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Abstract: With the proliferation of WiFi devices, WiFi-based identification technology has garnered
attention in the security domain and has demonstrated initial success. Nonetheless, when untrained
illegitimate users appear, the classifier tends to categorize them as if they were trained users. In
response to this issue, researchers have proposed identity legitimacy authentication systems to
identify illicit users, albeit only applicable to individual users. In this article, we propose a multi-user
legitimacy authentication system based on WiFi, termed Multi-WiIR. Leveraging WiFi signals, the
system captures users’ walking patterns to ascertain their legitimacy. The core concept entails training
a multi-branch deep neural network, designated WiIR-Net, for feature extraction of individual users.
Binary classifiers are then applied to each user, and legitimacy is established by comparing the model’s
output to predefined thresholds, thus facilitating multi-user legitimacy authentication. Moreover, the
study experimentally investigated the impact of the number of legitimate individuals on accuracy
rates. The results demonstrated that The Multi-WiIR system showed commendable performance
with low latency, being capable of conducting legitimacy recognition in scenarios involving up to
four users, with an accuracy rate reaching 85.11%.

Keywords: WiFi sensing; channel state information (CSI); identity legitimacy authentication;
multi-user recognition; multi-branch deep neural network

1. Introduction

The widespread adoption of Internet of Things (IoT) technologies has spurred compa-
nies to offer more convenient and personalized services, which in turn requires accurate
user identification. Traditional identification methods primarily rely on account passwords
and identity markers [1]. Identity markers typically consist of account names and login
codes, comprising a combination of numbers, letters, special symbols, and control symbols.
For instance, login codes are commonly used to verify identity legitimacy during electronic
login processes. Conversely, identity tokens are personal possessions utilized to activate
electronic devices and store individual proprietary information for device identification.
Examples include smart electronic cards and keys, commonly employed to access con-
trol facilities. However, traditional identification methods suffer from notable limitations:
electronic cards are susceptible to loss or counterfeiting, while passwords are prone to
being forgotten or stolen. Furthermore, these systems cannot differentiate between the
rightful owner and an intruder who obtains the identifiers. Once another individual gains
access to these identity markers, they can acquire the same privileges. Therefore, traditional
identification technologies fall short of meeting demands in numerous scenarios.

Current identification methods mainly rely on biometric identification technology [2],
which utilizes specialized sensing equipment to gather physiological and behavioral in-
formation. Subsequently, information processing technology is employed to match these
features for identification purposes. Physiological information is intrinsic and developed in
infancy, while behavioral information is habitual and cultivated in daily life; both possess
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unique characteristics. Hence, biometric-based identification technology is not easily for-
gotten or lost, nor is it easily replicated or stolen. Moreover, it offers the advantage of user
portability, enabling its utilization anytime and anywhere. Commonly employed biometric
traits include iris patterns, fingerprints, facial features, and body shape. However, visual
devices encounter limitations due to their inability to penetrate through walls, resulting in
blind spots during facial and body image recognition. Moreover, they pose risks to personal
privacy and may lead to severe privacy breaches [3]. Conversely, the utilization of biometric
traits such as iris patterns and fingerprints for identification necessitates direct contact
between the individual and specialized equipment. Additionally, the deployment of this
equipment in advance may be required for certain temporary uses, with high associated
costs [4].

In recent years, researchers have discovered that WiFi technology serves not only
communication purposes but also as a means of sensing specific information. Through the
utilization of received signal strength indicator (RSSI) and channel state information (CSI),
various applications including indoor localization [5,6], fall detection [7,8], and monitoring
physical activity [9,10] have been successfully implemented. CSI, being a form of fine-
grained physical information, holds a notable advantage in its sensitivity to environmental
changes, rendering it more effective in perception. Moreover, WiFi devices are cost-effective
and do not require users to interact with or wear additional sensing apparatus, thus
circumventing the reliance on visual and wearable devices. Additionally, WiFi sensing
technology poses fewer intrusions into user privacy and enhances user comfort and security.
Finally, researchers have modified the network card to facilitate stable and easy acquisition
of CSI data from WiFi. Furthermore, the data we receive comprise continuous signals. Even
in instances where CSI is not available or unavailable, the received data will be deemed
erroneous and subsequently discarded during the decoding process. Following this, the
next CSI segment will be decoded.

With the advancement of CSI-based perception technology, some scholars have inte-
grated CSI into identity recognition systems [11–13] with notable success. However, certain
shortcomings exist within current identification systems, notably the incapacity of the clas-
sification rules within classifiers to differentiate unknown samples. This limitation results
in the system’s inability to recognize intruders, thereby diminishing its practicality. Subse-
quent research efforts have addressed the issue of identity legitimacy authentication [14–16].
However, there exists an issue with the variability of the threshold for determination, which
changes with variations in experimental groups, lacking adaptability. Furthermore, existing
research only focuses on single-user scenarios. Therefore, their practical application poses
greater challenges.

In prior studies [17], we effectively addressed the influence of changes in experimen-
tal group on judgment thresholds by introducing a particle swarm optimization (PSO)
algorithm [18], yet this remained limited to single-user scenarios. To tackle the issue of
multi-user legitimacy, this paper introduces a multi-user legitimacy authentication sys-
tem named Multi-WiIR. The central idea leverages a multi-branch deep neural network,
WiIR-Net, to extract features pertinent to individual users, and employs binary classifiers
for each user. Ultimately, the legitimacy of each user is ascertained based on predefined
thresholds derived from the model’s output, thereby converting the multi-user legitimacy
authentication issue into a single-user legitimacy authentication issue.

This paper contributes to the field in the following ways:

• We propose and implement Multi-WiIR, a multi-user legitimacy authentication system
that detects the presence of trespassers in a scenario through the use of commercial
WiFi devices. We evaluated the system in a real-world environment and showed that
the system can concurrently authenticate the legitimacy of up to four users with an
accuracy of 85.11%.

• We propose a multi-branch deep learning model termed WiIR-Net. It employs convo-
lutional neural networks (CNN) as the backbone, with multiple BiLSTM [19] branches
for feature extraction. Each branch is equipped with a binary classifier, and the legit-
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imacy of each user is determined by comparing the output of each classifier with a
predefined threshold. Consequently, the multi-user legitimacy authentication problem
is transformed into a single-user legitimacy authentication problem.

• We conducted comparative experiments of operational efficiency and evaluation met-
rics between Multi-WiIR and various other models. The experimental outcomes
demonstrated that the multi-branch architecture of Multi-WiIR enhanced the oper-
ational efficiency by 35.8% over multi-model multi-user legitimacy systems, and it
surpassed the other classic models by nearly 5 percentage points in terms of performance.

The remaining sections of this paper are organized as follows: Section 2 provides an
overview of related work. Section 3 introduces the fundamental principles of WiFi-based
technology and the knowledge required for WiIR-Net. Our Multi-WiIR framework and its
associated processes are presented in Section 4. Section 5 presents the experimental results.
In Section 6, we discuss the limitations of our work and potential solutions. Finally, we
conclude our work in Section 7.

2. Related Work

The utilization of WiFi devices for sensing applications has a significant historical
background. In 2000, Bahl et al. [20] introduced the Radar system, pioneering the use of
received signal strength (RSSI) for indoor localization, marking the inception of WiFi for
sensing purposes. In 2012, Chetty et al. [21] achieved motion sensing through the analysis
of Doppler frequency shifts. Similarly, in 2012, Halperin et al. [22] utilized a commercial
network card CSI from commercial NICs for motion sensing, providing a more refined and
stable foundation for WiFi-based identity sensing. In 2016, Zhang et al. [11] proposed WiFi-
ID, pioneering the integration of WiFi sensing into identity recognition for the first time
and leveraging CSI data. Since then, WiFi-based identification systems have undergone
extensive development, including non-line-of-sight (NLOS) [12,13], cross-domain [23–25],
and multi-user [26–28] WiFi identification approaches. However, in the aforementioned
identification systems, the classifier’s classification categories are predetermined. Conse-
quently, when an unauthorized individual is present, their category does not match any
known categories in the classifier. Despite this, the classifier erroneously classifies them
as a known legitimate user. This limitation renders the system incapable of accurately
determining the legitimacy of an individual’s identity, leaving it vulnerable to intrusion by
unauthorized individuals.

Despite the high accuracies achieved by the current identification techniques, the
inability to recognize unauthorized individuals significantly restricts the applicability of
these systems. In response to the challenge of authenticating personnel identity legiti-
macy, several researchers have incorporated this functionality into identification systems.
Wang et al. [14] developed the WiFiU system, which categorizes training data into baseline
personnel and target personnel. Utilizing a support vector machine (SVM) classifier, the
system calculates the probability of an unknown gait instance belonging to the target per-
sonnel. Instances with probability values exceeding a threshold are considered legitimate
personnel. The study in [15] presents the Wii system, which segregates a segment of the
training set into legitimate and illegitimate personnel categories. While accomplishing
identity recognition, the system constructs Gaussian models for both legitimate and ille-
gitimate personnel to distinguish between them. Lin et al. [16] identified legitimate user
identities and authenticated illegitimate users using specialized loss functions. However,
these systems require the introduction of illegitimacy personnel data into the training set,
posing challenges in realistic scenarios. Shi et al. [29] established a support vector model
for each legitimate user and assessed the legitimacy of unknown personnel identities by
comparing the distance between unknown personnel samples and legitimate user support
vectors. Nevertheless, this approach is only suitable for a small number of users. Kong
et al. [27] analyzed multipath WiFi signals to characterize users with separate CSI profiles.
By training threat models with individual CSIs, they achieved an FAR of 8.8% and an
FRR of 5.2%. However, this method failed in scenarios where users were positioned along
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an ellipse with identical arrival times. GaitSense [30] clustered legitimate persons using
k-nearest neighbors (KNN) and determined the legitimacy of a target user by assessing their
proximity to legitimate persons. Wi-Sniffer [31] employed a trained deep learning model in
combination with a decision tree for intruder detection, achieving a correct classification
rate of 87% and an intruder detection rate of 95%.

However, these legitimacy authentication methods are only applicable to single users
and not to multiple users. In conclusion, the existing legitimacy authentication systems do
not meet the needs of real life.

3. Perception Principles and Key Technologies

To provide a comprehensive understanding of Multi-WiIR, this section introduces the prin-
ciples of CSI and delves into the principles of WiFi sensing, CNNs, and BiLSTM technology.

3.1. Channel State Information (CSI)

CSI pertains to the physical layer data in wireless communication protocols and is
not directly accessible. However, in recent years, researchers [22] have devised methods
to acquire CSI from the physical layer in high throughput mode by leveraging OFDM
(orthogonal frequency division multiplexing) technology as per the IEEE 802.11n stan-
dard. In this standard, CSI information is extracted from 30 specific subcarriers out of the
total 64 subcarriers defined, with the aim of minimizing interference. By extracting CSI
information, we can obtain the CSI matrix depicted in Equation (1),

H = [H(1)H(2) . . . H(30)]NT×NR
(1)

where NT and NR represent the number of antennas at the transmitter and receiver, re-
spectively. Each antenna pair corresponds to a total of 30 carriers. Figure 1 illustrates
the amplitude characteristics of 30 subcarriers generated for users by specific antennas.
These magnitude features serve as our raw data and will be input into the subsequent
preprocessing stages.

Figure 1. CSI amplitude features of user walking.

3.2. Principle of WiFi Sensing

The foundational premise of WiFi sensing is predicated on exploiting the effects that
targets have on transmitted signals for the purpose of identification. As signals are emitted
from a transmitter and navigate through the environment, they encounter a range of static
and dynamic obstacles and entities, experiencing various phenomena such as reflection,
refraction, and diffraction. Gait information quintessentially mirrors the behavioral traits
correlated with an individual’s identity; divergent walking patterns among users induce
specific alterations in signal propagation. By meticulously examining the characteristics
of these altered signals, we are able to infer the legitimacy of the user. By analyzing
these signal characteristics, one can infer human activity states. This analytical process is



Future Internet 2024, 16, 127 5 of 17

delineated through the intricate analysis of CSI, which represents the link state from the
transmitter to the receiver.

Assuming X and Y denote the transmitted and received signals, this can be modeled
as follows:

Y = HX + N (2)

Here, H denotes the channel matrix and N denotes the environmental noise. WiFi signals
undergo reflection from diverse objects within the environment, generating a multipath
effect, as illustrated in Figure 2. The signal exhibits delay, fading, and frequency spreading
on different paths, thus showing distortion at the receiver.

Wall

FloorFurniture

1-user

2-user Static path
Dynamic path

Figure 2. Illustration of the multipath effect.

From Figure 2, we can see that the signal at the receiver is reflected from multiple
paths, which can be categorized into two types: static paths and dynamic paths. Therefore,
the channel frequency response (CFR) can be derived as follows:

H( f , t) =
S

∑
s=1

ak
s( f , t) +

D

∑
d=1

ak
d( f , t) (3)

where H( f , t) is the CFR at moment t, carrier frequency f , and
S
∑

s=1
ak

s( f , t) and
D
∑

d=1
ak

d( f , t)

represent the CFR of the static and dynamic environments, respectively. ak
s( f , t) and ak

d( f , t)
denote the initial signal attenuation and phase shift of the k-th path on the static and
dynamic path at moment t, the carrier frequency f , and S and D are the number of static
and dynamic paths.

3.3. Convolutional Neural Network (CNN)

CNN [32], a fundamental neural network, find widespread application in diverse
fields, such as image classification [33], object detection [34], and speech recognition [35].
The primary concept behind CNN is to extract features from data, such as images, through
convolutional and pooling layers, followed by performing classification or regression tasks
using fully connected layers. Compared to traditional fully connected neural networks,
CNN offer several advantages in processing image data, including parameter sharing, local
perceptibility, and hierarchical structure. With the ability to automatically learn features,
CNN excel in handling large-scale datasets.

3.4. Bi-Directional Long Short-Term Memory (BiLSTM)

Wi-Fi signals, typically being time-series data, are best classified using recurrent
neural networks (RNN). However, traditional RNNs, along with their variants such as long
short-term memory (LSTM) networks [36] and gated recurrent units (GRU) [37], can only
capture past information. For tasks like activity recognition that require consideration of
sequential actions, both past and future information are equally important. Hence, the
BiLSTM was introduced as a foundational neuronal structure. BiLSTM comprises forward
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and backward layers capable of extracting temporal features from both past and future
data, thereby enhancing recognition accuracy, as depicted in Figure 3. In this architecture,
the hidden state of BiLSTM at time point is represented by

ht =
−→
ht ⊕

←−
ht (4)

where ht represents the hidden state of the unit,
−→
ht and

←−
ht denote the forward and backward

states, respectively, while ⊕ signifies the concatenation operation.

LSTM

LSTM

LSTM

LSTM

LSTMLSTM

……

X3

X2

X1 Y1

Y2

Y3

O
u
tp
u
t

Layer

Figure 3. BiLSTM network framework.

4. Multi-WiIR
4.1. System Overview

In this section, we elaborate on the Multi-WiIR system, as depicted in Figure 4, Multi-
WiIR comprises four main modules:

TX RX

Data Collection 

Multi-User
Data  

Data Processing

Noise 
Reduction 

pass Low-filter

Noise 
Reduction 

pass Low-filter

Data 
Interpolation 

Linear interpolation

Data 
Interpolation 

Linear interpolation

Feature 

Extraction 

D4 wavelet

2 levels of 
approximation

DWT
D4 wavelet

2 levels of 
approximation

DWT

TX1 TX2

 Select 
antenna 

Compare amplitude

TX1 TX2

 Select 
antenna 

Compare amplitude

LSTM LSTM

...

...

BiLSTM

LSTM LSTM

LSTM LSTM

WiIR-Net

illegitimacy

legitimacy

illegitimacy

legitimacy

CNN CNN 

Figure 4. Multi-WiIR system framework.
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(1) Data Collection: Responsible for gathering CSI data from both single-user and multi-
user scenarios, this module labels the data to differentiate between legitimate and
illegitimate individuals, storing them in the data collection module.

(2) Data Processing: During the data processing stage, collected data undergo a series of
processes, including antenna selection, outlier detection, filtering, and linear interpo-
lation. The processed data are then fed into the feature extraction module.

(3) Feature Extraction: The feature extraction module utilizes the D4 wavelet in the
discrete wavelet transform (DWT) algorithm to process the processed CSI amplitude,
calculating approximation coefficients, which are then input into the deep learning
model for training.

(4) Multi-user Legitimacy Authentication: Built upon a multi-branch deep neural network
comprising a multi-layer convolutional neural network and bidirectional LSTM layers,
this module extracts features for each user using each branch of the WiIR-Net. Multiple
binary classifiers are employed to determine the legitimacy of each user, achieving
multi-user legitimacy recognition.

4.2. Data Collection

Data collection was conducted using an Ubuntu operating system equipped with
an Intel 5300 Network Interface Card (NIC). The CSI tool was installed on this system to
capture CSI packets. Data collection was carried out separately for single-player and multi-
player scenarios. Each collected dataset was labeled to differentiate between legitimate and
illegitimate individuals. Subsequently, all collected data were input into the data processing
module for further processing.

4.3. Data Processing

In this section on data processing, we focus on four key aspects: antenna selection,
outlier detection and filtering, linear interpolation, and feature extraction for CSI signals.

4.3.1. Antenna Selection

The sensitivity of a transmitting antenna to the environment can vary due to the
existence of the Fresnel zone. To address this, we selected the transmitting antenna based
on the variance in the amplitude. As illustrated in Figure 5, among the three receiving
antennas, the amplitudes of the signals received by TX1 in RX1 were slightly larger than
those received by TX2. However, in RX2 and RX1, the amplitude of the signals received by
TX2 was significantly larger than that received by TX1. This suggests that TX2 exhibited a
significantly higher sensitivity than TX1. Therefore, we opted to use TX2 as the transmitting
antenna for our data collection.
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Figure 5. Comparison of transmit antenna sensitivity.
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4.3.2. Outlier Detection and Filtering

Hardware defects in a device can lead to the presence of outliers in the signal, which
are points deviating from the general level. A Hampel filter effectively removes outliers
by setting predetermined data interval ranges. Additionally, environmental noise can
introduce high-frequency pulses and bursts of noise into a signal. Since human activity
typically manifests as frequency distributions in the low-frequency band around 10 Hz, a
low-pass filter [38] can effectively eliminate environmental high-frequency noise, ensuring
the accuracy and reliability of the subsequent signal analysis. The signal changes before
and after filtering are illustrated in Figure 6.

(a) (b)

Figure 6. Comparison of amplitude low-pass filtering. (a) CSI before low-pass filtering; (b) CSI after
low-pass filtering.

4.3.3. Data Interpolation

During the data acquisition process, data loss or time delay frequently arises, neces-
sitating data interpolation to obtain CSI data uniformly distributed in time. The linear
interpolation algorithm analyzed CSI data within a finite interval of values and calculates
adjacent K values to estimate the approximation of discontinuous points for interpolation,
thereby achieving temporal dimension uniformity.

4.4. Feature Extraction

CSI data contain abundant human motion information, but direct recognition entails
substantial computation and often falls short of ideal accuracy expectations. Therefore, it
is essential to perform feature extraction operations on effective activity segments within
CSI data. Wavelet approximation coefficients possess the capability to extract key features
from signals and mitigate data redundancy compared to time-domain and frequency-
domain features. The wavelet transform effectively preserves highly variable features
such as pulses and peaks of the original waveform, rendering them highly representative.
Hence, we employed the discrete wavelet transform (DWT) algorithm to conduct wavelet
decomposition of the CSI data and compute its approximation coefficients. As illustrated in
Figure 7, This method significantly reduced the data volume without altering waveforms,
thereby enhancing the efficiency of feature extraction. Compared to traditional feature
extraction methods, wavelet-based feature extraction can more effectively capture dynamic
information and patterns of change in CSI data, thus providing a more reliable foundation
for subsequent classification and recognition tasks.
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(a) (b)

Figure 7. Comparison before and after wavelet transform. (a) CSI before DWT; (b) CSI after DWT.

4.5. WiIR-Net

The WiIR-Net network model comprises multiple CNN convolutional layers and five
BiLSTM branches, each dedicated to a single legitimate user. WiIR-Net employs a multi-
layer convolutional network with an activation function to extract feature information from
all users. Subsequently, it extracts unique features for each user through five independent
BiLSTM layers. To simultaneously determine the legitimacy of multiple users, we employ
five binary classifiers. Initially, features of each user are extracted using the network, and
these features are then input into the five binary classifiers. By comparing the outputs
of these classifiers with a threshold, we predict the target user as legitimate if the output
exceeds the threshold. Conversely, if it falls below the threshold, we predict the user as
illegitimate. This approach optimally utilizes the individual user identity information
extracted by the deep learning model and the discrimination capability of binary classifiers
to achieve multi-user legitimacy authentication. Using five binary classifiers for multi-user
identification offers the advantage of enhancing system performance. In the subsequent
experiments, we conducted comparative studies to validate this concept. By aggregating
these judgments, we obtained the final multi-user identification result. This approach effec-
tively addresses multi-user scenarios and provides more accurate identification capabilities.
The model is depicted in Figure 8 below.

Classifer

LSTM LSTMLSTM LSTM

LSTM LSTMLSTM LSTM

LSTM LSTMLSTM LSTM

... ...

... ...

... ...

... ...

... ...

... ...

Illegal

Legal

Figure 8. WiIR-Net network model.

5. Experiment Results

In this section, we outline the experimental setup and evaluate the performance of
Multi-WiIR. To assess the effectiveness of WiSen-Net, we conducted comparisons with
various models, utilizing standard evaluation metrics such as accuracy, precision, recall,
and F1-score.
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Accuracy: Accuracy is defined as the ratio of correctly predicted positive and negative
cases to the total number of cases, and is calculated using Equation (5), below. The overall
accuracy rate represents the average accuracy across all users.

Accuracy =
TP + TN

TP + FN + FP + TN
(5)

Precision: Precision measures the proportion of predicted positive samples that are
actually positive. It considers the accuracy of positive predictions and is computed using
Equation (6) below. The overall precision rate represents the average precision across
all users.

Precision =
TP

TP + FP
(6)

Recall: Recall indicates the proportion of actual positive samples that are correctly
predicted as positive. It evaluates the completeness of positive predictions and is computed
using Equation (7) below. The overall recall rate represents the average recall across all users.

Recall =
TP

TP + FN
(7)

F1-score: The F1-score employs a harmonic mean instead of an arithmetic mean to bal-
ance precision and recall. Unlike an arithmetic mean, where each side equally contributes,
to value growth and decline, a harmonic mean favors smaller values during growth and
penalizes extreme cases where the precision and recall greatly differ. It achieves a balanced
trade-off between precision and recall. The F1-score is calculated using Equation (8) below.
The overall F1-score represents the average F1-score across all users.

F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
(8)

Accuracy and F1 score were the primary metrics for assessing the overall performance
of the system. Accuracy measured the proportion of samples correctly predicted by the
system, while the F1 score combined precision and recall, balancing the classification
performance for both positive and negative classes. They provided a comprehensive
evaluation of both the prediction accuracy and balance across the entire dataset.

5.1. Experimental Setup

As there was no publicly available dataset for multi-user based legitimacy authen-
tication, we curated our own dataset for validation purposes. The experimental setup is
depicted in Figure 9.

Figure 9. Experimental environment.
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In our study, we employed a TP-Link router as the transmitter and a computer
equipped with an Intel 5300 NIC as the receiver. The implementation was carried out
using the Python 3.8 programming language in conjunction with the PyTorch framework.
The training process took place on a server equipped with an NVIDIA 3060 GPU. Each
batch during training comprised 64 samples, and the model underwent training for a
total of 100 epochs. For detailed information regarding the experimental equipment and
parameters, please refer to Table 1.

The experiment involved data collection from 12 volunteers, comprising 7 males and
5 females aged between 20 and 30 years. We collected data from 5 legitimate individuals,
each contributing 200 entries as single-user data. Additionally, data collection was also
conducted on legitimate and illegitimate combinations of different user counts, with each
group comprising 180 records, resulting in a total of 3580 records. For example, for a triple-
user combination, we collected data for three scenarios: all three being legitimate users,
two legitimate users with one illegitimate user, one legitimate user with two illegitimate
users, and three illegitimate users. Each scenario involved the collection of 180 records.
Regarding the determination of legitimacy or illegitimacy, we considered that as long as
there was at least 1 single-user in the crowd who was legitimate, then it could be considered
that these people, with the permission of the legitimate individual, were also legitimate.
The basic information of the volunteers is provided in Table 2. During the experiment,
the volunteers maintained a distance of 0.8 m and performed stepping movements with a
natural posture for approximately 5 s each time.

Table 1. Equipment parameters.

Item Value

Transmitter (Tx) TP-Link Router
Receiver (Rx) Intel 5300 NIC

Transmitting antennas 2
Receiving antennas 3

Number of subcarriers 30
Working frequency antennas 5 GHz

Packet frequency 200 Hz

Table 2. Specific personnel information.

Volunteer Number Sex Height (cm) Weight (kg) Age Legitimacy/Illegitimacy

1 female 165 56 23 legitimacy
2 male 180 81 28 legitimacy
3 female 163 59 22 legitimacy
4 male 181 82 24 legitimacy
5 male 182 82 25 legitimacy
6 female 164 55 23 illegitimacy
7 female 158 51 25 illegitimacy
8 male 175 70 21 illegitimacy
9 male 178 76 24 illegitimacy
10 female 166 53 23 illegitimacy
11 male 178 79 26 illegitimacy
12 male 175 75 24 illegitimacy

5.2. Performance Evaluation
5.2.1. Single-User Legitimacy Authentication

We initially partitioned 70% of the legitimate single-user dataset for training, allo-
cating the remaining 30% of the legitimate and illegitimate single-user data for testing to
evaluate the system’s performance in single-user legitimacy authentication, particularly its
effectiveness in user legitimacy authentication. The evaluation results are elucidated using
a confusion matrix in Figure 10a.
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(a) (b)

(c) (d)

Figure 10. Confusion matrix for legitimacy authentication across different numbers of users. (a) Single-
user legitimacy authentication; (b) double-user legitimacy authentication; (c) triple-user legitimacy
authentication; (d) four-user legitimacy authentication.

5.2.2. Multi-User Legitimacy Authentication

In the multi-user legitimacy authentication, we conducted separate tests in scenarios
involving double-user, triple-user, and four-user scenarios. The specific procedures were
as follows: we initially partitioned 70% of the legitimate single-user dataset for training.
The data on legitimate and illegitimate combinations of different user counts were used
for testing to evaluate the system’s performance in the following aspects in multi-user
legitimacy authentication. The evaluation results are elucidated using a confusion matrix
in Figure 10b–d.

The overall performance, as depicted in Figure 11, showed that the Multi-WiIR
achieved accuracy rates of 92.64%, 90%, 87.91%, and 85.11% in the single-user, double-user,
triple-user, and four-user scenarios, respectively. This result indicated that our accuracy
remained, even in private settings. This achievement can be attributed to the utilization
of a multi-branch approach within our system for extracting the features of a single-user,
thereby mitigating potential interference from other users. Notably, within the context of
triple-user and four-user scenarios, the precision significantly surpassed the other scenarios,
owing to the lower presence of illicit users juxtaposed with a higher prevalence of legiti-
mate users, consequently resulting in the highest precision upon reevaluation. Importantly,
within this model, the overall false positive rate stood at a mere 3.2%, thus decisively
validating the system’s efficacy in preempting unauthorized intrusions.
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Figure 11. Overall performance of Multi-WiIR with different numbers of users.

5.2.3. Comparison of Different Models

(1) Branch model comparison

Our Multi-WiIR model utilizes a convolutional neural network (CNN) as a backbone
for extracting initial features, followed by the extraction of individual user features through
a multi-branch BiLSTM mechanism, considering both past and future information. To
demonstrate the superiority of our approach using the BiLSTM model, we compared our
model with multi-branch LSTM, GRU, and traditional CNN architectures.

As depicted in Figure 12, the average accuracy achieved by our BiLSTM model in
multi-user scenarios was 88.54%, representing an improvement of nearly 5 percentage
points over LSTM’s 83.45% and GRU’s 82.56%. This notable difference in performance
substantiated the superiority of our selection of a BiLSTM architecture.
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Figure 12. Comparison of the performance of the different models.

(2) Comparison of Running Efficiency

To assess the enhanced running efficiency of Multi-WiIR in contrast to multiple binary
classification models, we conducted a comparative analysis of their training times and test
set outcomes on the same computing platform. Figure 13 illustrates the comparison of
the time consumption by both systems across various training epochs, ranging from 10
to 40 epochs. The average training time for Multi-WiIR was calculated to be 0.5088 s per
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epoch, whereas the average training time for the multiple models amounted to 0.7924 s per
epoch. This indicates that Multi-WiIR reduced the training time by 35.8% compared to the
multi-model training duration. Moreover, it is noteworthy that the initialization time of the
multi-model system significantly exceeded that of Multi-WiIR. In summary, our findings
suggest that Multi-WiIR effectively enhanced the operational efficiency of the system when
compared to the multi-model multi-user legitimacy authentication system.
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Figure 13. Comparison of model elapsed time.

(3) Comparison with Previous Legitimacy Authentication Systems

Table 3 provides a concise overview of other mature WiFi-based IoT applications.
WiAU [16] necessitates the acquisition of information from untrained and unauthorized
personnel, a practical infeasibility in real-world scenarios. Furthermore, the thresholds
for identifying legitimate individuals necessitate adjustments with fluctuations in their
numbers. Multiauth [27] requires the information of unauthorized individuals and imposes
location constraints. GaitSense [30], similarly, requires adjustments to the threshold for
identifying legitimate individuals with changes in the number of experimental subjects.
Wi-Sniffer [31] extracts phase features, where the presence of Fresnel zones significantly
influences phase variations, thus imposing location constraints. Moreover, all the aforemen-
tioned systems are tailored for single-user scenarios. In contrast, our Multi-WiIR system
leverages the extraction of individual characteristics to ascertain legitimacy, unaffected by
fluctuations in the number of authorized persons and capable of concurrently handling
multiple individuals, irrespective of their positions.

Table 3. Comparison among works on legitimacy authentication.

System
Illegitimate

Users’
Information

Location
Requirement

Adjust
Threshold

Applicable
Scenarios

WiAU yes no yes single-user

MultiAuth yes yes no single-user

GaitSense no yes yes single-user

Wi-Sniffer no yes yes single-user

Multi-WiIR no no no multi-user
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6. Discussion

This approach only functions for a small number of users. As the number of users
increases, the accuracy rate drops drastically, even when adding model branches. This is
mainly due to the insufficient spatial resolution of WiFi signals, which leads to the mixing of
signals from multiple users. Currently, there are two potential solutions: one is to improve
the spatial resolution of the system by using more advanced antenna technology [39]; the
other is to limit the direction of signal transmission in order to better spatially discriminate
the signals of different users.

Environmental factors can affect system performance, and currently, we can only
conduct experiments in trained environments, not across domains. When the environment
changes, dynamic CSI containing human activity information may be obscured by envi-
ronmental reflections of static CSI. Our team successfully achieved cross-domain activity
recognition through the utilization of adversarial networks and domain classifiers for
environment-independent activity identification [40]. Next, we will attempt to apply this
approach to legitimacy recognition.

This approach will not work when CSI is unavailable or if there are errors in detecting
that information.When channel estimation errors or factors such as pilot contamination
render the received CSI unusable, the system may fail to operate smoothly. Noncoherent
(NC) detection technology [41,42] may offer an effective solution to this problem. This
technique does not require the receiver to accurately understand the channel’s state in-
formation, but rather relies on the statistical properties of the signal for demodulation.
In the face of complex channel conditions or communication environments, noncoherent
detection technology can simplify system design and enhance system robustness.

7. Conclusions

This paper presented the Multi-WiIR framework designed for multi-user identity
legitimacy authentication using commercial WiFi devices. The framework encompasses
modules for data acquisition, preprocessing, feature extraction, and multi-user authentica-
tion. Utilizing a multi-branch deep neural network WiIR-Net, user features are extracted
via deep learning techniques and legitimacy is determined through a binary classifier.
Evaluation conducted in a real-world environment demonstrated that WiIR-Net could
effectively authenticate the identity of up to four users, outperforming the alternative
models. The findings of this study offer a robust framework for multi-user identification
leveraging commercial WiFi devices, providing valuable insights for future research and
practical applications.
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