this study demonstrate the potential benefits 
of sensor fusion. Compared to the camera–only results, NeXtFusion achieves significant 
improvements in several key metrics when utilizing FAM, demonstrating a substantial 
increase in the network’s ability to correctly identify objects. Additionally, there are con-
siderable reductions in errors related to object location, scale, and orientation, as observed 
in Table 3. 

4.6. Visualization of Samples 
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ious scenarios that provide a platform to evaluate, benchmark, and compare 3D object 
detection algorithms. Each scene in this dataset is roughly 20 s long and provides infor-
mation, including camera images, radar data, and meticulously labeled objects. Although 
LiDAR data are also represented as a point–cloud representation, similar to radar data in 
this dataset, LiDAR and radar point–cloud data are fundamentally different despite both 
appearing as point clouds. LiDAR provides highly detailed 3D representations while ra-
dar excels at long–range detection, and therefore, the work presented within this paper 
focuses on camera–radar sensor fusion. Hence, LiDAR data are not utilized for experi-
ments outlined in this section. 
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is associated with that object. NM is compared to the modified frustum association 
method (FAM) outlined in Section 3.5 of this paper and utilized in the design of the pro-
posed NeXtFusion network. The results of this study demonstrate the potential benefits 
of sensor fusion. Compared to the camera–only results, NeXtFusion achieves significant 
improvements in several key metrics when utilizing FAM, demonstrating a substantial 
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The second half of the ablation study focuses on the proposed NeXtFusion network and
the impact of two crucial methods responsible for associating radar detections with objects
in the image plane, especially for multi-modal networks. The first is the naïve method
(NM), where each radar detection point is projected directly onto the image plane using the
sensor calibration information. Therefore, if the projected radar point falls within the two-
dimensional bounding box of the detected object inside an image, then it is associated with
that object. NM is compared to the modified frustum association method (FAM) outlined
in Section 3.5 of this paper and utilized in the design of the proposed NeXtFusion network.
The results of this study demonstrate the potential benefits of sensor fusion. Compared
to the camera-only results, NeXtFusion achieves significant improvements in several key
metrics when utilizing FAM, demonstrating a substantial increase in the network’s ability
to correctly identify objects. Additionally, there are considerable reductions in errors related
to object location, scale, and orientation, as observed in Table 3.

4.6. Visualization of Samples

The nuScenes dataset, with its diverse collection of 1000 driving scenes, captures
various scenarios that provide a platform to evaluate, benchmark, and compare 3D object
detection algorithms. Each scene in this dataset is roughly 20 s long and provides infor-
mation, including camera images, radar data, and meticulously labeled objects. Although
LiDAR data are also represented as a point-cloud representation, similar to radar data
in this dataset, LiDAR and radar point-cloud data are fundamentally different despite
both appearing as point clouds. LiDAR provides highly detailed 3D representations while
radar excels at long-range detection, and therefore, the work presented within this paper
focuses on camera-radar sensor fusion. Hence, LiDAR data are not utilized for experiments
outlined in this section.
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This section delves into visualizing the proposed network’s validation performance
in terms of 3D object detection on the nuScenes dataset. In this dataset, the scenes are
annotated every half a second (i.e., at 2 Hz). A sample is defined as an annotated keyframe
of a scene at a specific timestamp, where the timestamps of data from all sensors closely
align with the sample’s timestamp. For illustration, let us examine the first annotated
sample in a scene described as ‘Night, pedestrians on sidewalk, pedestrians crossing
crosswalk, scooter, with difficult lighting conditions’ by the annotators of the dataset. This
scene was captured in Holland Village, Singapore, using a comprehensive sensor suite
mounted on a vehicle. Each snapshot of a scene references a collection of data from these
sensors, accessible through a data key in the dataset. These sensors, which are mounted on
the vehicle, include the following:

• One LIDAR (light detection and ranging) sensor:
• LIDAR_TOP
• Five RADAR (radio detection and ranging) sensors:
• RADAR_FRONT
• RADAR_FRONT_LEFT
• RADAR_FRONT_RIGHT
• RADAR_BACK_LEFT
• RADAR_BACK_RIGHT
• Six camera sensors:
• CAM_FRONT
• CAM_FRONT_LEFT
• CAM_FRONT_RIGHT
• CAM_BACK
• CAM_BACK_LEFT
• CAM_BACK_RIGHT

Figure 11 provides a visual representation of 3D object detection performed by the
proposed NeXtFusion network on a scene with occlusion and poor lighting conditions,
and Figure 12 provides an example of multi-modal 3D object detection involving multiple
objects at an intersection, such as humans (blue bounding box), cars (yellow bounding box),
and trucks (red bounding box). It also demonstrates the object detection performance of
distant, tiny objects in the shadow of the building.
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Figure 12. An example of Camera-Radar fusion-based 3D object detection at an intersection using the
proposed NeXtFusion network. Here, blue bounding boxes, denote people, yellow bounding boxes
denote cars and red bounding boxes denote bus.

Figure 13 provides an example that plots radar point-cloud data for the same image
from Figure 12. Unlike LiDAR, which excels in dense, close-range measurements, radar
boasts a significantly larger operational range. While this extended reach comes at the
expense of point density, it enables the detection of distant objects that might be invisible
to LiDAR. Consider a scenario where a car is approaching a sharp bend on a highway.
While LiDAR can meticulously map the immediate surroundings, radar’s wider net can
detect vehicles or obstacles further down the road, providing crucial information for
safe navigation. This complementary perspective offered by radar, despite its sparser
data, paints a more comprehensive picture of the environment, enhancing perception and
decision-making capabilities in scenarios demanding long-range awareness.
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Figure 14 illustrates a point-cloud plot generated by combining radar data from five
sweeps. This data is obtained from the nuScenes dataset utilized for experiments outlined
in this paper. As seen in this plot, radar detection lines visually align with their respective
bounding boxes of two vehicles, providing an estimate of the detected objects. Figure 15
shifts the evaluation and visualization focus to object tracking, for which a tracking pipeline
was developed for evaluation purposes. By providing more reliable starting points in each
frame, the proposed network analyzes data about objects, which, in other words, are
individual entities within the environment that an autonomous vehicle (AV) needs to
detect, track, and potentially interact with based on the conditions. Examples include
specific vehicles, pedestrians, traffic signs, or other relevant objects. Understanding these
instances and their associated metadata is crucial for safe and efficient navigation.
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Figure 14. An example of very confident radar returns from two vehicles, captured and combined
using five radar sweeps. Light blue lines indicate radar detection, indicating its length and orientation.
Red cross indicates vehicle’s ego-centric position. Here, blue bounding boxes, denote people, yellow
bounding boxes denote cars and red bounding boxes denote bus.

Consider a hypothetical scenario where the camera sensor is affected by lens glare
from the sun rays directly hitting the camera sensor, resulting in an occlusion in the field of
vision. Here, an AV encounters pedestrians crossing an intersection on the road. Examining
the instance metadata associated with this object unveils valuable information beyond its
simple presence, even in adverse conditions such as lens glare. These rich metadata are
generated by fusing information from radar and cameras in NeXtFusion, which plays a
critical role in AV perception and decision making. By tracking and analyzing instance
metadata, the AV can accomplish the following:
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• Continuously monitor the movement of objects in its environment.
• Classify and differentiate between different types of objects and understand their

potential intentions even under unfavorable conditions.
• Make informed decisions by planning safe maneuvers based on perceived information

about the environment.
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Figure 15. A static representation to analyze how the proposed network performs multi-modal
3D object detection and tracking as part of the validation tests. nuScenes provides data for a scene
captured from camera and radar sensors mounted on the AV as follows: (a) Front left camera identifies
and starts tracking the object. In this example, only a single pedestrian is being tracked for analysis
purposes. (b) Front center camera continues to track the identified object while it is in its field of view.
(c) Front right camera continues to track the identified object until it leaves its field of view.

While Figure 15 serves as a static representation to understand how the proposed
network performs 3D object detection and tracking, the AV perception is always dynamic
in nature and performs object detection and tracking for each frame. The work presented
within this paper focuses on processing individual camera images and radar scans simulta-
neously. Also, metadata continuously updates as sensors gather new information, allowing
the AV to adapt its understanding of the surrounding world in real time. This dynamic
interplay between sensor data, object detection and tracking, and rich metadata forms the
foundation for safe and intelligent navigation for autonomous driving.

5. Conclusions

This paper introduces NeXtFusion, a novel deep camera-radar fusion network de-
signed to enhance the perception capabilities of autonomous vehicles (AVs). By effectively
combining the strengths of camera and radar data, NeXtFusion overcomes the limitations
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of single-sensor networks, particularly in challenging weather and lighting conditions.
Utilizing an attention module, NeXtFusion extracts crucial features from both modalities,
leading to improved object detection accuracy and tracking.

Extensive evaluations on the nuScenes dataset demonstrate NeXtFusion’s superior
performance, achieving a significant mAP score improvement compared to existing meth-
ods. Additionally, strong performance in other metrics like mATE and mAOE further
highlights its overall effectiveness in 3D object detection. Visualizations of real-world data
processed by NeXtFusion showcase its ability to handle diverse scenarios. By leveraging
the complementary information from cameras and radars, NeXtFusion offers a robust
solution for navigating complex environments and ensuring reliable operation under
various conditions.

However, recent research explores the potential of utilizing additional sources of
information to enhance an AV’s awareness of its perceived surroundings, including but not
limited to roadside sensors, such as surveillance cameras and radars, along with unmanned
aerial vehicles (UAVs). These technologies contribute to the topic of digitalization of traffic
scenes, providing more comprehensive information about the surrounding environment to
the AVs. By establishing communication between AVs and this intelligent infrastructure,
researchers further envision a future where object detection is not just reliant only on
onboard sensors but off-vehicle sensors as well.

The research work and findings presented in this paper, particularly the ability to
combine and extract meaningful and complementary information from camera and radar
sensors, could potentially contribute to the development of such infrastructure-vehicle
cooperation systems. Exploring this exciting potential application is a promising avenue
for future research.
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