
Citation: Li, W.; Ren, M.; Liu, Y.; Li,

C.; Qian, H.; Zhang, Z. Congestion

Control Mechanism Based on

Backpressure Feedback in Data Center

Networks. Future Internet 2024, 16, 131.

https://doi.org/10.3390/fi16040131

Academic Editor: Paolo Bellavista

Received: 11 March 2024

Revised: 28 March 2024

Accepted: 9 April 2024

Published: 15 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Congestion Control Mechanism Based on Backpressure
Feedback in Data Center Networks
Wei Li 1,2, Mengzhen Ren 1, Yazhi Liu 1,*, Chenyu Li 1, Hui Qian 1 and Zhenyou Zhang 1

1 College of Artificial Intelligence, North China University of Science and Technology, Tangshan 063210, China;
lw@ncst.edu.cn (W.L.); mengzhenrmz@163.com (M.R.); lichenyu0210@163.com (C.L.);
qianhui990626@163.com (H.Q.); youzhenadd@163.com (Z.Z.)

2 Hebei Provincial Key Laboratory of Industrial Intelligent Perception, North China University of Science and
Technology, Tangshan 063210, China

* Correspondence: liuyazhi@ncst.edu.cn

Abstract: In order to solve the congestion problem caused by the dramatic growth of traffic in
data centers, many end-to-end congestion controls have been proposed to respond to congestion in
one round-trip time (RTT). In this paper, we propose a new congestion control mechanism based
on backpressure feedback (BFCC), which is designed with the primary goal of switch-to-switch
congestion control to resolve congestion in a one-hop RTT. This approach utilizes a programmable
data plane to continuously monitor network congestion in real time and identify real-congested
flows. In addition, it employs targeted flow control through backpressure feedback. We validate
the feasibility of this mechanism on BMV2, a programmable virtual switch based on programming
protocol-independent packet processors (P4). Simulation results demonstrate that BFCC greatly
enhances flow completion times (FCTs) compared to other end-to-end congestion control mechanisms.
It achieves 1.2–2× faster average completion times than other mechanisms.

Keywords: datacenter networks; congestion control; flow control; programmable switches

1. Introduction

Over the past decade, the Internet has undergone rapid development, marked by a
growing number of network users and increasing application demands. Data centers, being
the largest entities in the computer industry, have introduced new operational conditions
for network transmission protocols [1,2]. The widespread adoption of the network and
the proliferation of applications have led to a significant surge in the traffic of data center
networks (DCNs), consequently resulting in network congestion. This congestion elevates
forwarding latency and has a substantial impact on application performance [3]. Therefore,
it is critical to enhance congestion control capability for data centers, all while ensuring that
the network maintains low latency and high throughput [4,5].

At present, the majority of DCNs rely on existing congestion signals, such as packet
loss, explicit congestion notification (ECN), round-trip time (RTT), and in-network telemetry
(INT), to collect information about the current network status. End-to-end congestion
control is implemented by combining congestion signals generated by network nodes
and the rate control of endpoints. This type of congestion control mechanism adjusts the
sending rate based on congestion signals to alleviate congestion within the link effectively.

However, as the network scale expands and link speeds increase, the task of designing
effective feedback loops becomes more challenging. It becomes increasingly difficult to
make decisions that are both of higher quality and more timely, especially for bursty
workloads [6]. In essence, it takes at least one round-trip time (1-RTT) for endpoints to
adjust their rates to address congestion issues. Furthermore, the burst traffic generated by
different services puts additional strain on data centers, making it difficult for end-to-end
congestion control schemes to meet network requirements.

Future Internet 2024, 16, 131. https://doi.org/10.3390/fi16040131 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16040131
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://doi.org/10.3390/fi16040131
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16040131?type=check_update&version=1

Future Internet 2024, 16, 131 2 of 19

Conversely, we propose a novel method from a different perspective. The congestion
in the network can be effectively reflected by the buffers in the switches, which also
enable communication among each other throughout the entire network. We transform the
mechanism of rate control driven by the sender or receiver to rate control driven by the
switch. Consequently, the design of the feedback loop has transitioned from the previous
end-to-end model to one that operates from switch to switch. This transition enhances the
convenience and timeliness of addressing congestion issues in network links.

The primary contribution of this approach lies in demonstrating that congestion
control can be achieved through collaborative efforts among switches, namely through
per-hop per-flow flow control. The switch only needs to obtain information about the traffic
that is causing the buffer to become congested and does not have to monitor the status
of all traffic. Subsequently, the upstream switch adjusts the flow transmission rate based
on congestion feedback from the downstream. In practice, a combination of flow control
and end-to-end congestion control is advocated. However, our experiment focuses on the
comparison between per-hop per-flow flow control and end-to-end congestion control to
emphasize the advantages of the proposed approach.

We implement an approach called Congestion Control Mechanism Based on Backpres-
sure Feedback (BFCC) on the programmable data plane (PDP), a protocol-independent
pipeline switching structure. This structure enables us to process each packet according
to a programmable logic while concurrently forwarding packets [7]. According to the sur-
vey, programmable networks offer versatile applications encompassing load balancing [8],
traffic scheduling [9], congestion control [2], and so on. Load balancing is designed to
distribute load among multiple nodes and is more concerned with balanced resource utiliza-
tion. Traffic scheduling is designed to customize the optimal routing solution. Congestion
control focuses more on monitoring and regulating network congestion and aims to solve
network congestion problems. It appears that the congestion control scheme proposed
in this paper is quite different from load balancing and traffic scheduling, and therefore,
the experiments in this paper are not compared with them. While different applications
solve different networking problems, the effective deployment of these applications greatly
depends on the utilization of programmable switches.

Programmable switches bring unlimited possibilities for offloading complex packet
processing pipelines directly in the high-speed data plane [10]. Programming protocol-
independent packet processors (P4) can be used to define the forwarding behavior of
packets and to identify packets queued in the data plane. All operations on packets are
performed in the data plane, allowing the switch to target operations and enhancing the
flexibility of packet processing [11,12].

The main contributions are as follows:

• We summarize and reveal the shortcomings of the existing end-to-end congestion
control and traffic management in a high-bandwidth DCN.

• This paper defines a new method for congestion detection and congested flow identifi-
cation. This method uses the queue length in the buffer and the time that packets reside
in the queue to classify congestion into three different cases. Switches can effectively
detect congestion and identify the real-congested flow based on the queue occupancy.

• This paper designs a switch-driven rate congestion control. In this approach, upstream
switches can respond to congestion based on the downstream congestion feedback in
a one-hop RTT. This adjustment process helps accelerate the convergence of speeds.

• BFCC is implemented in the PDP, and extensive simulation experiments confirm that
this congestion control mechanism maintains high throughput and low latency with a
low buffer.

2. Motivation and Related Work

In recent years, various congestion control algorithms in data centers have been
proposed by researchers in order to alleviate network congestion and enhance network

Future Internet 2024, 16, 131 3 of 19

transmission performance [2,6,13]. In this section, we delve into the limitations of previous
work and provide an overview of the design features of our proposed scheme.

2.1. Congestion Control in Data Centers

The complex network environment in data centers has posed a substantial challenge
for traffic management. Researchers constantly introduce new techniques, resulting in the
proposals of various congestion control schemes. In the concrete implementations, these
schemes rely on end-to-end feedback loops. The sender adjusts the sending rate based on
the congestion feedback signals. Regardless of the type of congestion signal (e.g., ECN,
RTT, INT), the sender must wait at least 1-RTT to receive the feedback [2,14].

DCTCP [15] is the first to design a dedicated congestion control protocol for data
centers, which uses the ECN as a feedback signal and greatly reduces the transmission
delay transmission latency. Based on DCTCP, D2TCP [16] introduces a flow deadline factor
to prevent urgent flows from missing the final deadline. In contrast, ICTCP [17] implements
a congestion avoidance mechanism on the receiver side, unlike DCTCP and D2TCP. The
available remaining bandwidth is used to dynamically resize the receive window in real
time to regulate TCP throughput and avoid network congestion. DCQCN [18] is an
improved scheme based on DCTCP and QCN [19]. It detects congestion based on buffer
size. The sender reduces the sending rate based on the congestion information fed back
from the receiver. DCQCN is primarily designed as a rate-based congestion control scheme
for initiating remote direct memory access (RDMA) communication in data centers. There
are other options for detecting congestion through ECN marking, such as ECN* [20],
L2DCT [21], CEDM [22], and so on. The key to these methods is the selection of ECN
markings threshold [18,23].

Timely [24] used the RTT as a congestion signal to adjust the sending rate of senders.
This approach relies on the end-to-end RTT measurement and rate control and is mainly
used to enable RDMA in DCN. Swift [25] introduced a congestion control system that
classifies delay into endpoint delay and structural target delay. It employs different target
delays for different flows to enhance fairness. The requirement for hardware to accurately
measure the RTT is high in schemes where the delay is used as a congestion signal.

Poseidon [26] leveraged INT to solve multi-hop and reverse path congestion problems.
In addition, there exist congestion control methods based on different information. For
instance, FlexPass [27] relies on credit-based congestion control protocols. This type of
method usually requires the sender to send additional information or to redefine the process
of sending the packet, ultimately resulting in excessive bandwidth usage.

The main concern in an end-to-end congestion control scheme is the selection of
congestion signals. While a great deal of work has already been accomplished in the field
of congestion control, there are still significant challenges ahead. On the one hand, the
capacities of data center switches and link speeds continue to increase, requiring DCN to
be able to accomplish more and more small flows quickly. On the other hand, the buffer
capacity of the switch does not expand with the switch capacity. It makes it easier for
buffers to reach the limits of high-bandwidth links. These make the design of end-to-end
congestion control schemes more difficult. It is necessary to balance the transmission of
various types of traffic while ensuring low buffer occupancy of switches.

2.2. Traffic Management in Data Centers

Unlike the end-to-end congestion control schemes discussed in Section 2.1, flow control
places more emphasis on network traffic management. End-to-end congestion control deals
primarily with issues related to network congestion and fairness among competing flows.
Flow control is more localized and aims to prevent congestion and optimize resource
utilization on specific communication paths.

The priority-based flow control (PFC) [28] scheme operates as a per-hop per-flow
flow control mechanism. When a switch detects incoming packets exceeding the preset
threshold of a buffer, it sends a “Pause Frame” to the upstream, effectively halting further

Future Internet 2024, 16, 131 4 of 19

upstream traffic to prevent buffer overflow in the switch. However, the PFC scheme can
suffer from head-of-line (HOL) blocking and deadlock issues. More serious cases produce a
congestion-spreading phenomenon. In addition to this, there are some scheduling strategies
that prioritize short flows using switches, such as pFabric [29], Homa [30], and NDP [31].
These types of traffic scheduling schemes do not inherently reduce buffer occupancy and
may potentially fill up the buffer.

As the technology continued to develop, Cheng et al. revisited the congestion man-
agement architecture from another perspective and proposed the photonic congestion
notification (PCN) [32]. PCN introduces a new congestion detection and identification
mechanism. If 95% of the packets received during a congestion notification packet (CNP)
generation period are marked as ECN, the flow is considered congested. PCN is the first
scheme to handle congestion from the standpoint of identifying congested flows. Subse-
quently, the ternary congestion detection (TCD) [33] scheme was proposed to redefine the
state of the switch port as congestion, non-congestion, and undetermined. The transition
between ternary states can be detected by observing the evolving transmission patterns and
queue lengths in switches. TCD accurately detects congested ports and identifies congested
and undetermined flows. Both PCN and TCD handle congestion more accurately by intro-
ducing congestion signaling at the flow level to enhance network performance and fairness.
However, they still rely on the traditional sender-driven rate reduction mechanism, which
requires at least 1-RTT for the rate to converge to the speed of the adapted link.

Goyal et al. proposed BFC [2], a protocol for per-hop per-flow flow control. BFC
calculates a pause threshold based on the occupancy of the active flows at the switch port.
It allows the upstream to adjust the flow transmission by pausing or resuming based on
downstream congestion conditions. However, methods like BFC and PFC that directly
suspend the transmission of upstream traffic tend to be too aggressive. It can lead to the
accumulation of queues and the spread of congestion. To some extent, it also affects the
throughput of congested flows.

In a per-hop per-flow flow control scheme, the upstream switch implements congestion
control in a one-hop RTT instead of an end-to-end RTT. The faster response time allows the
upstream switch to act quickly compared to end-to-end congestion control. The research
challenge is to effectively manage the buffer queues of the switches and design complex
flow control policies. The PDP effectively addresses these issues. With the help of PDP,
it is possible to rapidly and comprehensively reconfigure processes like packet parsing
and forwarding in the network, achieving true programmability across all devices in the
network [7,9,26]. This enables the on-demand management of switch buffers, leading to
precise flow control to alleviate network congestion.

This congestion control strategy ensures the efficient use of network resources and
reduces wasted bandwidth by providing precise per-flow control. When the network
experiences congestion problems, per-hop per-flow flow control can quickly slow down
or stop the transmission of congested traffic to congested nodes without affecting other
non-congested flows. Responding to congestion in time can prevent packets from being
excessively queued on the switch, thus reducing the end-to-end latency. In addition, rate
control is combined with flow control. The switch adjusts the transmission rate as soon as
it receives a congestion signal from downstream. The rate control of the switch is added
to the flow control mechanism, and the congestion problems can be solved more flexibly
and quickly.

3. Congestion Detection and Identification

Congestion detection is a crucial step in flow control. Only after detecting congestion
can we further identify the flow affected by congestion and then adjust the transmission
rate of the flow. In this section, we observe changes in the switch buffer and design a
congestion detection and congested flow identification scheme.

Future Internet 2024, 16, 131 5 of 19

3.1. Observations and Insights

In DCN, the PDP enables efficient packet processing and traffic management. Pro-
grammatically defining the processing logic of the data plane enables flexible deployment
and management of network functions. P4 [34] is used as a domain-specific programming
language to program the data plane. P4 can flexibly define various packet processing and
forwarding logics and enables the programmable switches to more flexibly process and
make decisions about packets, thus realizing fine-grained and efficient packet process-
ing [35]. It is possible to obtain various information about packets passing through the
current switch using P4, such as ingress and egress timestamps, ingress and egress port
numbers, enqueue and dequeue depths, and so on.

Among them, queue delay and queue depth are two signals that react to network
congestion. In the PDP, when a packet enters the queue for the first time, the packet queue
depth (enq_qdepth, in units of the number of packets) can reflect the number of packets
waiting to be processed in the switch queue. The packet queue delay is the time spent by
the packet in the queue (deq_timedelta, in microseconds). The queue delay can be used to
evaluate the processing power and efficiency of the switch.

The queue depth reflects the number of packets waiting to be processed in the queue
but does not directly reflect the queue delay or transmission delay of the packets. In
some cases, there may be a large transmission delay, even if the queue depth is small.
This may affect user experience and application performance. Therefore, we observe the
relationship between them through experiments to provide design concepts for congestion
detection methods.

To observe the relationship between queue delay and queue depth, we perform
simulation tests under the topology shown in Figure 1. It contains three senders and one
receiver. The link bandwidth is set to 10 Mbps, and the sending rate is set to 1000 pps. The
marking threshold is set, and the packet marking is observed based on the queue depth.
Switch 3 is the node where three flows share the buffer queue. Therefore, the experiment
focuses on observing the changes in the buffer queue of Switch 3, as shown in Figure 2.
When the switch processes about 200 packets, the queue depth grows dramatically. The
switch buffer is filled quickly and kept in a high queue state, as shown in Figure 2a. Traffic
A from Sender 1, Traffic B from Sender 2, and Traffic C from Sender 3 are all marked as
congested, as shown in Figure 2b.

Sender2 Sender 3

Switch 2

Sender1

Switch 1

Receiver

Switch 3

Figure 1. Topology of the experiment. The colored lines show paths that differ from different
traffic groups.

This experiment shows that there is indeed congestion at Switch 3. Without comparing
congestion with the other two switches, it is uncertain if there is a problem with multiple
congestion points. The relationship between queue depth and queue delay is unknown.
Based on these two issues, a new experiment is designed.

The test scenario is adjusted to have the link bandwidth set to 1 Mbps, and the sender
sends traffic to the receiver at a rate of 500 pps for 10 s. The queue depth and queue delay of
the packets are captured, and the buffer information of Switch 1 and Switch 3 is observed, as
shown in Figure 3. The buffer information of the packet passing through Switch 1 is shown
in Figure 3a, and the buffer information passing through Switch 3 is shown in Figure 3b.

Future Internet 2024, 16, 131 6 of 19

When congestion occurs on a network device, the number of packets in the queue increases,
resulting in an increase in queue delay. Excessive queue delay usually indicates insufficient
processing power of the network device or insufficient network resources.

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0

1 5

P a c k e t s

Qu
eu

e
len

ge
th

(pa
cke

ts)

(a)

0 200 400 600 800 1000
Sequeuce Number(packets)

Traffic A

Traffic B

Traffic C

M
ar

ke
d

pa
ck

et
s

(b)

Figure 2. In congestion scenario, queue lengths and packet marking in the switch. (a) Queue length
in switch; (b) Packet marking in switch.

0 1 0 , 0 0 02 5 0 0 5 0 0 0 7 5 0 0
0

2 0 , 0 0 0

4 0 , 0 0 0

6 0 , 0 0 0

De
q_

tim
ed

elt
a

N u m b e r o f p a c k e t s

0 1 0 , 0 0 02 5 0 0 5 0 0 0 7 5 0 0
0

4

8

1 2

En
q_

qd
ep

th

(a)

0 1 0 , 0 0 02 5 0 0 5 0 0 0 7 5 0 0
0

2 5 , 0 0 0

5 0 , 0 0 0

7 5 , 0 0 0

De
q_

tim
ed

elt
a

N u m b e r o f p a c k e t s

0 1 0 , 0 0 02 5 0 0 5 0 0 0 7 5 0 0
0

2 0

4 0

6 0

En
q_

qd
ep

th

(b)

Figure 3. The buffer situation of the switches. (a) Switch 1; (b) Switch 3.

In order to compare the congestion in response to the queue delay between differ-
ent switches, the cumulative distribution function (CDF) of the queue delay of different
switches is plotted, as shown in Figure 4. Using PDP to read the packets passing through
the switch, it can be seen from the figure that the packets in the buffer have accumulated,
and the queue delay has increased. When multiple flows pass over the link, Switch 3
is more prone to congestion, and the degree of congestion is more severe, with Switch
1 having the next highest degree of congestion and Switch 2 having the lowest degree
of congestion.

Various problems arise in network nodes when traffic from different senders jointly
compete for bandwidth. The prerequisite for solving network congestion is to detect
congested nodes. Combining congestion signals such as queue depth and delay is more
effective than relying on a single signal for a congestion description. Therefore, it is
necessary to use the findings of the test experiments as a basis for further research.

0 20,000 40,000 60,000
Queue Delay

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Switch1
Switch2
Switch3

Figure 4. CDF of the queue delay in Switches 1–3.

Future Internet 2024, 16, 131 7 of 19

3.2. Congestion Determination
3.2.1. Division of Congestion Degree

Detecting congestion with only a single signal of queue depth or queue delay can no
longer be adapted to complex network environments. To achieve more accurate congestion
detection, a combination of multiple congestion signals is required. By dividing congestion
into different degrees, the network can develop appropriate forwarding strategies based
on the degree of congestion to improve the efficiency and fairness of the network. From
the feedback results in Section 3.1, the queue delay in the PDP is also a signal that quickly
indicates the degree of congestion. Therefore, the congestion degree can be divided based
on queue depth and queue delay. The queue delay of the standard metadata for packets
(standard_metadata. deq_timedelta) reflects the time spent in the queue for the current packet.
The larger the value of queue delay, the more severe the congestion. Conversely, the smaller
the value, the lighter the congestion.

Previous research has typically focused on using RTT measurements to evaluate overall
end-to-end queue delays across multiple aggregation switches rather than examining
queuing conditions at a single switch. Unlike end-to-end RTT, deq timedelta reflects the
time it takes for a packet to pass through the current switch, which provides insight into
congestion at the current node. Focusing the congestion determination on a single node in
the network provides better information about the node. It is essential to accurately identify
congested nodes during traffic transmission. Corresponding measures can be taken in
a timely manner by accurately capturing congested nodes in order to optimize network
performance and provide a good user experience.

We use the standard metadata enq qdepth as a metric of congestion detection, which is
similar to the traditional ECN marking approach. We detect the congestion of the current
node by queuing time packet arrivals. Based on testing (as described in Section 3.1), we
found that about 40% of packet congestion is detected when the queue length threshold is
set to 15. This approach efficiently addresses the congestion problem in a small area while
maintaining low buffer characteristics.

In addition, we introduce the standard metadata deq timedelta to further divide con-
gestion into three degrees: mild congestion, moderate congestion, and severe congestion.
The current congestion degree is divided according to Tmin and Tmax, as illustrated in
Figure 5. Through extensive testing, we found that by setting Tmin to 80,000 and Tmax
to 150,000, approximately 40% of congestion is equally divided into the three degrees
mentioned above. This helps us treat different degrees of congestion fairly. To represent
the degree of congestion in a packet, we define a two-byte bit (meta.congestion degree) in
the packet metadata. The specific marking method is shown in Table 1. Analyzing the
collected packet data allows us to assess the current degree of congestion at the switches,
thus helping control network congestion more effectively. Different degrees of congestion
require tailored management strategies.

Mild Congestion Moderate Congestion Severe Congestion

Tmin Tmax

Figure 5. Division of congestion degree.

The advantage of dividing the congestion degree is that it provides a more accurate
congestion control mechanism, which improves network performance and stability. The
frequency of congestion feedback messages increases as the congestion degree is divided,
leading to frequent rate control changes. These increase the burden on the switch, reduce
the performance of the switch, and affect the stable transmission of network traffic. The

Future Internet 2024, 16, 131 8 of 19

three degrees of congestion were chosen to provide the switch with simple and clear
instructions, ensuring that the rate control for three degrees of congestion still maintains
a stable transmission of traffic. This approach helps determine the location and extent of
congestion, allowing for faster response and ultimately optimizing the performance of
the network.

Table 1. Marking method.

2 Bit Meaning

00 Non-congestion
01 Mild congestion
10 Moderate congestion
11 Severe congestion

3.2.2. Congested Flow Identification

Switch buffers handle traffic from different senders. When congestion occurs, pausing
or slowing down all flows affects the transmission of non-congested flows. Therefore, it is
necessary to identify the real-congested flow and adjust its transmission rate after dividing
the degree of congestion.

The ideal solution identifies a congested flow based on a hash of the flow identifier
(FID) for the flow five-tuple information, and the upstream switch reduces the delivery of
that flow. This option is theoretically feasible, but it is difficult to implement in practice. The
switch would need to record information about all passing flows and look up information
about congested flows, which would take up a lot of resources.

From another perspective, once the degree of congestion in the switch buffer is de-
tected, the percentage of packets per flow in the current queue is calculated to determine the
congested flow. To monitor queue occupancy at each point in time, we establish a register
on the switch to keep track of packets. This register records the number of packets coming
from different flows. Upon detecting congestion, the register is read to calculate buffer
occupancy in real time. The greater the percentage of packets from the same flow in the
buffer, the greater the contribution of that flow to the current congestion of the switch. The
real-congested flow can be identified by analyzing the percentage of packets in the queue.

Programmable switches provide different types of state objects to maintain the state
between packets, such as tables, counters, meters, and registers. Among these, registers
serve as one of the defining features of next-generation programmable switches, providing
a register memory accessible in the data plane for packets to read and write various states
at line rate. In the mechanism of identifying real-congested flows, a register serves as a
counting function with no more complex operations. Therefore, it does not affect the read
and write operations of the registers regardless of the state of the network.

4. BFCC

As a network switching device, a programmable switch has the ability to flexibly con-
figure and adjust switching rules to accommodate traffic demands. This feature enhances
data exchange and network management. A programmable switch receives and executes
network configuration, management, and flow control from the controller. Although the
primary function of a switch is to forward packets, the versatility of programmable switches
allows for the consolidation of other functions, such as rate control.

A switch-driven congestion control architecture is designed in which the switch is pro-
grammed using the P4 language to enable it to act as a sender and the congestion response
time is reduced from a 1-RTT to a one-hop RTT. This approach shifts the speed-down
operation from the endpoints to the switches, with the aim of alleviating the downstream
congestion in the shortest time possible.

Future Internet 2024, 16, 131 9 of 19

4.1. Structure Design

The basic composition of the BFCC scheme is shown in Figure 6 and mainly consists of
the following modules: virtual queue module, congestion detection module, backpressure
feedback module, and rate reduction module. (1) In the virtual queue module, the packets
from the same sender are divided into the same virtual queue, identified as the same group
of flows, and mapped to the FIFO queue in the switch buffer. (2) The congestion detection
module detects the congestion of the current node and identifies the congested flow based
on the queue packet occupancy. (3) The backpressure feedback module generates backpressure
feedback on the congested flow based on the congestion of the node and sends it upstream.
(4) The rate reduction module is composed of two parts: the admission control for the ingress
pipeline and the egress control for the egress pipeline.

Virtual

Queue Moudle

Non-Programmable Traffic

Mananger & Packet Buffer

Congestion

Detection Moudle

Rate Reduction Moudle

High Priority Packets

Low Priority Packets

Admission Control

Egress ControlIncoming Packets

(from upstream)

Outgoing Packets

(to downstream)

Backpressure

Feedback Moudle

(backpressure feedback packet)

(To upstream)
(From downstream)

(Backpressure feedback activates

the rate reduction function)

= fake packet

= real packet

= fake packet

= real packet

Figure 6. The overall architecture of the BFCC.

Virtual queue module. This module introduces the concept of a virtual queue, which
does not hold any packet and does not have any effect on traffic. It is just a number that
increments as packets arrive and decrements as packets leave. Traffic from the same sender
is set to the same virtual queue, forming a group of flows. Each switch is the same virtual
queue division, using registers to record and update the number of packets in different
virtual queues.

Congestion detection module. The role of this module is to determine the level of
congestion in the current node and identify the real congested flow. The real-congested
flow ID is the virtual queue to which it belongs.

Backpressure feedback module. The key to bridging the two core modules of conges-
tion detection and rate reduction in this mechanism is the delivery of congestion informa-
tion. The method of generating backpressure information is to make use of the clone/mirror
packet feature in P4. This operation allows packets to be copied into a number of different
packet paths to enable functions such as network traffic monitoring and analysis.

The information about the congestion situation of the switch and the congested flow
is added to the header of the cloned packet, which evolves into a new packet carrying the
congestion information. However, since the programmable switch has to process a large
number of packets per second, if the feedback packets are generated in the above way for a
certain period of time, a large number of feedback congestion packets are generated in that
period of time, which aggravates the burden of the switch. Through the tests, we found
that congestion occurs by generating thousands of feedback packets, in which there are
consecutive packets carrying the same feedback information.

To solve this problem, we establish a dedicated register in the egress pipeline that
records/updates the feedback information each time. Before generating a new feedback
packet, the last feedback recorded in the register is compared. If it is different, a new
backpressure feedback packet is generated, and the register is updated. With this method,
we observe that the probability of generating a feedback packet is reduced by 70% compared
to the original, which greatly reduces the burden on the switch.

Future Internet 2024, 16, 131 10 of 19

Rate reduction module. This module is implemented through the collaboration of
two parts: the control of the ingress and egress pipeline. Unlike the sender side of the rate
reduction, the switch independently implements the traffic rate reduction by introducing a
“fake packet” to relieve the downstream node’s congestion more rapidly.

4.2. Rate Reduction Module

The module is implemented with the help of two collaborative parts, the control at the
ingress pipeline and the control at the egress pipeline, which are divided into two speed
reductions. The admission control at the ingress pipeline enables the management of the
classification of congested and non-congested flows, while the egress control in the egress
pipeline decides whether packets continue to be forwarded or not.

4.2.1. Admission Control

Traffic priority scheduling is a network traffic management method used to prioritize
different flows in order to correctly allocate bandwidth and resources in the network. By
setting flow priorities, the network can cater to critical applications, provide a better user
experience, and ensure that network services are fair and efficient. The priority queue is a
simple and straightforward traffic scheduling method that divides packets into different
queues based on their priorities. When transmitting packets, the device first queues out
the packets in the high-priority queue and then processes the packets in the low-priority
queue. This approach ensures a fast transmission of high-priority packets.

With the concept of priority scheduling, when receiving the backpressure feedback
information from the downstream, the switch immediately reacts and starts the scheduling
strategy. According to the idea of priority scheduling, the congested flows are classified as
low priority while the non-congested flows go to high priority. As illustrated in Figure 7, a
delayed sending of congested flows is achieved using high and low priority scheduling.
When the scheduling is enabled for later incoming traffic, the ingress packet is inserted into
a field called “state”, which is used to keep track of whether or not a slowdown has been
enabled, with 0 being “False” and 1 being “True”. In the switch traffic manager (TM), the
priority queue is equivalent to a black box, and the low-priority pair is the speed-down
queue. Traffic that contributes significantly to downstream congestion is classified upstream
into the speed-down queue, while other traffic is sent quickly into the high-priority queue
at the previous speed.

Assigning high priority ensures the faster forwarding of non-congested traffic, provid-
ing them with a higher bandwidth allocation, while low-priority traffic can be restricted
or adjusted according to network congestion to prevent congested flows from placing a
greater burden on the downstream traffic. With the help of this method, access control is
introduced in the ingress pipeline to perform the first speed reduction of congested flows,
with the specific algorithm outlined in Algorithm 1.

Virtual Queues Non-Programmable

Traffic Manager

High Priority Packets

Low Priority Packets

Backpressure

Feedback

P1

Pn

P2

…

 Packets from

different flows State of the packet is “1”

P1

Pn

P2

…

Figure 7. Virtual queues and admission control at the data plane. This scheme achieves the first
speed reduction.

Future Internet 2024, 16, 131 11 of 19

Algorithm 1 Pseudo-code of the BFCC algorithm implemented at the ingress pipeline of
the PDP
Input: Packet p, Backpressure−Feedback−Packet bfp, Virtual−Queue vq;
Output: None
1: if b f p.congestion_degree != 0 and b f p.vq != 0 then
2: Set packet_state;
3: if p.vq==b f p.vq then
4: Set high priority;
5: else
6: Set low priority;
7: end if
8: else
9: Set high priority;

10: end if
11: Update register of the virtual queue to count packets.

4.2.2. Egress Control

Because of the introduction of the scheduling strategy, the sending of congested flows
is reduced, but the non-congested flows in the high-priority queue grab the bandwidth
and forward at high speeds, which does not alleviate the downstream congestion problem.
Therefore, on top of scheduling, we introduce a new control module before the packets are
sent out of the port.

The control module of the egress pipeline decides whether packets are forwarded
downstream or not and monitors the packets that are scheduled to be forwarded at the
ingress pipeline. The egress control module monitors the “state” field in the packet and trig-
gers the egress control policy if it is set to “True”. With flexible programmability, switches
can be customized and extended to achieve specific forwarding, filtering, processing, and
management functions.

Unlike PFC, which directly pauses queue transmission, there is no equivalent operation
in programmable switches. With the help of the idea of sender-side rate reduction in
congestion control, a rate reduction strategy is designed between the switches. The rate
reduction module is depicted in Figure 8. We define a register in the egress pipeline to
record the real packets forwarded downstream; when the set threshold is reached, a copy
of the packet (referred to as the “fake packet”) is cloned and continues to be forwarded
instead of the original while the original packet is retransmitted into the ingress pipeline.
Since the “fake packet” does not exist in the original flow, it is forwarded downstream
and discarded. By inserting fake packets, we can achieve the effect of rate reduction while
making full use of the bandwidth.

Ingress Pipeline TM Egress Pipeline

Recirculation

From Upstream To Downstream

= fake packet

= real packet

Figure 8. Egress control at the data plane. This scheme achieves a second speed reduction.

Recirculation. The switch has a dedicated internal link for recirculating, which does
not affect the queue length on the egress port. For example, if 1% of the packets need to be
cloned, the recirculation increases the bandwidth only by 1%; if each packet is cloned, the
volume of packets processed at the ingress is doubled.

Future Internet 2024, 16, 131 12 of 19

Programmable switches can process a large number of packets per second. By har-
nessing the robust computational capabilities of the PDP, the function of rate reduction can
be delegated to switches. After conducting extensive testing on this module, we reach the
following conclusions.

During mild congestion downstream, the upstream rate threshold is set to 9. This
means that for every 10 packets sent through the egress pipeline, 1 “fake packet” is inserted,
and the speed is reduced to 9/10 of the original. For moderate congestion, the threshold is
set to 3; the speed is reduced to 3/4 of the original. In the case of severe congestion, the
speed quickly converged to half of the original. And, when the sender receives a congestion
feedback packet from the switch, the reduced sending rate is the same as that of the switch.
The algorithm for the egress pipeline is shown in Algorithm 2.

Algorithm 2 Pseudo-code of the BFCC algorithm implemented at the egress pipeline of the
PDP.
Input: Packet p, Backpressure−Feedback−Packet bfp, Rate−Threshold RT, Tmin, Tmax,

CONGESTION THRESHOLD;
Output: None
1: // Detect congestion
2: if enq_qdepth > CONGESTION THRESHOLD then
3: if deq_timedelta <= Tmin then
4: Set mild_degree;
5: else if deq_timedelta > Tmin and deq_timedelta <= Tmax then
6: Set moderate_degree;
7: else
8: Set severe_degree;
9: end if

10: // Congested flow identification
11: Compute Max(queue_occupancy)
12: end if
13: Generate bfp;
14: // Secondary deceleration in upstream switch
15: if p.state is True then
16: if dequeued_packets > RT then
17: Clone;
18: Recirculate(p);
19: end if
20: end if

5. Evaluation

Simulations and tests were performed on a Mininet with a P4 switch simulator
(BMV2 [36]) to evaluate the performance of the proposed strategy. A comparison was
carried out between its performance and existing schemes to validate its feasibility.

5.1. Evaluation of Single-Receiver Topology
5.1.1. Experiment Settings

The comparison test was performed under the network topology of Figure 1, and the
experiment was divided into 3 groups of streams, with each sender belonging to the same
group of flows. The path of each group of flows is shown below.

• Sender Group 1 → Switch 1 → Switch 3 → Receiver
• Sender Group 2 → Switch 1 → Switch 3 → Receiver
• Sender Group 3 → Switch 2 → Switch 3 → Receiver

We compared BFCC with existing end-to-end congestion control schemes (e.g., P4QCN,
TCN, DCQCN). The comparison primarily focused on four performance metrics: (1) FCT
of single flow; (2) throughput; (3) RTT per packet; (4) queue length of the buffer.

Future Internet 2024, 16, 131 13 of 19

BFCC. BFCC implements switch-to-switch congestion control by detecting congestion
based on buffer queue depth and queue delay and identifying congested flows by analyzing
queue occupancy. The parameter for detecting congestion threshold was set to 15, with
Tmin = 80,000 and Tmax = 150,000.

DCQCN. DCQCN [18] uses ECN marking and end-to-end congestion control to
manage buffers on switches. To unify the test environment, we implemented DCQCN
on a P4-based Mininet, matching all the details in the original paper. DCQCN was used
as a comparison because it is still commonly used in today’s data centers. The specific
parameter settings were Kmin = Kmax = 11, g = 1/256, N = 50µs, and K = 55 µs.

P4QCN. P4QCN [37] is a flow-level rate-based congestion control protocol using ECN
marking policy to mark congestion and extends the QCN protocol to make it compatible
with IP routing networks based on the P4 framework. We implemented P4QCN and set
the parameters as suggested in the paper: Qp4QCN = Qmin = Qmax = 11, N = 5, β = 1, and
RAI = 5 Mbps.

TCN. TCN [38] is a time-based display congestion feedback control mechanism that
uses the waiting time of the packet rather than queue length, as a congestion signal; ECN
marking thresholds are computed based on the current packet’s delay. TCN is stateless as it
does not modify the state in the data plane by performing stateless transient ECN marking.

5.1.2. Experiment Results

Based on the findings in Section 3.1, it is learned that Switch 3 is the most prone
to congestion when three groups of flows compete at the same time. To evaluate the
simultaneous competition of three groups of flows, we set the link bandwidth to 10 Mbps
in the network topology shown in Figure 1, and each group of flows had a size of 1 MB
(with a packet size of 128 B) and concurrently sent traffic to receiver.

Figure 9 shows the comparison between BFCC and the other schemes in the metric
of throughput. It can be observed from the graph that the throughput of the congestion
control scheme can reach up to 600 kbps, and the average throughput was around 450 kbps,
which is better than the other three schemes. For the other three schemes combined with
the rate control at the endpoints, the throughput fluctuations were more obvious. BFCC
achieved rate adjustment between the switches, there was no sender rate reduction strategy,
and the overall throughput level was maintained at a high level.

0 1 0 2 0 3 0 4 0

2 0 0

4 0 0

6 0 0

8 0 0

Th
rou

gh
pu

t (k
bp

s)

T i m e s (s e c)

 B F C C D C Q C N P 4 Q C N T C N

Figure 9. Throughput comparison of four schemes.

In the metric of buffer queue length, we focused on observing buffer changes under
congestion point number 3. We sampled the queue lengths in the switches and analyzed
their cumulative distribution. Figure 10 shows the CDF under the four schemes. The
differences between these schemes can be seen, where it can be observed that the BFCC

Future Internet 2024, 16, 131 14 of 19

mechanism is at a lower buffer queue length and guarantees a high throughput while
maintaining the low buffer characteristics. It can also be shown that the switch direct action
approach is slightly better than the endpoint control scheme.

0 20 40 60 80 100 120

Switch queue length(packets)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

BFCC
DCQCN
P4QCN
TCN

Figure 10. Buffer queue length comparison.

In order to test the FCT under different scenarios, the link bandwidth was adjusted to
analyze the differences between different schemes. The link bandwidth was adjusted from
10 Mbps to 50 Mbps, 100 Mbps, and 200 Mbps, and the FCT was observed for three groups
of flows sent at the same time. As shown in Figure 11, with different link bandwidths,
the BFCC maintained the lowest FCT, which shows that the switch-to-switch congestion
control mechanism ensures high throughput and low latency with low buffer. In terms of
the overall FCT, BFCC achieves completion times 1.2–2× faster than other ECN schemes.
Because of the limitation of BMV2, the test could not simulate the high link bandwidth
in the real network, and the different bandwidths of 10 Mbps, 50 Mbps, 100 Mbps, and
200 Mbps were set for the metric of FCT in order to simulate the state of the link bandwidth
constantly changing in DCN. Through the results, it was observed that BFCC demonstrated
better experimental performance.

1 0 5 0 1 0 0 2 0 0
0

3 0

6 0

9 0

 B F C C D C Q C N P 4 Q C N T C N

FC
T (

se
c)

B W (M b p s)
Figure 11. FCT in the Switch 3 congestion scenario. Four different bandwidth settings are used to
compare the FCT of the four schemes.

Future Internet 2024, 16, 131 15 of 19

In addition to this, the RTT per packet was also compared, as shown in Figure 12. As
mentioned in Section 4.2, the design of the BFCC mechanism involves the recirculation of
packets, which can lead to slightly higher RTT for some packets, but overall, it is still low
and stable. From this, it can be seen that using collaboration between switches to solve the
congestion problem is faster than two-point architecture (endpoint-switch) and three-point
architecture (endpoint-switch-endpoint).

0 1 0 , 0 0 0 2 0 , 0 0 0
0

1 0 0 0

2 0 0 0

3 0 0 0
R T T o f B F C C (m s)

N u m d e r o f p a c k e t s
0 1 0 , 0 0 0 2 0 , 0 0 0

0

1 0 0 0

2 0 0 0

3 0 0 0

R T T o f D C Q C N (m s)

N u m b e r o f p a c k e t s

0 1 0 , 0 0 0 2 0 , 0 0 0
0

1 0 0 0

2 0 0 0

3 0 0 0
R T T o f P 4 Q C N (m s)

N u m b e r o f p a c k e t s
0 1 0 , 0 0 0 2 0 , 0 0 0

0

1 0 0 0

2 0 0 0

3 0 0 0
R T T o f T C N (m s)

N u m b e r o f p a c k e t s
Figure 12. Comparison the RTT per packet.

According to the tests conducted in Section 3.1, it is known that in addition to Switch
3 being the most congested when three groups of flows compete at the same time, Switch
1 has two groups of flows sharing the buffer. Other scenarios were set up to evaluate the
competition between Group 1 flow and Group 2 flow at Switch 1. At a bandwidth of 10 Mbps,
the Group 2 flow changed from the previous 1 MB to 2 MB, 4 Mb, and 8 MB, and the Group 1
flow remained at 1 MB. Analyzing the FCT of Group 1 flows under the influence of Group 2
flows, Figure 13 illustrates that BFCC of Group 1 flows experienced the shortest completion
time during the competition, significantly enhancing the flow completion rate.

0 2 4 6 8
4 0

6 0

8 0

1 0 0

FC
T o

f F
low

1 (
se

c)

F l o w 2 (M B)

 B F C C D C Q C N P 4 Q C N T C N

Figure 13. FCT for Group 1 flows competing with different large Group 2 flows.

Future Internet 2024, 16, 131 16 of 19

5.2. Evaluation of Two-Receiver Topology

We changed the topology as shown in Figure 14, which consists of three senders, four
BMV2 switches, and two receivers. Sender 1 and Sender 2 send traffic to Receiver 1; Sender
3 sends traffic to Receiver 2. The link bandwidth was 10 Mbps, and the traffic size was
1 MB. The parameter settings of BFCC, DCQCN, P4QCN, and TCN were the same as in
Section 5.1. High throughput and low latency are two important goals in DCN. Therefore,
we evaluated the four schemes mainly in terms of two performance metrics: throughput
and FCT.

Sender2 Sender 3

Switch 2

Sender1

Switch 1

Switch 3

Switch 4

Receiver 2Receiver 1

Figure 14. Two-receiver topology.

We compare the throughput of traffic sent to Receiver 1 and Receiver 2, as shown in
Figure 15. For the throughput of the traffic destined for Receiver 1, the throughput of the
BFCC scheme is above 300 kbps and more stable. The throughput of DCQCN is less than
300 kbps, which maintains the throughput at 200 kbps. The throughput of the P4QCN
scheme is around 250 kbps. The TCN scheme is also not as good as the BFCC. As for the
traffic sent to Receiver 2, the BFCC scheme best represents the stability of the traffic, with
throughput maintained at 200 kbps. Overall, the congestion control scheme proposed in
this paper is based on per-flow management. Thus, the flows on both links maintain high
throughput without affecting each other.

0 1 0 2 0 3 00

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 B F C C

Th
rou

gh
pu

t (k
bp

s)

T i m e s (s e c)

 R e c e i v e r 1
 R e c e i v e r 2

0 1 0 2 0 3 0 4 0 5 00

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 D C Q C N

Th
rou

gh
pu

t (k
bp

s)

T i m e s (s e c)

 R e c e i v e r 1
 R e c e i v e r 2

0 1 0 2 0 3 0 4 0 5 00

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 P 4 Q C N

Th
rou

gh
pu

t (k
bp

s)

T i m e s (s e c)

 R e c e i v e r 1
 R e c e i v e r 2

0 1 0 2 0 3 0 4 0 5 00

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0 T C N

Th
rou

gh
pu

t (k
bp

s)

T i m e s (s e c)

 R e c e i v e r 1
 R e c e i v e r 2

Figure 15. FCT in the two-receiver topology.

Future Internet 2024, 16, 131 17 of 19

The link bandwidth was changed from 10 Mbps to 50 Mbps, 100 Mbps, and 200 Mbps,
and the FCT of the three flows was observed, as shown in Figure 16. The BFCC scheme
always maintained the lowest FCT at different link bandwidths. Specifically, the FCT of
BFCC was reduced by about 44.7% compared to DCQCN. The FCT of BFCC was reduced
by about 39.8% compared to P4QCN. Meanwhile, the FCT of BFCC was reduced by 44.1%
compared to the TCN scheme. Essentially, BFCC ensures high throughput and low latency.

1 0 5 0 1 0 0 2 0 00

2 0

4 0

6 0

FC
T (

se
c)

B W (M b p s)

 B F C C D C Q C N P 4 Q C N T C N

Figure 16. The throughput of Receiver 1 and Receiver 2.

6. Conclusions

This article introduces a congestion control mechanism based on backpressure feed-
back, which divides congestion into different degrees, identifies real-congested flows by
recognizing the occupancy of buffer queues, and generates the backpressure feedback ac-
cordingly. Meanwhile, the rate control on the switch is designed to achieve precise control
of each flow group. In comparison to existing end-to-end congestion control schemes under
two network topologies, switch-to-switch congestion control enhances throughput and
significantly reduces transmission delay. The feasibility of the strategy is also demonstrated
by implementing it on Mininet with BMV2. In future work, the approach will be validated
in a real network environment.

Author Contributions: Conceptualization, W.L., M.R., Y.L. and Z.Z.; methodology, W.L., M.R. and
Y.L.; software, W.L., M.R., Y.L., C.L. and H.Q.; validation, W.L., M.R. and Y.L.; investigation, M.R.;
resources, W.L., Y.L. and Z.Z.; writing—original draft preparation, M.R.; writing—review and editing,
W.L., M.R.,Y.L., C.L. and H.Q.; visualization, M.R. and Y.L.; supervision, W.L., Y.L. and Z.Z; project
administration, W.L., Y.L. and Z.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was funded by Science and Technology Project of Hebei Education Depart-
ment ZD2022102.

Data Availability Statement: No necessary datasets has been applied in this article.

Acknowledgments: The authors gratefully appreciate the anonymous reviewers for their valu-
able comments.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Gibson, D.; Hariharan, H.; Lance, E.; McLaren, M.; Montazeri, B.; Singh, A.; Wang, S.; Wassel, H.M.; Wu, Z.; Yoo, S. Aquila: A

unified, low-latency fabric for datacenter networks. In Proceedings of the 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), Renton, WA, USA, 4–6 April 2022; pp. 1249–1266.

2. Prateesh, G.; Preey, S.; Kevin, Z.; Georgios, N.; Mohammad, A.; Thomas, A. Backpressure flow control. In Proceedings of the
Symposium on Network System Design and Implementation, NSDI, Renton, WA, USA, 4–6 April 2022; pp. 779–805.

Future Internet 2024, 16, 131 18 of 19

3. Joshi, R.; Song, C.H.; Khooi, X.Z.; Budhdev, N.; Mishra, A.; Chan, M.C.; Leong, B. Masking Corruption Packet Losses in Datacenter
Networks with Link-local Retransmission. In Proceedings of the ACM SIGCOMM 2023 Conference, New York, NY, USA, 10–14
September 2023; pp. 288–304.

4. Poutievski, L.; Mashayekhi, O.; Ong, J.; Singh, A.; Tariq, M.; Wang, R.; Zhang, J.; Beauregard, V.; Conner, P.; Gribble, S. Jupiter
evolving: Transforming google’s datacenter network via optical circuit switches and software-defined networking. In Proceedings
of the ACM SIGCOMM 2022 Conference, Amsterdam, The Netherlands, 22–26 August 2022; pp. 66–85.

5. Li, Q. TCP FlexiS: A New Approach To Incipient Congestion Detection and Control. IEEE/ACM Trans. Netw. 2023, 1–16. [CrossRef]
6. Arslan, S.; Li, Y.; Kumar, G.; Dukkipati, N. Bolt: Sub-RTT Congestion Control for Ultra-Low Latency. In Proceedings of the

20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23), Boston, MA, USA, 17–19 April 2023;
pp. 219–236.

7. Liu, W.-X.; Liang, C.; Cui, Y.; Cai, J.; Luo, J.-M. Programmable data plane intelligence: Advances, opportunities, and challenges.
IEEE Netw. 2022, 37, 122–128. [CrossRef]

8. Bolanowski, M.; Gerka, A.; Paszkiewicz, A.; Ganzha, M.; Paprzycki, M. Application of genetic algorithm to load balancing in
networks with a homogeneous traffic flow. In Proceedings of the International Conference on Computational Science, Prague,
Czech Republic, 3–5 July 2023; pp. 314–321.

9. Zaher, M.; Alawadi, A.H.; Molnár, S. Sieve: A flow scheduling framework in SDN based data center networks. Comput. Commun.
2021, 171, 99–111. [CrossRef]

10. Scazzariello, M.; Caiazzi, T.; Ghasemirahni, H.; Barbette, T.; Kostić, D.; Chiesa, M. A High-Speed Stateful Packet Processing
Approach for Tbps Programmable Switches. In Proceedings of the 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), Boston, MA, USA, 17–19 April 2023; pp. 1237–1255.

11. Xiao, L.Y.S.; Jun, B.I.; Yu, Z.; Cheng, Z.; Ping, W.J.; Zheng, L.Z.; Ran, Z.Y. Research and Applications of Programmable Data Plane
Based on P4. Chin. J. Comput. 2019, 42, 2539–2560.

12. Namkung, H.; Liu, Z.; Kim, D.; Sekar, V.; Steenkiste, P. Sketchovsky: Enabling Ensembles of Sketches on Programmable Switches.
In Proceedings of the 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23), Boston, MA,
USA, 17–19 April 2023; pp. 1273–1292.

13. Agarwal, S.; Krishnamurthy, A.; Agarwal, R. Host Congestion Control. In Proceedings of the ACM SIGCOMM 2023 Conference,
New York, NY, USA, 10–14 September 2023; pp. 275–287.

14. Kundel, R.; Krishna, N.B.; Gärtner, C.; Meuser, T.; Rizk, A. Poster: Reverse-path congestion notification: Accelerating the
congestion control feedback loop. In Proceedings of the 2021 IEEE 29th International Conference on Network Protocols (ICNP),
Dallas, TX, USA, 1–5 November 2021; pp. 1–2.

15. Alizadeh, M.; Greenberg, A.; Maltz, D.A.; Padhye, J.; Patel, P.; Prabhakar, B.; Sengupta, S.; Sridharan, M. Data center tcp (dctcp).
In Proceedings of the ACM SIGCOMM 2010 Conference, New Delhi, India, 30 August–3 September 2010; pp. 63–74.

16. Vamanan, B.; Hasan, J.; Vijaykumar, T. Deadline-aware datacenter tcp (d2tcp). ACM SIGCOMM Comput. Commun. Rev. 2012, 42,
115–126. [CrossRef]

17. Wu, H.; Feng, Z.; Guo, C.; Zhang, Y. ICTCP: Incast congestion control for TCP in data center networks. IEEE/ACM Trans. Netw.
2013, 2, 235–358.

18. Zhu, Y.; Eran, H.; Firestone, D.; Guo, C.; Lipshteyn, M.; Liron, Y.; Padhye, J.; Raindel, S.; Yahia, M.H.; Zhang, M. Congestion
control for large-scale RDMA deployments. ACM SIGCOMM Comput. Commun. Rev. 2015, 45, 523–536. [CrossRef]

19. IEEE. 802.11Qau-Congestion Notification. Available online: https://1.ieee802.org/dcb/802-1qau/ (accessed on 10 April 2024).
20. Wu, H.; Ju, J.; Lu, G.; Guo, C.; Xiong, Y.; Zhang, Y. Tuning ECN for data center networks. In Proceedings of the 8th International

Conference on Emerging Networking Experiments and Technologies, Nice, France, 10–13 December 2012; pp. 25–36.
21. Munir, A.; Qazi, I.A.; Uzmi, Z.A.; Mushtaq, A.; Ismail, S.N.; Iqbal, M.S.; Khan, B. Minimizing flow completion times in data

centers. In Proceedings of the 2013 Proceedings IEEE INFOCOM, Turin, Italy, 14–19 April 2013; pp. 2157–2165.
22. Shan, D.; Ren, F. Improving ECN marking scheme with micro-burst traffic in data center networks. In Proceedings of the IEEE

INFOCOM 2017-IEEE Conference on Computer Communications, Atlanta, GA, USA, 1–4 May 2017; pp. 1–9.
23. Chen, J.; Jing, Y.; Xie, H. Multiple Bottleneck Topology TCP/AWM Network Event-triggered Congestion Control with New

Prescribed Performance. Int. J. Control Autom. Syst. 2023, 21, 2487–2503. [CrossRef]
24. Mittal, R.; Lam, V.T.; Dukkipati, N.; Blem, E.; Wassel, H.; Ghobadi, M.; Vahdat, A.; Wang, Y.; Wetherall, D.; Zats, D. TIMELY:

RTT-based congestion control for the datacenter. ACM SIGCOMM Comput. Commun. Rev. 2015, 45, 537–550. [CrossRef]
25. Kumar, G.; Dukkipati, N.; Jang, K.; Wassel, H.M.; Wu, X.; Montazeri, B.; Wang, Y.; Springborn, K.; Alfeld, C.; Ryan, M. Swift:

Delay is simple and effective for congestion control in the datacenter. In Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer
Communication, Online, 10–14 August 2020; pp. 514–528.

26. Wang, W.; Moshref, M.; Li, Y.; Kumar, G.; Ng, T.E.; Cardwell, N.; Dukkipati, N. Poseidon: Efficient, Robust, and Practical
Datacenter CC via Deployable INT. In Proceedings of the 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), Boston, MA, USA, 17–19 April 2023; pp. 255–274.

27. Lim, H.; Kim, J.; Cho, I.; Jang, K.; Bai, W.; Han, D. FlexPass: A Case for Flexible Credit-based Transport for Datacenter Networks.
In Proceedings of the Eighteenth European Conference on Computer Systems, Rome, Italy, 8–12 May 2023; pp. 606–622.

http://doi.org/10.1109/TNET.2023.3319441
http://dx.doi.org/10.1109/MNET.124.2200113
http://dx.doi.org/10.1016/j.comcom.2021.02.013
http://dx.doi.org/10.1145/2377677.2377709
http://dx.doi.org/10.1145/2829988.2787484
https://1.ieee802.org/dcb/802-1qau/
http://dx.doi.org/10.1007/s12555-022-0522-9
http://dx.doi.org/10.1145/2829988.2787510

Future Internet 2024, 16, 131 19 of 19

28. IEEE. 802.1Qbb—Priority-Based Flow Control. Available online: http://www.ieee802.org/1/pages/802.1bb.html (accessed on 10
April 2024).

29. Alizadeh, M.; Yang, S.; Sharif, M.; Katti, S.; McKeown, N.; Prabhakar, B.; Shenker, S. pfabric: Minimal near-optimal datacenter
transport. ACM SIGCOMM Comput. Commun. Rev. 2013, 43, 435–446. [CrossRef]

30. Montazeri, B.; Li, Y.; Alizadeh, M.; Ousterhout, J. Homa: A receiver-driven low-latency transport protocol using network priorities.
In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, Budapest, Hungary, 20–25
August 2018; pp. 221–235.

31. Handley, M.; Raiciu, C.; Agache, A.; Voinescu, A.; Moore, A.W.; Antichi, G.; Wójcik, M. Re-architecting datacenter networks
and stacks for low latency and high performance. In Proceedings of the Conference of the ACM Special Interest Group on Data
Communication, Los Angeles, CA, USA, 21–25 August 2017; pp. 29–42.

32. Cheng, W.; Qian, K.; Jiang, W.; Zhang, T.; Ren, F. Re-architecting congestion management in lossless ethernet. In Proceedings
of the 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20), Santa Clara, CA, USA, 25–27
February 2020; pp. 19–36.

33. Zhang, Y.; Liu, Y.; Meng, Q.; Ren, F. Congestion detection in lossless networks. In Proceedings of the 2021 ACM SIGCOMM 2021
Conference, Online, 23–27 August 2021; pp. 370–383.

34. Hauser, F.; Häberle, M.; Merling, D.; Lindner, S.; Gurevich, V.; Zeiger, F.; Frank, R.; Menth, M. A survey on data plane programming
with p4: Fundamentals, advances, and applied research. J. Netw. Comput. Appl. 2023, 212, 103561. [CrossRef]

35. P4 16 PSA Specification. Available online: https://p4lang.github.io/p4-spec/docs/PSA-v1.1.0.html (accessed on 10 April 2024).
36. P4 Behavioral Model (BMV2). Available online: https://github.com/p4lang/behavioral-model (accessed on 10 April 2024).
37. Geng, J.; Yan, J.; Zhang, Y. P4QCN: Congestion control using P4-capable device in data center networks. Electronics 2019, 8, 280.

[CrossRef]
38. Bai, W.; Chen, K.; Chen, L.; Kim, C.; Wu, H. Enabling ECN over generic packet scheduling. In Proceedings of the 12th International

on Conference on emerging Networking EXperiments and Technologies, Irvine, CA, USA, 12–15 December 2016; pp. 191–204.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://www.ieee802.org/1/pages/802.1bb.html
http://dx.doi.org/10.1145/2534169.2486031
http://dx.doi.org/10.1016/j.jnca.2022.103561
https://p4lang.github.io /p4-spec/docs/PSA-v1.1.0.html
https://github.com/p4lang/behavioral-model
http://dx.doi.org/10.3390/electronics8030280

	Introduction
	Motivation and Related Work
	Congestion Control in Data Centers
	Traffic Management in Data Centers

	Congestion Detection and Identification
	Observations and Insights
	Congestion Determination
	Division of Congestion Degree
	Congested Flow Identification

	BFCC
	Structure Design
	Rate Reduction Module
	Admission Control
	Egress Control

	Evaluation
	Evaluation of Single-Receiver Topology
	Experiment Settings
	Experiment Results

	Evaluation of Two-Receiver Topology

	Conclusions
	References

