
Citation: Agustí-Torra, A.;

Ferré-Mancebo, M.; Orozco-Urrutia,

G.D.; Rincón-Rivera, D.; Remondo, D.

A Microservices-Based Control Plane

for Time-Sensitive Networking. Future

Internet 2024, 16, 120. https://

doi.org/10.3390/fi16040120

Academic Editors: Paolo Bellavista

and Gianluigi Ferrari

Received: 16 February 2024

Revised: 22 March 2024

Accepted: 29 March 2024

Published: 1 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

A Microservices-Based Control Plane for Time-Sensitive
Networking
Anna Agustí-Torra * , Marc Ferré-Mancebo , Gabriel David Orozco-Urrutia , David Rincón-Rivera *
and David Remondo

Department of Network Engineering, Universitat Politècnica de Catalunya-BarcelonaTech (UPC),
08860 Castelldefels, Barcelona, Spain; marc.ferre.mancebo@upc.edu (M.F.-M.); gabino@ieee.org (G.D.O.-U.);
david.remondo@upc.edu (D.R.)
* Correspondence: anna.agusti@upc.edu (A.A.-T.); david.rincon@upc.edu (D.R.-R.);

Tel.: +34-93-413-7056 (D.R.-R.)

Abstract: Time-Sensitive Networking (TSN) aims to provide deterministic communications over Eth-
ernet. The main characteristics of TSN are bounded latency and very high reliability, thus complying
with the strict requirements of industrial communications or automotive applications, to name a
couple of examples. In order to achieve this goal, TSN defines several scheduling algorithms, among
them the Time-Aware Shaper (TAS), which is based on time slots and Gate Control Lists (GCLs). The
configuration of network elements to allocate time slots, paths, and GCLs is laborious, and has to be
updated promptly and in a dynamic way, as new data flows arrive or disappear. The IEEE 802.1Qcc
standard provides the basis to design a TSN control plane to face these challenges, following the
Software-Defined Networking (SDN) paradigm. However, most of the current SDN/TSN control
plane solutions are monolithic applications designed to run on dedicated servers, and do not provide
the required flexibility to escalate when facing increasing service requests. This work presents µTSN-
CP, an SDN/TSN microservices-based control plane, based on the 802.1Qcc standard. Our architecture
leverages the advantages of microservices, enabling the control plane to scale up or down in response
to varying workloads dynamically. We achieve enhanced flexibility and resilience by breaking down
the control plane into smaller, independent microservices. The performance of µTSN-CP is evaluated
in a real environment with TSN switches, and various integer linear problem solvers, running over
different computing platforms.

Keywords: time-sensitive networking; time-aware shaper; IEEE 802.1Qcc; software-defined networking;
control plane; microservices

1. Introduction

Time Sensitive Networking (TSN) refers to a set of IEEE 802.1 standards that aim
to provide deterministic, low-latency, and highly reliable communications over the ex-
isting Ethernet. TSN enables applications with different time-criticality levels to share
transmission resources in Ethernet while meeting their latency, bandwidth, and reliability
requirements [1].

One of the main standards of TSN is IEEE 802.1Qbv, which defines the Time-Aware
Shaper (TAS). The TAS establishes Gate Control Lists (GCLs) for each outgoing port of
the TSN switches to control which traffic classes can be transmitted at different time
intervals. This feature ensures that traffic classes can access the transmission medium in
a time-triggered manner, preventing non-critical traffic classes from invading the time
slots assigned to time-critical traffic classes and, thereby, achieving bounded end-to-end
latency [2]. The TAS requires precise time synchronization among all the nodes of a TSN
domain (i.e., end stations and TSN switches). This synchronization is achieved with the
Precision Time Protocol (PTP) by using the IEEE 802.1AS standard [3].

Future Internet 2024, 16, 120. https://doi.org/10.3390/fi16040120 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16040120
https://doi.org/10.3390/fi16040120
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-2551-5698
https://orcid.org/0009-0002-6230-4491
https://orcid.org/0009-0009-1374-0984
https://orcid.org/0000-0003-1294-3842
https://orcid.org/0000-0002-7461-1766
https://doi.org/10.3390/fi16040120
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16040120?type=check_update&version=1


Future Internet 2024, 16, 120 2 of 22

The assignment of time slots requires the TAS to know the network topology and the re-
quirements of the different data streams, which end stations demand via the User/Network
Interface (UNI). The IEEE 802.1Qcc standard defines three architecture models for getting
the topology and user/network requirements and configuring the underlying network
switches accordingly: the fully distributed model, the centralized network/distributed
user model, and the fully centralized model. This work focuses on the fully centralized
approach, which follows an SDN architecture, by removing the control logic from the
network devices and allocating it in two entities: the Centralized Network Configuration
(CNC) and the Centralized User Configuration (CUC).

Even though the IEEE 802.1Qcc standard defines the basis for implementing the
fully centralized model, it includes general guidelines and does not provide concrete
specifications. In the literature, several works have described centralized control planes for
TSN [1,4–6]; however, these solutions follow non-scalable monolithic architectures, which
are unable to allocate additional resources to specific tasks as needed. Such TSN control
plane (CP) implementations consume significant computational resources and increase the
time invested to calculate schedules, which consist of determining the length and position
of time slots assigned to different GCLs at the outgoing ports of the TSN switches along
network paths.

The concept of microservices is a promising approach to deal with the scalability issues
of monolithic TSN CPs. Microservices are an architectural model that divides a monolithic
application into different components, each one with a specific functionality [7]. Since these
components are smaller than the whole monolithic application, it is easier to add or remove
microservice instances [8], enabling resource allocation to highly demanded tasks more
efficiently. In the literature, some works use microservices for SDN controllers: in [9], the
authors create a cloud-native SDN controller based on the concept of microservices in the
context of transport, while the work in [10] explores the use of microservices for a CP for
open optical networks.

In this paper, we describe µTSN-CP [11], a microservice-based SDN CP architecture
for TSN capable of retrieving network topology and stream requirements, calculating valid
schedules, and configuring switches accordingly by optimizing the associated resource
usage. Considering the CP’s atomic functionalities, µTSN-CP decomposes the CNC and
CUC elements into microservices. Moreover, we implement a prototype of the µTSN-CP
elements and analyze its performance on a hybrid cloud running on Amazon Web Services
(AWSs) that use Docker and local instances. We focus on testing the ILP, which we provide
as an example of a high-demand microservice in terms of computation, in order to analyze
the qualitative characteristics that improve the computational resource usage (i.e., CPU
and RAM) and the time spent calculating schedules.

The remainder of the paper is structured as follows. Section 2 describes related work.
Section 3 describes the µTSN-CP architecture. Section 4 presents some experiments done to
show the overall functionality of our platform, including a discussion of the quantitative
results. Section 5 provides a qualitative discussion of the advantages of using the microser-
vices architecture. The paper ends with the conclusions and the description of lines of
future inquiry.

2. Related Work

Several works have addressed the design of a TSN CP based on the fully centralized
model of the IEEE 802.1Qcc standard. The authors of [4] offer an SDN CP for FPGA
TSN networks that includes a time-sensitive management protocol and a time-sensitive
switching model. However, that contribution resorts to a protocol for the management
of the underlying network that is different from the one described in the IEEE 802.1Qcc
standard (which uses RESTCONF and NETCONF). RESTCONF [12] is an HTTP-based
protocol used to manage information defined by YANG data models, encoded with JSON,
while NETCONF [13], which is very similar to RESTCONF, is established over SSH and its
messages are encoded in XML. Additionally, all the elements of the TSN CP are merged into



Future Internet 2024, 16, 120 3 of 22

a monolithic element, which limits the scalability and flexibility of the architecture. In [5],
the authors leverage SDN and Object Linking and Embedding for Process Control Unified
Architecture (OPC-UA) to build an SDN/TSN CP. In their implementation, they propose
four elements (User Registration, Service Registration, Stream Management Component,
and an OpenDaylight SDN Controller), where each element is running on a different
computer. Even though this solution shows a certain degree of platform independence and
is not completely monolithic, the authors do not exploit all the potential advantages of a
microservice architecture. Furthermore, the Stream Management Component, in particular,
performs several tasks that could be split further into separate microservices. Finally, in [14],
the authors describe their intention to develop an open-source CUC that makes use of the
OPC-UA protocol to communicate with the end devices, as well as RESTCONF and YANG
structures to exchange information with the CNC in the UNI interface. As of the time of
writing this paper, this project is only available to OPC Foundation members.

On the other hand, the concept of microservices is used in the literature for the de-
sign of SDN controllers. The authors of [9] propose µABNO (Application-based Network
Operations); this SDN architecture is based on microservices and achieves auto-scalability
while enabling cloud-scale traffic load management. They use Kubernetes to orchestrate the
containers that execute the microservices and a cloud-native architecture running on the
Adrenaline Testbed platform. In [10], the authors build an SDN controller for open optical
networks based on microservices. They rely on a microservices architecture with Docker
containers and Kubernetes to enable platform-as-a-service network control, with automated
and on-demand deployment of SDN controllers or applications, and on-the-fly upgrades or
swaps of the software components.

In summary, most of the existing approaches present a monolithic design that fails to
achieve good scalability and flexibility to accommodate varying traffic demands and wastes
significant computational resources. In contrast, the µTSN-CP architecture addresses this
issue by distributing the main CNC and CUC functionalities described in the IEEE 802.1
Qcc among microservices. This approach allows the system to escalate the resources needed
for just the necessary functions upon changing traffic demands.

To the best of our knowledge, the only work that is similar to µTSN-CP is OpenCNC [15],
a TSN control plane based on microservices. One of the differences is the use of gNMI
in OpenCNC, while µTSN-CP uses the RabbitMQ message broker. Therefore, OpenCNC
requires an additional microservice that adapts gNMI requests to NETCONF, to be able
to configure TSN switches. Another remarkable difference is the use of the ONOS SDN
controller by OpenCNC instead of OpenDaylight (used by µTSN-CP) in order to interact
with the network switches and configure them. Although the description that can be found
in OpenCNC’s software repository (as of December 2023) mentions the possibility of using
an external Integer Linear Programming (ILP) solver, it describes a “fallback mechanism”
that applies a hardcoded schedule, which does not take into account the established streams
nor their characteristics and, hence, does not perform any optimization (it is merely a YAML
file indicating cycle time and the percentages of the cycle assigned to each traffic class) [16].
Instead, our work already includes an ILP module which will be tested in the following
sections. Finally, ref. [17] provides some results related to the performance evaluation
of an automated TSN end station configuration platform that includes OpenCNC as one
of its modules, but, to the best of our knowledge, there does not exist any published
work focused on describing the performance of OpenCNC or any other TSN control plane
based on microservices. In contrast, we tested different ILP solvers, running over different
computing platforms (including local machines and cloud environments), to evaluate the
performance of µTSN-CP.

3. µTSN-CP Architecture

This section starts with a general description of the architecture of the platform, and
then provides more details about each one of its microservices.



Future Internet 2024, 16, 120 4 of 22

3.1. Introduction

The general structure of µTSN-CP is shown in Figure 1. We now describe the typical
flow of execution of events. First, whenever an end station (talker) wants to send a data flow
to another end station (listener), the talker notifies the Centralized User Configuration (CUC),
which collects the characteristics and the latency requirements of the streams, and passes
this information to the CNC. Within the CNC, the TSN Controller receives the information
about the requested data streams from the CUC via the UNI by means of RESTCONF. The
scheduler determines a configuration of the switches (ingress and egress ports, timeslots)
that complies with the requirements of the data streams according to the network topology
information received from the SDN Controller through RESTCONF. Once the configuration
is ready, the SDN Controller distributes the configuration commands to the switches via
NETCONF and YANG models. The switches execute the configuration and the data flow
sent from the talker is treated accordingly.

Figure 1. Overview of the µTSN-CP prototype.

Regarding the microservice architecture, Figure 2 illustrates the microservices created
for mapping the control plane (CP) functions in the CNC, as well as the communication
tools and interfaces between them. Following the same typical flow of events described
earlier, the Jetconf [18] microservice gathers the data stream information from the CUC and
sends it to the Preprocessing microservice. This block combines the stream information
with the topology information (received from the Topology Discovery function), and sends
it to the scheduler (ILP Calculator). The configuration resulting from the scheduler is sent



Future Internet 2024, 16, 120 5 of 22

to the Southconf microservice, which forwards it to the OpenDaylight SDN Controller. This
element is responsible for configuring the TSN switches (via NETCONF) accordingly, so as
to satisfy the time constraints of the data flows.

Figure 2. Microservices architecture of the CP functions.

The following subsections describe the functionalities of each microservice.

3.2. Jetconf Microservice

The Jetconf microservice is the point of contact between the CUC and the CNC,
implementing the UNI interface with the YANG model defined in the IEEE 802.1Qcc
standard [19]. This microservice handles the communication of the user requirements to
the CNC internal microservices. As input, this microservice gets the JSON payload by
means of a REST/API using RESTCONF, and such payload must match the definitions of
the parameters in the YANG module. Some parameters included in the payload are the
number of streams and the communication period, maximum latency, size, and smallest
and highest transmission offsets. Considering such requirements, we decided to use Jetconf,
an implementation of the RESTCONF protocol, as a base for the microservice [18].



Future Internet 2024, 16, 120 6 of 22

In the output, this microservice should communicate the answer to the requested
payload to the CUC; such output needs to include the feasibility of the communication
as a binary value and the offset that each talker should follow to achieve the communi-
cation. Additionally, Jetconf should send the requested information in a JSON payload
using the appropriate RabbitMQ queue (Jet-pre queue in Figure 3) to the Preprocessing
microservice. Regarding security, Jetconf includes HTTP/2 over TLS certificated-based
authentication to the clients; such certificates should be shared with the client (CUC) to
grant the communication appropriately. Figure 3 depicts the general operation of the
Jetconf microservice.

Figure 3. Overview of the Jetconf microservice.

3.3. Topology Discovery Microservice

The Topology Discovery microservice is in charge of collecting the topology of the TSN
network and providing it to the other microservices represented as a network matrix. For
this task, this microservice uses LLDP [20], a data-link layer protocol used for advertising
the network elements’ identity, capabilities, and adjacency. In a nutshell, the Topology
Discovery microservice generates a list of all the available devices in the network by
accessing them through SSH and retrieving their LLDP information. We combined bash
scripts and Python3 to create this microservice, specifically using the Paramiko [21] library,
which implements the SSHv2 protocol. Figure 4 shows the general architecture of this
microservice and its parts.

Figure 4. Overview of the Topology Discovery microservice.



Future Internet 2024, 16, 120 7 of 22

What follows is a summary of the steps followed from the moment we start the
communication to the moment the information is retrieved from the devices and parsed to
the Preprocessing microservice:

1. The Topology Generator module activates the retrieval of the topology information
using the Paramiko module. It uses Paramiko to send commands to every device in
the network to get the adjacency information of each device. Raw data is collected
and stored as files in the microservice.

2. The Topology Generator module gets all the files, cleans the information and translates
it into a Network Topology Matrix.

3. Once the network information is ready, the Topology Discovery microservice generates
a JSON message in the RabbitMQ queue and sends it to the Preprocessing microservice.

3.4. Preprocessing Microservice

This microservice is the entry point of the data provided by the Topology Discovery
and Jetconf microservices. In Figure 5, we can see the values that enter the Preprocessing
microservice from those microservices. These input values are retrieved from their respec-
tive RabbitMQ queues. Two modules implement the functionalities of the microservice.
The first one is the Dijkstra module, which uses the Dijkstra algorithm to determine the
shortest path from origin to destination for the routes in the schedule. It is important
to highlight that, in our µTSN-CP, the module for calculating the path from sources to
destinations and the module for calculating the schedule are in different microservices, as
seen in other sections. This design decision enables us to easily adapt the microservice to
use other algorithms to calculate the path for the requested streams (e.g., Floyd–Warshall
or Johnson’s algorithms).

Figure 5. Overview of the Preprocessing microservice.

The other primal functionality of the Preprocessing microservice is to adapt the param-
eters that are passed to the main microservice in the architecture, the ILP Calculator. This
preprocessing job is necessary to reduce the number of tasks assigned to the ILP Calculator.
As Figure 5 depicts, the delivered parameters correspond to values resultant from the Dijk-



Future Internet 2024, 16, 120 8 of 22

stra module and the preceding microservices. Besides, maintaining specific functionalities
in that microservice enhances the possibility of using different approaches implemented
as a microservice instead of the ILP Calculator, simply following the black-box design
criterion and respecting the inputs and outputs. Finally, as in the previous cases, the way
to communicate the results to the ILP Calculator microservice is via a RabbitMQ queue.

3.5. ILP Calculator Microservice

The ILP Calculator microservice is in charge of the Integer Linear Programming (ILP)
solver. ILP is a mathematical optimization and feasibility programming method in which
a set of constraints (represented as linear inequalities) and a linear optimization function
describe a problem [22]. The variables used in the definition of the linear constraints create
a space of solution that is filled with the set of possible solutions that respect the constraints.
The larger the number of variables and constraints are, the more complex the solution
space is and the harder it is to get a solution to the scheduling problem. In µTSN-CP, all of
the characteristics of the TAS scheduler are included in the mathematical model. We have
adopted the ILP model described in [2], considering the values of c1 = 1 and c2 = 0 in the
objective function, thus taking into account only the optimization of the excess queues.

In an ILP program, there are two pieces, namely the model itself (implemented with
Python3 using Pyomo [23], in our case) and the mathematical solver (installed in the same
Docker container as the model). There is a vast amount of solvers available, and some of
them are open source. Table 1 lists some of the most used ILP solvers available, including a
small description and the type of license.

It is important to remark that the solver does not maintain any relationship with the
Pyomo code, and changing it is as easy as changing a line in the code. We decided to use
GLPK as it is an open-source implementation, and Gurobi due to the transient nature of
microservices and Docker containers (i.e., they can be replaced for another container when
they present an error). Both solvers are used in the performance tests, as described later.

Regarding the architecture of the microservice itself, shown in Figure 6, its main parts
are the ILP module, described above, and the Solution Visualizer. The Solution Visualizer
is a module whose principal task is to facilitate the exploration of the solution that the ILP
has provided to the current scheduler problem. Some examples of the visualizer are shown
in Section 4.

Figure 6. Overview of the ILP Calculator microservice.



Future Internet 2024, 16, 120 9 of 22

Table 1. ILP solvers considered in this work.

Solver Name License Type Description

AMPL
Free reduced
version,
Pay license

Focus on maintainability, integrates a common
language for analysis and debugging [24]

Pico Open source,
available in pip

Allows to enter an optimization problem as a
high-level model, with painless support for vector
and matrix variables and multidimensional
algebra [25]

CBC Open source

An open-source mixed-integer program (MIP)
solver written in C++. CBC is intended to be
used primarily as a callable library to create
customized branch-and-cut solvers [26]

GLPK Open source

It is a set of routines written in ANSI C and
organized in the form of a callable library.
Is intended for solving large-scale Linear
Programming (LP) and mixed-integer
programming (MIP) [27]

Gurobi
Student license
Pay license

According to their website, Gurobi claims to be
the fastest and most powerful mathematical
programming solver available for your linear problems [28]

3.6. Southconf Microservice

The following microservice in the pipeline of the stream is the Southconf microservice,
which processes the information containing the schedule and network configuration coming
from the ILP Calculator. Figure 7 depicts the general interaction between the modules of the
microservice and other microservices. As in the previous cases, we use RabbitMQ to receive
information from the ILP Calculator microservice. Once the JSON information is received
and parsed, it is sent to the TAS configurator module, which creates the JSON payload
containing the configuration to be sent through RESTCONF to the Opendaylight container.

Figure 7. Overview of the Southconf microservice.

Specifically, the TAS configurator module uses the ieee802-dot1q-sched YANG mod-
ule [29]. This module defines all of the parameters for the TSN switches’ settings; we
mapped each one to an output of the previous microservices. Normally, the module defines
the configuration of a single TSN device. However, the SDN Controller provides an inven-
tory system for storing the network information and YANG capabilities of all the devices
managed in the SDN Controller domain; this leads to centralizing the configuration of all
the elements into a single configuration payload sent by RESTCONF. The SDN Controller
will parse this unified payload and will generate NETCONF sessions in each device covered



Future Internet 2024, 16, 120 10 of 22

in the configuration to set its YANG model. If the controller was not implemented in the
architecture, the system would need to generate a NETCONF payload for each device in
the network to be managed by the CNC, which would be harder to implement, maintain,
and monitor, since NETCONF goes through SSH and not over HTTP, as RESTCONF does.

Lastly, we included a Web server that prompts the scheduler and network configura-
tion as depicted in figures of Section 4.1.

3.7. SDN Controller Microservice

Finally, the SDN Controller is the microservice that acts as the interface between the CP
and the network. It has a RESTCONF-type communication interface to communicate with
the Southconf microservice and a NETCONF communication interface to communicate
with the TSN switches in the network. The main reason why we resort to this microservice
instead of a direct NETCONF communication between the Southconf microservice and
the network equipment is the simplicity and benefits of using an SDN controller. Figure 8
shows the operation diagram of the SDN Controller microservice.

Figure 8. Overview of the SDN Controller microservice.

In our case, we chose OpenDaylight [30] as the SDN controller for our CP. OpenDay-
light includes a module for YANG models and RESTCONF/NETCONF that allows storing
all exposed models in a device inventory. By incorporating the list of devices with their
respective IP addresses, the controller automatically creates a data model that allows all
devices to be accessed simultaneously using a single RESTCONF communication. There-
fore, it is only necessary to send a message containing all the configurations that must be
applied to the equipment to configure the TAS with the offsets provided by the ILP. The
process that this microservice follows is as follows:

• The Southconf microservice sends the necessary configuration, including device IP
addresses, using the RESTCONF protocol via REST API-like communication.

• OpenDaylight creates an inventory of all the TSN devices in the network and generates
a data model that includes all the YANG models exposed in the NETCONF interfaces
of the switches.

• Using NETCONF, OpenDaylight accesses all the TSN devices and configures them by
following the directions provided by the Southconf microservice.

4. Tests and Discussion of Results

This section is divided in three parts. First, we describe some simple examples and
discuss the results obtained, in order to show how the platform works. To do this, we
present a stream and topology visualizer developed as part of the code within the Southconf



Future Internet 2024, 16, 120 11 of 22

microservice. This display shows information about the frames that make up each stream,
as well as the temporal distribution of these frames during the hypercycle time period.
It also includes a system topology diagram and a color display system that eases traffic
visualization on each link. The second subsection describes the testbed deployed on our
laboratory, including the microservices, the end stations, and the TSN switches. Since the
design is modular, the computer that contains the microservices is easily replaceable by
a cloud infrastructure (as long as the communication between the microservices and the
switches is guaranteed), and, thus, the conclusions are applicable to a system where the
microservices are deployed in a cloud. Finally, in the third subsection, different hardware
and ILP solvers are used to test the speed at which the ILP microservice provides a solution,

4.1. Scheduling Solution Inspection

This subsection aims to verify that the results obtained by the combination between
the Dijkstra algorithm output and the ILP scheduling are correct. As we have specified
in the previous section, the main objective of the µTSN-CP is to be able to perform all
the necessary calculations to find a specific and viable solution for a set of flows, taking
into consideration that each stream will have an origin and destination, as well as its own
characteristics in terms of bandwidth and maximum latency. We implemented a scheduling
Solution Visualizer included in the ILP microservice to verify this goal, which includes the
following (see Figure 9 as an example):

1. Network topology: Specifies the network nodes and the links between them. It is
located in the upper-left corner of the viewer.

2. Description of the stream matrix: It includes a set of parameters such as the matrix of
network links, the number of frames in each stream, the period of the flows, and an
specification of the order of the links to be used according to the Dijkstra algorithm for
each stream. These are written in two-dimensional vectors and dictionaries; the order
in the array is the stream identifier. The parameters are in the upper-right corner of
the diagram in red rectangles.

3. Gantt diagram: This shows the used transmission slots, representing each link with a
specific color; the horizontal axis depicts the time in milliseconds, while the vertical
axis represents the position of the frames of each stream in each link. The notation
employed on the vertical axis is as follows: ‘S’ is the frame stream number, ‘L’ is the
link number through which the frame is traversing, and ‘F’ is the frame order within
the stream. This graph is located at the bottom of the viewer.

Figure 9. First scheduler problem.



Future Internet 2024, 16, 120 12 of 22

We now describe three examples of the output provided by the visualizer after finding
a solution to the scheduling problem. These examples were tested theoretically and using an
auxiliary microservice that generates networking and TSN scheduling problems randomly.

4.1.1. Example 1

In this example, we present the features of the scheduling problem included in Figure 9:

• Four-node network, where Node 1 connects all other nodes.
• Two streams, each one with a single frame. Stream 0 has a period of 5000 ms, while

Stream 1 has a period of 2500 ms.
• The fifth red box at the top right of the diagram contains an array of arrays that

describes the paths from source to destination obtained using Dijkstra’s algorithm.
In this example, Stream 0 traverses from Node 2 to Node 3, passing through Node 1,
while Stream 1 traverses from Node 0 to Node 3, also passing through Node 1.

In the Gantt chart at the bottom of Figure 9, we can see that this solution fulfills all
of the conditions of a TSN schedule, since there is no overlap between frames in both the
same time slot and the same link; this is clear since no frame shares the same time interval
with another frame of the same color. In addition, the example fulfills the usual assumption
of any transmission: the streams pass through the links in sequential order. In the case of
Stream 1, which has half the period of Stream 0, there exist repetitions in the hyper-period
after 2500 ms.

4.1.2. Example 2

The features of the second example are shown in Figure 10:

• Five-node network, where Node 2 connects all other nodes. Furthermore, Nodes 3
and 4 have a direct link between them.

• Four streams: Stream 0 consists of three frames, while the others have only one frame.
The first stream has a period of 2000 ms, while the other streams have periods of
5000 ms, which makes the hyper-period 10,000 ms.

• The stream distribution is as follows:

– Stream 0: origin at Node 3 and destination at Node 0, passing through Node 2.
– Stream 1: origin at Node 0 and destination at Node 2.
– Stream 2: origin at Node 3 and destination at Node 1, passing through Node 2.
– Stream 3: origin at Node 2 and destination at Node 4.

Figure 10. Second scheduler problem.



Future Internet 2024, 16, 120 13 of 22

This example is noticeably more complicated than the previous one. It involves a larger
number of frames, a larger network, and more conditions to fulfill for the ILP due to the
multiplicity of frames of some streams within the hyper-period. However, when looking
at the image, we can appreciate that there is no overlapping of streams in any of the links
simultaneously, even considering the repetitions in the hyper-period. In addition, the solver
foresees when the successive frames of a stream will require an additional transmission
time slot in a link, so it will prevent collisions between streams with multiple frames.

It is interesting to note that Stream 0 never interrupts Stream 1, even though they both
use Link 0. However, the most crucial moment occurs with Streams 0 and 2 on Link 2.
Although the frames of Stream 0 could have been transmitted consecutively on Link 2,
this option would interfere when Stream 2 transmits over that link. Therefore, the system
decides to leave a time slot free for Stream 2 to use, even if this is necessary only in the third
repetition period.

4.1.3. Example 3

The constraints that describe this last example are listed below, and are depicted in
Figure 11:

• Five-node network, where Node 0 connects the other nodes, but several nodes have
direct connections to each other.

• Four streams, two of them made up of three frames; the other two have only one frame.
The first two streams have periods of 2000 ms, while the other two have periods of
5000 ms, making the hyper-period 10,000 ms, as in the previous example.

• The stream distribution is as follows:

– Stream 0: Origin at Node 2 and destination at Node 3, passing through Node 0.
– Stream 1: origin at Node 3 and destination at Node 1.
– Stream 2: origin at Node 4 and destination at Node 2.
– Stream 3: origin at Node 0 and destination at Node 3.

Figure 11. Third scheduler problem.

In this example, we have increased the number of frames and used a topology with a
higher number of links to explore whether the solutions delivered by our solver meet the
constraints for a TSN scheduling system. We can notice that in none of the links, at any
time, the location of one frame overlaps with another, even considering the repetitions that
the frames may have within the hyper-period.



Future Internet 2024, 16, 120 14 of 22

4.2. Laboratory Setup

The elements included in the setup are shown in Figure 12. We will start by distin-
guishing between the data plane and the control plane. The data plane consists of all the
components within the red block. These elements have hardware interfaces that are capable
of communicating according to TSN standards:

• Two TSN switches (SW0, SW1). We used Soc-e MTSN kits during the development
and testing phase [31]. Each switch has four TSN interfaces; it communicates with the
other switch through the Eth3 interface and with its respective end station through
the Eth0 interface. PTP messages are exchanged in the TSN links for synchronization
purposes.

• Two end stations. In our testbed, we used two computers running Linux (Ubuntu 22.01
LTS). Intel i210 network interface cards were used to support the precise timestamping
required by PTP. The computers ran PTP daemons to manage synchronization with
the switches.

On the other hand, the elements inside the blue block correspond to the control plane:

• The Port Z interfaces of the TSN switches. These NICs were used only for management
tasks by means of NETCONF and SSH.

• A regular Ethernet switch that works as an out-of-band control network.
• The µTSN-CP Controller, deployed on a single computer with Docker-compose. This

highlights another advantage of using microservices, as our controller can run on
any machine with Docker. However, to take full advantage of the microservices
architecture in a more realistic deployment, the µTSN-CP Controller should ideally
be in a private or public cloud, running on some container orchestration tool like
Kubernetes, OpenShift, or Docker Swarm.

Figure 12. Laboratory setup.



Future Internet 2024, 16, 120 15 of 22

4.3. Performance Analysis

We now describe performance tests to evaluate the resource usage of our design. First,
it is important to note that, at the system’s core, there is a microservice with an ILP model
that incorporates the constraints and defines the objective function of the TSN scheduling
problem. This microservice can use any ILP solver, including those shown in Table 1.
We compared GLPK and Gurobi in terms of the time they took to offer a solution for
a given number of streams in a defined topology. Secondly, it is important to consider
another condition that can affect the performance of our system: this is the hardware of
the machine in which the ILP Calculator microservice runs. We ran our tests over three
different platforms:

1. A laptop with a four-core Intel Core i7-7820HK processor with a maximum frequency
of 3.9 GHz and 16 GiB of RAM.

2. An Elastic Compute Cloud (EC2) instance on Amazon Web Services (AWSs) of type
T3.small with a two-core Intel Xeon Scalable processor with a maximum frequency of
3.1 GHz and 2 GiB of RAM [32].

3. An EC2 instance on AWSs of type M5Zn.large with a four-core Intel Xeon Scalable
processor with a maximum frequency of 4.5 GHz and 16 GiB of RAM [33].

According to the literature, the actual performance one will get from using multiple
cores in an ILP problem depends on several factors, such as the nature of the optimization
problem, the size of the model, the availability of memory resources, and the specific
system configurations [34]. In this test we determined which is the option that provides a
solution to the problem in the shortest time. Finally, with the results of the three previous
experiments, we selected the best ILP model solver and compared the two platforms with
the best performance to identify what characteristics the platform running the microservice
should have, both in terms of hardware resources and solver.

We now describe the characteristics of the experiments. The topology is shown in
Figure 13, where all links are 1 Gbps. Regarding flows, a custom microservice created the
inputs of the Jetconf microservice, generating specifications sent through the RabbitMQ
queue. All streams had a deadline of 500 ms. The periods of the streams varied between
125 ms, 250 ms, and 500 ms with uniform probability. The streams could be composed of
one to three frames with the same probability. The number of streams went from fifteen
to twenty-five streams per problem, with jumps of five streams between each test. We
repeated each test 100 times for each number of streams.

Figure 13. Topology used in the tests.

4.3.1. Comparison of ILP Solvers

Previous works show that Gurobi generally offers better resolution times and perfor-
mance than GLPK, especially for large and complex problems [35]. Indeed, in agreement
with the literature, Figure 14 shows that the performance of Gurobi is considerably superior
to that of GLPK. In the figure, the colored bar is the average value, and the segment in each
bar denotes the minimum and maximum values.



Future Internet 2024, 16, 120 16 of 22

While the time to find a solution using GLPK increases considerably, reaching up to
27 s maximum and 4.76 s on average in the first test with 15 streams, and up to a maximum
of 80.63 s in the test with 25 streams, Gurobi times were never higher than 1.5 s, with
average values of less than 1 s for all tests. An aspect that greatly differentiates the two
solvers is the variance. Table 2 depicts the average time to solution value and the maximum
and minimum values, together with the standard deviation. Considering this last value,
Gurobi not only offers a higher performance, but also a much greater consistency than
GLPK for our ILP model.

Figure 14. Time to find a solution: GLPK vs. Gurobi.

Table 2. Seconds needed to find a solution for GLPK vs. Gurobi, depending on the number of streams.

GLPK Gurobi

Streams Average Min Max Std. Dev. Average Min Max Std. Dev.

15 4.768 1.895 27.772 5.621 0.620 0.542 1.410 0.182
20 23.113 10.431 55.086 12.329 0.758 0.700 0.926 0.047
25 58.503 30.810 80.636 13.622 0.978 0.909 1.439 0.111

4.3.2. Hardware Configurations Comparison—Using GLPK

In this case, we used GLPK as an ILP solver to determine how much the hardware
affects timing to obtain a solution to the scheduling problem. We considered RAM size, the
number of processor cores, and the operating frequency. In Figure 15, each graph refers to
a different number of streams; it should be noted that each graph has a vertical axis that
covers different ranges. The figure shows that the best results were obtained using the
M5Zn.large instance, although the difference with the local machine is not too large. The
worst results were those obtained with the T3.small instance, which presents much greater
solution times than the other two platforms. The T3.small instance has completely different
hardware characteristics than the other two: it has much less RAM, fewer processor cores,
and, perhaps the most important feature, its processor frequency is much lower than the
other two platforms. On the other hand, the local machine and the M5Zn.large instance
only differ in their clock frequency, since they have the same number of cores and the
same RAM.

This test indicates that the hardware characteristics significantly affect the time to
obtain a result. Tables 3–5 show the average, maximum, and minimum values for each test



Future Internet 2024, 16, 120 17 of 22

as well as the standard deviation. In all cases, the results present considerable variations
attributable to the lower consistency of GLPK. Actually, in the next test, where we only use
Gurobi as an ILP solver, we observed a better consistency.

Figure 15. Seconds to find a solution: local machine vs. T3.small vs. M5Z.large using GLPK.

Table 3. Seconds to find a solution with 15 streams: local machine vs. T3.small vs. M5Zn.large
using GLPK.

Instance Average Min Max Std. Dev.

Local machine 3.125 1.895 4.560 0.798

AWSs T3 Small 4.263 2.584 9.051 1.484

AWSs M5Zn Large 3.503 1.287 9.672 2.426

Table 4. Seconds to find a solution with 20 streams: local machine vs. T3.small vs. M5Zn.large
using GLPK.

Instance Average Min Max Std. Dev.

Local machine 19.154 10.431 55.086 11.244

AWSs T3 Small 129.062 13.994 267.103 75.260

AWSs M5Zn Large 18.370 7.488 48.252 11.461

Table 5. Seconds to find a solution with 30 streams: local machine vs. T3. small vs. M5Zn.large
using GLPK.

Instance Average Min Max Std. Dev.

Local machine 255.013 30.810 1013.215 302.593

AWSs T3 Small 501.388 45.194 1546.723 478.889

AWSs M5Zn Large 162.642 12.672 634.854 135.549



Future Internet 2024, 16, 120 18 of 22

4.3.3. Hardware Configurations Comparison—Using Gurobi

In this test we used the two instances that showed the best performance in the previous
test, namely the local machine and the M5Zn.large instance on AWSs. We used Gurobi as
the ILP solver to obtain the best possible performance. According to AWSs, M5zn instances
deliver the highest all-core turbo CPU performance from Intel Xeon Scalable processors in
the cloud. Therefore, they are specifically designed to use the highest frequency possible in
their processors.

Using Gurobi, the time needed to find solutions is considerably short when compared to
using GLPK; for that reason, to differentiate both platforms better, we increased the number
of streams in the same planning problem for all the tests. Therefore, the considered problems
have 40, 45, and 50 streams. As Figure 16 reveals, the M5Zn.large instance performs much
better than the local machine for all tests. We note that the difference between the maximum
and the minimum values, as well as the stardard deviation, is considerably larger in the local
instance. That fact indicates that the consistency of the performance with the M5Zn.large
instance is greater. Table 6 shows the average time to obtain a solution, the maximum and
minimum values, and the standard deviation obtained in the 100 repetitions of the tests.
These results suggest that the clock frequency of the CPU for our particular problem is
a transcendental parameter when it comes to reducing the time to obtain a solution. All
the tests indicate that using the Gurobi solver with the M5Zn.large instance is the best
combination to obtain the smallest run times.

Figure 16. Seconds to find a solution: local machine vs. M5Zn.large using Gurobi.

Table 6. Seconds to find a solution: local machine vs. M5Zn.large using Gurobi, depending on the
number of streams.

Local Machine MZ5n Large

Streams Average Min Max Std. Dev. Average Min Max Std. Dev.

40 57.570 51.236 64.660 4.675 2.201 2.024 2.328 0.089
45 87.403 75.829 105.118 8.256 3.070 2.673 3.598 0.212
50 138.381 112.855 163.418 14.569 4.255 3.779 4.573 0.247

5. Microservices as Deployment Strategy: A Qualitative Analysis

We have seen in the experiments that the characteristics of the hardware have a dra-
matic impact on the run times of certain computationally intensive tasks—specifically, the



Future Internet 2024, 16, 120 19 of 22

time schedule calculation—and the conclusion is that the run times of the ILP are much
smaller if we use a specially designed machine with a high frequency of operation. In
contrast, other tasks, e.g., the topology collection, do not require such stringent hardware
specifications. This highlights the advantage of assigning different software tasks to separate
microservices, to better align the hardware resources to their requirements. This represents
a clear advantage of using the microservice approach above a monolithic implementation.

In an ideal scenario, the ILP should run on a high-capacity hardware computer, with
the maximum operating frequency for its processor and using an efficient solver like Gurobi.
In contrast, the rest of the elements could run on general-purpose machines, using container
orchestration tools such as Kubernetes or OpenShift. Both tools allow us to manage where
and when the containers containing the microservices are deployed and store their configu-
ration parameters. They also provide components to expose the microservices to the outside
and mechanisms to select the nodes on which the microservices can be deployed. However,
these two technologies have significant differences: Kubernetes is a widely adopted, highly
scalable, open-source container orchestration platform, which provides robust tools for
container cluster management, application deployment, and autoscaling; on the other hand,
OpenShift is a Kubernetes-based application platform developed by Red Hat that offers
an additional layer of added value by providing a more complete and enterprise-ready
experience. OpenShift incorporates Kubernetes but adds additional features and function-
alities, such as deployment automation, application lifecycle management, and a more
intuitive and simplified approach to application deployment. In short, while OpenShift
is focused on offering a complete and enterprise solution, Kubernetes is a more basic and
flexible option.

From all the previous considerations, we concluded that the ideal scenario to deploy
our µTSN-CP solution consisted of a Kubernetes cluster comprising two groups of nodes.
The first group is made up of machines specifically designed to operate at high frequency
(for example, the AWSs M5Zn.large machine group), intended for the ILP Calculator
microservice, while the second group comprises general-purpose hardware and is used to
run all the other microservices. Figure 17 illustrates this approach.

Figure 17. Microservices distribution in a Kubernetes cluster.

6. Conclusions and Future Work

In this work, we described the development of a functional prototype of a TSN CP
following the SDN architecture, and tested it using real equipment. In addition, we explored
the characteristics of a microservice architecture (MSA) and its advantages. This kind of
architecture can achieve better results than an equivalent monolithic architecture because it



Future Internet 2024, 16, 120 20 of 22

is possible to allocate resources tailored to the specific needs of each microservice. With
an MSA, we have a superior granularity in the assignation of resources; in contrast, in a
monolithic architecture, we cannot specifically allocate resources to specific software tasks.
To the best of our knowledge, the only other works that have described SDN control planes
for TSN that follow the microservices architecture are OpenCUC [14] (which is not yet
public) and OpenCNC [15,17].

We described quantitatively how the MSA can be used to achieve superior scalability, by
assigning computational resources to specific microservices according to their requirements.
More specifically, our results emphasize the need to prioritize the processor clock speed
of the machines that are running the ILP solver we used. This is because solving a linear
programming problem is a single-thread task. It does not matter how many available cores
the processor has; it will only use a single thread. This is the main reason why, during
our experiments, the M5Zn.large AWSs machine outperformed the local machine. In a real
scenario, it is thus possible to specifically allocate that microservice to a working device with
the highest clock speed to achieve better results, thanks to the modular character of the MSA.

In the case of creating a Kubernetes cluster, the nodes with higher clock speed must be
properly labeled so that the Kubernetes scheduler can assign the ILP pod to the optimal
node. By strategically tagging nodes within a Kubernetes cluster that possesses superior
computational capabilities, we can leverage the TaintToleration attribute of deployment
resources in Kubernetes to precisely assign pods of a microservice to designated machines.
This approach is particularly beneficial, for example, in the case of the ILP microservice,
where we can apply a Taint to ensure that the ILP’s pods are exclusively scheduled on
machines boasting higher CPU frequencies. This method enhances the efficiency and
performance of resource-intensive applications by optimizing hardware utilization.

We are currently exploring several extensions to our work. To begin, the modular
design provided by the MSA allows for better upgrading possibilities: we can replace
individual components as long as the new microservice receives the same inputs and
delivers the same outputs as the old one. This presents the additional advantage of being
able to follow development and integration processes for different microservices separately.
In this context, we are exploring the substitution of the current ILP Calculator microservice.
ILP algorithms have exponential run times [2], so there is no guarantee that they will
find a valid schedule before an established time. In practice, a deadline is set for the ILP
algorithm to find a valid solution and, if it is not found, the schedule is considered to
be unfeasible. Every execution of the ILP that results in an unfeasible outcome is thus a
waste of computing effort and time. There exist other solutions to the scheduling problem
in TSN that resort to Machine Learning (ML) in the literature, e.g., [36], but they do not
contemplate the TAS defined in IEEE802.11Qbv. To the best of our knowledge, there exists
no other work in the literature that proposes the use of ML to support the calculation of
valid schedules for the TAS in TSN. In our ongoing work, we are using supervised ML to
quickly predict the feasibility of a schedule and, only if the prediction is positive, go ahead
with the execution of the ILP algorithm.

Following a microservices architecture also raises some security issues that must be
addressed. In order to keep data safe, mutual TLS (mTLS) could be used for identification
and encryption in the internal interactions between microservices. Regarding external
(user) interaction with µTSN-CP, the entry point, which is the Jetconf microservice, already
includes the option to transmit the stream list by means of HTTPS. Furthermore, adding a
monitoring microservice could be useful to provide centralized log management.

Finally, µTSN-CP can be employed in integrated 5G-TSN scenarios such as those
described in [37,38] for industrial communications, where a whole 5G network (typically
private) acts as a single TSN switch. The µTSN-CP would communicate with the 5G system
through an application function (AF) in order to coordinate the creation and transport of
Quality-of-Service flows, considering the requirements of the TSN streams. Because of the
flexibility of its architecture, it would not be difficult to add new microservices to µTSN-CP
in order to interact with the 5G control plane.



Future Internet 2024, 16, 120 21 of 22

Author Contributions: Conceptualization, A.A.-T., G.D.O.-U., D.R.-R., M.F.-M. and D.R.; methodology,
A.A.-T., G.D.O.-U. and D.R.; software, G.D.O.-U. and M.F.-M.; validation, A.A.-T., G.D.O.-U. and
M.F.-M.; formal analysis, A.A.-T., G.D.O.-U. and D.R.; investigation, A.A.-T., G.D.O.-U.U., M.F.-M. and
D.R.-R.; resources, A.A.-T., D.R.-R. and D.R.; data curation, G.D.O.-U. and M.F.-M.; writing—original
draft preparation, A.A.-T., G.D.O.-U., M.F.-M. and D.R.-R.; writing—review and editing, A.A.-T.,
G.D.O.-U., M.F.-M., D.R.-R. and D.R.; visualization, A.A.-T., G.D.O.-U. and M.F.-M.; supervision,
A.A.-T., D.R.-R. and D.R.; project administration, A.A.-T., D.R.-R. and D.R.; funding acquisition,
A.A.-T., D.R.-R. and D.R. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Spanish Ministry of Economic Affairs and Digital Trans-
formation and the European Union—NextGenerationEU, in the framework of the Recovery Plan,
Transformation and Resilience (PRTR) (Call UNICO I+D 5G 2021, ref. number TSI-063000-2021-15–
6GSMART-EZ), and by the Agencia Estatal de Investigación of Ministerio de Ciencia e Innovación of
Spain under project PID2022-137329OB-C41/MCIN/AEI/10.13039/501100011033.

Data Availability Statement: The software presented in this study is available in https://github.
com/MaFe1401/TSN-CNC-CUC-UPC (accessed on 15 February 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Gerhard, T.; Kobzan, T.; Blöcher, I.; Hendel, M. Software-defined flow reservation: Configuring IEEE 802.1 Q time-sensitive

networks by the use of software-defined networking. In Proceedings of the 2019 24th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), Zaragoza, Spain, 10–13 September 2019; IEEE: New York, NY, USA, 2019;
pp. 216–223. [CrossRef]

2. Raagaard, M.L.; Pop, P. Optimization Algorithms for the Scheduling of IEEE 802.1 Time-Sensitive Networking (TSN); Technical Report,
DTU Compute; Technical University of Denmark: Kongens Lyngby, Denmark, 2017. Available online: https://www2.compute.
dtu.dk/~paupo/publications/Raagaard2017aa-Optimization%20algorithms%20for%20th-.pdf (accessed on 15 February 2024).

3. IEEE. Standard for Local and Metropolitan Area Networks–Timing and Synchronization for Time-Sensitive Applications. In IEEE
Std 802.1AS-2020 (Revision of IEEE Std 802.1AS-2011); IEEE: New York, NY, USA, 2020. [CrossRef]

4. Quan, W.; Fu, W.; Yan, J.; Sun, Z. OpenTSN: An open-source project for time-sensitive networking system development. CCF
Trans. Netw. 2020, 3, 51–65. [CrossRef]

5. Kobzan, T.; Blöcher, I.; Hendel, M.; Althoff, S.; Gerhard, A.; Schriegel, S.; Jasperneite, J. Configuration Solution for TSN-based
Industrial Networks utilizing SDN and OPC UA. In Proceedings of the 2020 25th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), Vienna, Austria, 8–11 September 2020; IEEE: New York, NY, USA, 2020; Volume 1,
pp. 1629–1636. [CrossRef]

6. Thi, M.T.; Said, S.B.H.; Boc, M. SDN-based management solution for time synchronization in TSN networks. In Proceedings of
the 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria, 8–11
September 2020; IEEE: New York, NY, USA, 2020; Volume 1, pp. 361–368. [CrossRef]

7. Gallipeau, D.; Kudrle, S. Microservices: Building blocks to new workflows and virtualization. SMPTE Motion Imaging J. 2018,
127, 21–31. [CrossRef]

8. Moradi, F.; Flinta, C.; Johnsson, A.; Meirosu, C. Conmon: An automated container based network performance monitoring system.
In Proceedings of the 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), Lisbon, Portugal, 8–12
May2017; IEEE: New York, NY, USA, 2017; pp. 54–62. [CrossRef]

9. Manso, C.; Vilalta, R.; Casellas, R.; Martínez, R.; Muñoz, R. Cloud-native SDN controller based on micro-services for transport
networks. In Proceedings of the 2020 6th IEEE Conference on Network Softwarization (NetSoft), Ghent, Belgium, 29 June–3 July
2020; IEEE: New York, NY, USA, 2020; pp. 365–367. [CrossRef]

10. Van, Q.P.; Tran-Quang, H.; Verchere, D.; Layec, P.; Thieu, H.T.; Zeghlache, D. Demonstration of container-based microservices
SDN control platform for open optical networks. In Proceedings of the 2019 Optical Fiber Communications Conference and
Exhibition (OFC), San Diego, CA, USA, 3–7 March 2019; IEEE: New York, NY, USA, 2019; pp. 1–3. [CrossRef]

11. Orozco, G. A microservices-Based Control Plane for Time Sensitive Networking. Master’s Thesis, Universitat Politècnica de Catalunya,
Barcelona, Spain, 2023. Available online: https://upcommons.upc.edu/handle/2117/392939 (accessed on 15 February 2024).

12. Bierman, A.; Björklund, M.; Watsen, K. RESTCONF Protocol. RFC 8040. 2017. Available online: https://www.rfc-editor.org/
info/rfc8040 (accessed on 15 February 2024).

13. Enns, R.; Björklund, M.; Bierman, A.; Schönwälder, J. Network Configuration Protocol (NETCONF). RFC 6241. 2011. Available
online: https://www.rfc-editor.org/info/rfc6241 (accessed on 15 February 2024).

14. OpenCUC. 2020. Available online: https://github.com/openCUC/openCUC (accessed on 15 February 2024).
15. OpenCNC Demo. 2022. Available online: https://git.cs.kau.se/hamzchah/opencnc_demo (accessed on 15 February 2024).
16. OpenCNC: TSNService. Available online: https://git.cs.kau.se/hamzchah/opencnc_tsn-service (accessed on 15 February 2024).

https://github.com/MaFe1401/TSN-CNC-CUC-UPC
https://github.com/MaFe1401/TSN-CNC-CUC-UPC
http://doi.org/10.1109/ETFA.2019.8869040
https://www2.compute.dtu.dk/~paupo/publications/Raagaard2017aa-Optimization%20algorithms%20for%20th-.pdf
https://www2.compute.dtu.dk/~paupo/publications/Raagaard2017aa-Optimization%20algorithms%20for%20th-.pdf
http://dx.doi.org/10.1109/IEEESTD.2020.9121845
http://dx.doi.org/10.1007/s42045-020-00029-8
http://dx.doi.org/10.1109/ETFA46521.2020.9211897
http://dx.doi.org/10.1109/ETFA46521.2020.9211923
http://dx.doi.org/10.5594/JMI.2018.2811599
http://dx.doi.org/10.23919/INM.2017.7987264
http://dx.doi.org/10.1109/NetSoft48620.2020.9165377
http://dx.doi.org/10.1364/OFC.2019.M3Z.5
https://upcommons.upc.edu/handle/2117/392939
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc6241
https://github.com/openCUC/openCUC
https://git.cs.kau.se/hamzchah/opencnc_demo
https://git.cs.kau.se/hamzchah/opencnc_tsn-service


Future Internet 2024, 16, 120 22 of 22

17. Hallström, F. Automating End Station Configuration: An Agile Approach to Time-Sensitive Networking. Master’s Thesis, Karlstad
University, Karlstad, Sweden, 2023. Available online: https://www.diva-portal.org/smash/get/diva2:1784534/FULLTEXT02.
pdf (accessed on 15 February 2024).

18. Jetconf. Available online: https://github.com/CZ-NIC/jetconf (accessed on 15 February 2024).
19. IEEE. Standard for Local and Metropolitan Area Networks–Bridges and Bridged Networks—Amendment 31: Stream Reservation

Protocol (SRP) Enhancements and Performance Improvements. In IEEE Std 802.1Qcc-2018 (Amendment to IEEE Std 802.1Q-2018 as
amended by IEEE Std 802.1Qcp-2018); IEEE: New York, NY, USA, 2022. [CrossRef]

20. Congdon, P. Link Layer Discovery Protocol and MIB; Technical Report; IEEE: New York, NY, USA, 2002. Available online:
https://www.ieee802.org/1/files/public/docs2002/lldp-protocol-00.pdf (accessed on 15 February 2024).

21. Zadka, M. Paramiko. In DevOps in Python: Infrastructure as Python; Apress: Berkeley, CA, USA, 2019; pp. 111–119. [CrossRef]
22. Integer Linear Programming. Available online: https://en.wikipedia.org/wiki/Integer_programming (accessed on 15 Febru-

ary 2024).
23. Pyomo. 2008. Available online: https://github.com/Pyomo/pyomo (accessed on 15 February 2024).
24. AMPL. 2022. Available online: https://ampl.com/ (accessed on 15 February 2024).
25. Pico. 2022. Available online: https://www.swmath.org/software/2252 (accessed on 15 February 2024).
26. CBC. 2022. Available online: https://www.coin-or.org/Cbc/ (accessed on 15 February 2024).
27. GLPK. 2022. Available online: https://www.gnu.org/software/glpk/ (accessed on 15 February 2024).
28. Gurobi. 2008. Available online: https://www.gurobi.com/ (accessed on 15 February 2024).
29. IEEE 802.1Q Bridge Yang Model. Available online: https://github.com/YangModels/yang/blob/main/standard/ieee/

published/802.1/ieee802-dot1q-bridge.yang (accessed on 2 July 2023).
30. OpenDaylight. Available online: https://opendaylight.org/ (accessed on 2 July 2023).
31. SOC-e. MTSN-Kit: A Comprehensive Multiport TSN Setup. Available online: https://soc-e.com/mtsn-kit-a-comprehensive-

multiport-tsn-setup/ (accessed on 15 February 2024).
32. T3 AWS Instances. Available online: https://aws.amazon.com/es/ec2/instance-types/t3/ (accessed on 15 February 2024).
33. M5 AWS Instances. Available online: https://aws.amazon.com/es/ec2/instance-types/m5/ (accessed on 15 February 2024).
34. Chakrabarty, K. Test scheduling for core-based systems using mixed-integer linear programming. IEEE Trans. Comput.-Aided Des.

Integr. Circuits Syst. 2000, 19, 1163–1174. [CrossRef]
35. Meindl, B.; Templ, M. Analysis of commercial and free and open source solvers for linear optimization problems. In Technical

Report; Vienna University of Technology: Vienna, Austria, 2012. Available online: http://hdl.handle.net/20.500.12708/37465
(accessed on 15 February 2024).

36. Mai, T.L.; Navet, N.; Migge, J. A Hybrid Machine Learning and Schedulability Analysis Method for the Verification of TSN
Networks. In Proceedings of the 2019 15th IEEE International Workshop on Factory Communication Systems (WFCS), Sundsvall,
Sweden, 27–29 May 2019; pp. 1–8. [CrossRef]

37. 5GACIA. Integration of 5G with Time-Sensitive Networking for Industrial Communications. Technical Report, 5GACIA, 2021.
Available online: https://archive.5g-acia.org/publications/integration-of-5g-with-time-sensitive-networking-for-industrial-
communications/ (accessed on 15 February 2024).

38. Ferré, M. Design and Development of a Gateway between Time-Sensitive Networking (TSN) and 5G Networks. Bachelor’s
Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2023. Available online: https://upcommons.upc.edu/handle/21
17/392883 (accessed on 15 February 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.diva-portal.org/smash/get/diva2:1784534/FULLTEXT02.pdf
https://www.diva-portal.org/smash/get/diva2:1784534/FULLTEXT02.pdf
https://github.com/CZ-NIC/jetconf
http://dx.doi.org/10.1109/IEEESTD.2018.8514112
https://www.ieee802.org/1/files/public/docs2002/lldp-protocol-00.pdf
http://dx.doi.org/10.1007/978-1-4842-4433-3_9
https://en.wikipedia.org/wiki/Integer_programming
https://github.com/Pyomo/pyomo
https://ampl.com/
https://www.swmath.org/software/2252
https://www.coin-or.org/Cbc/
https://www.gnu.org/software/glpk/
https://www.gurobi.com/
https://github.com/YangModels/yang/blob/main/standard/ieee/published/802.1/ieee802-dot1q-bridge.yang
https://github.com/YangModels/yang/blob/main/standard/ieee/published/802.1/ieee802-dot1q-bridge.yang
https://opendaylight.org/
https://soc-e.com/mtsn-kit-a-comprehensive-multiport-tsn-setup/
https://soc-e.com/mtsn-kit-a-comprehensive-multiport-tsn-setup/
https://aws.amazon.com/es/ec2/instance-types/t3/
https://aws.amazon.com/es/ec2/instance-types/m5/
http://dx.doi.org/10.1109/43.875306
http://hdl.handle.net/20.500.12708/37465
http://dx.doi.org/10.1109/WFCS.2019.8757948
https://archive.5g-acia.org/publications/integration-of-5g-with-time-sensitive-networking-for-industrial-communications/
https://archive.5g-acia.org/publications/integration-of-5g-with-time-sensitive-networking-for-industrial-communications/
https://upcommons.upc.edu/handle/2117/392883
https://upcommons.upc.edu/handle/2117/392883

	Introduction
	Related Work
	TSN-CP Architecture
	Introduction
	Jetconf Microservice
	Topology Discovery Microservice
	Preprocessing Microservice
	ILP Calculator Microservice
	Southconf Microservice
	SDN Controller Microservice

	Tests and Discussion of Results
	Scheduling Solution Inspection
	Example 1
	Example 2
	Example 3

	Laboratory Setup
	Performance Analysis
	Comparison of ILP Solvers
	Hardware Configurations Comparison—Using GLPK
	Hardware Configurations Comparison—Using Gurobi


	Microservices as Deployment Strategy: A Qualitative Analysis
	Conclusions and Future Work
	References

