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Abstract: This study focuses on optimizing federated learning in heterogeneous data environments.
We implement the FedProx and a baseline algorithm (i.e., the FedAvg) with advanced optimization
strategies to tackle non-IID data issues in distributed learning. Model freezing and pruning techniques
are explored to showcase the effective operations of deep learning models on resource-constrained
edge devices. Experimental results show that at a pruning rate of 10%, the FedProx with structured
pruning in the MIT-BIH and ST databases achieved the best F1 scores, reaching 96.01% and 77.81%,
respectively, which achieves a good balance between system efficiency and model accuracy compared
to those of the FedProx with the original configuration, reaching F1 scores of 66.12% and 89.90%,
respectively. Similarly, with layer freezing technique, unstructured pruning method, and a pruning
rate of 20%, the FedAvg algorithm effectively balances classification performance and degradation of
pruned model accuracy, achieving F1 scores of 88.75% and 72.75%, respectively, compared to those of
the FedAvg with the original configuration, reaching 56.82% and 85.80%, respectively. By adopting
model optimization strategies, a practical solution is developed for deploying complex models in
edge federated learning, vital for its efficient implementation.

Keywords: federated learning; deep learning; embedded systems; heterogeneous; pruning

1. Introduction

With the rapid advancements in data science and artificial intelligence technologies,
machine learning has found widespread applications in various fields. For instance, in
the healthcare domain, machine learning techniques are gradually being integrated into
the healthcare diagnostic workflow, particularly in the analysis of medical images and
clinical data to assist physicians in making more precise diagnoses. However, with the
exponential growth of data, traditional centralized machine learning approaches face
significant challenges in handling sensitive medical data, especially in terms of privacy
protection and data storage. Given the abundance of personal health information in medical
data, ensuring patient privacy becomes of paramount importance.

In this context, federated learning, as an emerging distributed machine learning ap-
proach, demonstrates its unique advantages in handling sensitive data. By conducting
model training locally and sharing only the model updates rather than raw data, feder-
ated learning can simultaneously ensure data privacy and enable effective learning. This
approach is particularly suitable for applications in the healthcare domain, as it allows
learning from medical institutions distributed across various locations without the need for
centralized storage of sensitive data.

In the implementation of federated learning, it is generally expected that the datasets
among nodes are IID. However, the training data collected by nodes often exhibits non-IID
characteristics, posing challenges to traditional federated learning approaches. To address
this, federated learning has been further subdivided into Horizontal Federated Learning
(HFL) (Figure 1a) and Vertical Federated Learning (VFL) (Figure 1b).
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Figure 1. The comparison of (a) horizontal and (b) vertical federated learning (modified and repro-
duced from [1]). 
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different banks in the same region. This enables banks to jointly build comprehensive 
credit assessment models without directly sharing detailed customer information [1]. 
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adverse effects on the accuracy and stability of models. Referring to [2], the main ap-
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by modifying the distributions (e.g., data sharing [3] and augmentation [4]), which signif-
icantly improves the learning performance. Nonetheless, most of these techniques can 
only be implemented with the help of the aforementioned data sharing, which may in-
crease the risk of data privacy leakage. With algorithm-based approaches, personalization 
approaches may be applied to adjust the model according to the local tasks, including 
performing local fine-tuning [5–7] (e.g., personalization via regularization and interpola-
tion, or meta learning), having personalized layers in the neural network models [8], 
multi-task learning [9–11], and knowledge distillation [12–15]. Note that although person-
alization layers are able to enhance the learning performance on non-IID data and reduce 
communication costs by only sharing the base layers between the server and clients, each 
client may need to permanently store the personalization layers without releasing them. 
With system-based approaches, client clustering is proposed to construct a multi-center 
framework by grouping those clients with similar local training data into the same cluster, 
introducing the concept of secure data similarity evaluation with respect to the loss value 
[16–19] and model weights [11,20,21]. However, these methods may consume additional 
computation and communication resources for both model training and testing. 

This work applies an algorithm-based approach and focuses on exploring how to 
address the problem of data heterogeneity in federated learning by leveraging the 
FedProx algorithm [22] along with advanced optimization techniques. The FedProx algo-
rithm effectively handles heterogeneous datasets by introducing additional local update 
steps, thereby enhancing the model’s generalization ability across different data distribu-
tions. The research also focuses on the feasibility of implementing federated learning mod-
els in resource-constrained environments, utilizing the Nvidia Jetson Nano as the experi-
mental platform. Its balanced performance and computational capabilities make it an 
ideal choice for edge computing applications. Leveraging the Flower federated learning 
framework, this study effectively deploys and manages federated learning tasks on the 
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In HFL, there is a high overlap in the feature space, but the sample identities are
different. An example can be seen in different hospitals having patients with similar health
data features. HFL allows these hospitals to share the knowledge of the learned model
while protecting individual privacy, facilitating cross-institutional collaborative learning.
On the other hand, VFL is applicable in scenarios where the same sample ID space is
shared but the feature spaces are different, such as the common customer groups among
different banks in the same region. This enables banks to jointly build comprehensive credit
assessment models without directly sharing detailed customer information [1].

Nevertheless, federated learning still faces a series of challenges in practical applica-
tions, especially the issue of data heterogeneity. Heterogeneous data distributions, such as
the non-independently and identically distributed (non-IID) phenomenon, can have ad-
verse effects on the accuracy and stability of models. Referring to [2], the main approaches
to dealing with non-IID problems in HFL can be categorized from data, algorithm, and
system perspectives. With data-based approaches, this issue can be addressed by modifying
the distributions (e.g., data sharing [3] and augmentation [4]), which significantly improves
the learning performance. Nonetheless, most of these techniques can only be implemented
with the help of the aforementioned data sharing, which may increase the risk of data
privacy leakage. With algorithm-based approaches, personalization approaches may be
applied to adjust the model according to the local tasks, including performing local fine-
tuning [5–7] (e.g., personalization via regularization and interpolation, or meta learning),
having personalized layers in the neural network models [8], multi-task learning [9–11],
and knowledge distillation [12–15]. Note that although personalization layers are able
to enhance the learning performance on non-IID data and reduce communication costs
by only sharing the base layers between the server and clients, each client may need to
permanently store the personalization layers without releasing them. With system-based
approaches, client clustering is proposed to construct a multi-center framework by group-
ing those clients with similar local training data into the same cluster, introducing the
concept of secure data similarity evaluation with respect to the loss value [16–19] and
model weights [11,20,21]. However, these methods may consume additional computation
and communication resources for both model training and testing.

This work applies an algorithm-based approach and focuses on exploring how to
address the problem of data heterogeneity in federated learning by leveraging the FedProx
algorithm [22] along with advanced optimization techniques. The FedProx algorithm
effectively handles heterogeneous datasets by introducing additional local update steps,
thereby enhancing the model’s generalization ability across different data distributions.
The research also focuses on the feasibility of implementing federated learning models in
resource-constrained environments, utilizing the Nvidia Jetson Nano as the experimental
platform. Its balanced performance and computational capabilities make it an ideal choice
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for edge computing applications. Leveraging the Flower federated learning framework,
this study effectively deploys and manages federated learning tasks on the Jetson Nano.
Flower, being a flexible and lightweight open-source federated learning framework, is well-
suited for running on embedded systems like the Jetson Nano. It enhances the efficiency of
coordinating model training across multiple devices while reducing communication costs
and computational resource consumption.

Additionally, this study delves into model optimization strategies, particularly the
application of freezing and pruning techniques. Model freezing involves fixing certain
layers in a deep learning model, reducing the computational burden significantly, which
is especially important for devices with limited computational capabilities. Concurrently,
pruning techniques, by removing unimportant weights or neurons from the model, help
reduce model size and improve operational efficiency. These techniques not only enhance
model performance on devices like the Jetson Nano but also boost the efficiency and
scalability of the entire federated learning system.

The research in this work covers several key areas:

• Exploration of sensible practices for implementing federated learning on the Jetson
Nano.

• Evaluation of the performance of the FedProx algorithm in handling heterogeneous
data.

• Model optimization involves pruning and layer freezing techniques for improving
accuracy and efficiency.

This research aims to make contributions to the field of federated learning by providing
empirical studies on how to effectively utilize FedProx in a heterogeneous data environment.
It also explores and demonstrates the feasibility and efficiency of deploying complex
machine learning models on resource-constrained edge computing devices.

The structure of this work is as follows: Section 2 reviews recent works related to
federated learning in the context of the Internet of Things (IoT). Section 3 discusses the key
technologies used in this study. Section 4 describes the system architecture and optimization
methods employed. Section 5 comprehensively discusses the experimental results. Finally,
Section 6 summarizes the findings of this research and explores future research directions.

2. Related Works

With the development of big data and IoT technologies, the healthcare sector has
begun to extensively utilize various sensors, wearable devices, mobile applications, and re-
mote monitoring equipment for the collection of health and medical data. These innovative
technologies enable real-time monitoring of patients’ health status, provide personalized
health recommendations, and rapidly respond in emergency situations. However, with the
proliferation of these technologies, data privacy and security issues have become increas-
ingly significant. Therefore, federated learning has emerged as a promising solution for
handling data in the medical IoT context. This concept, initially proposed by Google [23],
aims to address key challenges in distributed data processing, including communication
costs, data privacy, and regulatory compliance. Federated learning allows multiple de-
vices or data centers to collaboratively train a shared model without sharing the raw
data, thereby effectively protecting individual privacy. This approach has seen further
research and development in various areas, demonstrating its vast potential applications
in fields ranging from healthcare to financial services, the Internet of Vehicles (IoV), and
personalized services.

In recent years, conducting federated learning on edge devices has become a pop-
ular research trend in both academia and industry. Pioneering research in this field is
continuously propelling advancements and practical applications of this technology.
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2.1. Microcontroller Unit

In [24–26], the feasibility of implementing federated learning on microcontrollers
(MCUs) using MCUs as client devices is demonstrated. Wulfert et al. [24] introduce TinyFL,
a federated learning approach using only MCUs for communication and aggregation, which
demonstrates feasible federated learning communication and aggregation on MCUs via
integrated circuits (I2C), showing speed advantages over centralized training. It validates its
effectiveness with a gesture recognition case, achieving comparable accuracy to centralized
training even with non-IID data. Kopparapu et al. [25] merge federated learning and
transfer learning for resource-constrained IoT devices with less than 1 MB of memory.
It features federated transfer learning for binary image classification on MCUs, utilizing
pre-trained CNNs for feature extraction. Llisterri giménez et al. [26] employ federated
learning on three Arduino Nano 33 BLE Sense boards to train a fully connected neural
network (FCNN) for keyword spotting (KWS). The study notes communication bandwidth
limitations between MCUs and the server due to serial port usage, which highlights
the potential of federated learning on low-cost, low-power devices but acknowledges
performance and capability limitations, particularly with complex models or large datasets,
and accuracy decreases with more device participation.

2.2. Main Approaches to Handling Non-IID Data

The current main approaches to dealing with non-IID problems in HFL can be catego-
rized from data, algorithm, and system perspectives.

2.2.1. Data-Driven Approach

There are two main data-driven approaches: data sharing and data augmentation.
Data sharing [27] is an effective way to deal with non-IID data in HFL. The global model is
built up by training a globally shared dataset. For the client model, the connected clients
download a random percentage of the shared global data, such that the client model is
updated by both local training data and the shared global data. Data augmentation [4]
techniques handle the imbalance issue of the local data, which can be further categorized
as follows: the vanilla method [28], the mixup method [29], and the generative adversarial
network (GAN) [30]-based method. Note that data augmentation techniques, incorporating
data sharing, can effectively improve the model’s learning performance with non-IID
data. However, these data processing techniques may increase the risk of data privacy
leakage [2].

2.2.2. Algorithm-Driven Approach

This subsection describes several major types of personalization methods, including
conducting local fine-tuning, multi-task learning, and knowledge distillation [13]. The
clients perform local fine-tuning to adjust the local models based on the global model from
the server [7]. Note that FedAvg [23] is the basic form of local fine-tuning, which includes
the procedures of finding a suitable initial shared model and combining local and global
information. With meta-learning methods, a high-quality initial global model is developed
with fine-tuning (e.g., Personalized FedAvg (Per-FedAvg) [5]). This method [5] achieves
first-order optimality with convergence guarantees and better performance on heteroge-
neous data than FedAvg, but the approximate gradient of Per-FedAvg will significantly
affect the results. An alternative to solving the personalization problem is to treat it as a
multi-task learning problem [9], considering issues of communication cost, stragglers, and
fault tolerance [10].

Besides local fine-tuning and multi-task learning, knowledge distillation [12,14,15]
is also a promising method for personalized federated learning. Hinton et al. [15] extend
the concept of information transfer from large models to small ones [12] to knowledge
distillation techniques. To deal with non-IID data, two types of strategies may be applied,
namely federated transfer learning and domain adaptation. For federated transfer learning,
Chang et al. [31] propose a collaborative, robust learning method by uploading learned
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features instead of local models to implement local personalization. Li et al. [32] propose a
framework called decentralized federated learning via mutual knowledge transfer (Def-
KT), in which local clients exchange messages directly in a peer-to-peer manner without
the participation of the cloud server. Another knowledge distillation strategy is domain
adaptation, which emphasizes eliminating the differences between data shards between
clients. Peng et al. [33] propose a federated adversarial domain adaptation (FADA) al-
gorithm that handles the domain shift problem with adversarial adaptation techniques.
Li et al. [34] present the FedMD algorithm to transfer knowledge from a public dataset and
enable clients to train their unique models on local data without privacy leakage risk.

2.2.3. System-Driven Approach

For system-driven approaches, two main kinds of secure data similarity evaluation
methods are introduced in the literature, namely evaluating the similarity of the loss value
and the similarity of model weights. With the first approach, the authors in [16–19] execute
the similarity evaluation by comparing the loss values of different cluster models, where
multiple global models are constructed in clusters. Each connected client receives the cluster
models for local empirical loss computation. Accordingly, for cluster model aggregation,
each client refurbishes the smallest loss-value cluster model, and the server collects these
updated models. Instead of considering the loss value, the second approach evaluates
the local data similarity and does clustering based on the local model weights. In [11,20],
before clustering the clients, the standard FedAvg algorithm is applied to train the global
model. Afterwards, the clients receive the warmed-up global model, perform local updates,
and return these local models to the server for calculating the similarity scores of model
weights. Thus, based on the received local updated models and the calculated similarity
scores, the server can group the clients into clusters.

Note that client clustering may be applied to handle the issues concerning negative
knowledge transfer and performance degradation due to local model aggregation with
considerably different training data. Furthermore, generating multiple global models
provides a sensible way to enhance the scalability and flexibility of federated learning
systems, considering the specific task requirements, at the cost of more communication and
computational resource utilization.

2.3. Mode Optimization

Malan et al. [35] introduced a federated learning with gradual layer freezing (FedGLF)
strategy. This approach, validated in two image classification tasks under varying data
distributions, has demonstrated its effectiveness by significantly reducing communication
volumes during training while maintaining or even enhancing model accuracy, which is
particularly crucial for resource-limited edge devices. Lee et al. [36] proposed a grouping
method based on data distribution and the physical locations of nodes, coupled with the
FedAvg-IC optimization algorithm. This approach enhanced the accuracy and communica-
tion efficiency of federated learning.

2.4. Sparse Learning and Pruning

Derrmers et al. [37] demonstrated the feasibility of what is termed sparse learning
introducing an innovative sparse momentum algorithm. This algorithm employs expo-
nentially smoothed gradients (momentum) for precise identification and optimization of
layers and weights that significantly reduce error rates, thereby enhancing the efficiency
and accuracy of federated learning applications on edge devices. Ullah et al. [38] presented
a federated learning approach for embedded edge computing using sparse-adaptive model
selection. This method leverages sparse learning for local model training and smart model
selection and aggregation on a central server. On the client side, stronger nodes are frozen,
while weaker nodes are retrained to better capture features relevant to new categories,
enhancing overall model adaptability and efficiency.
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Refs. [39–41] explored how pruning techniques can enhance the efficiency and effec-
tiveness of federated learning in handling non-IID data and edge devices. Jiang et al. [39]
introduced a federated learning method called “PruneFL”, which reduces model com-
plexity through pruning techniques, making it more suitable for running on edge devices
with limited computational capabilities. Vahidian et al. [40] proposed a novel strategy
that combines structured and unstructured pruning to improve model performance under
non-IID data distributions, enabling it to adapt more effectively to diverse client data.
Yu et al. [41] introduced an adaptive dynamic pruning technique that incorporates global
gradient control variables to optimize federated learning. This method specifically ad-
dresses non-IID data issues on edge devices by dynamically pruning the model to reduce
complexity while maintaining high accuracy.

2.5. Comparative Summary

Most of the research integrating federated learning with embedded devices primarily
aims at conducting model training in constrained environments or implementing local
data processing and model training in edge environments for accelerated data processing
and real-time responses. These innovative studies are gradually overcoming challenges
in the processing capabilities and communication efficiency of edge devices, invigorating
the development in fields such as the IoT and smart devices, thereby demonstrating the
potential and possibilities in this domain. Table 1 lists various embedded devices used for
different federated learning training tasks.

It is worth mentioning that finding a proper target density for pruning is nontrivial.
Adaptive pruning models have been designed in [39,41], while [40] combines structured
and unstructured pruning. In [39], training was conducted separately on different datasets
under both IID and non-IID settings. In the non-IID setting, a single dataset was trained in
a non-IID manner by classifying it differently. Note that the above three works use different
pruning methods to integrate their proposed algorithms. In contrast, our study employed
two entirely distinct datasets for non-IID training with the partial node training strategy
proposed in [38], which focuses on retraining weaker nodes in the network. However, when
applying this method to our data model, it did not yield the expected results due to the non-
IID nature of our dataset, which significantly differs from the independent and IID datasets
used in [38]. Despite these challenges, we found the iterative structured pruning strategy
mentioned in [40] to be effective during the training process. Therefore, we chose to use
a structured pruning method, specifically employing the sparse optimization framework
provided by [42], pruning 20% of the nodes, and focusing on training the remaining 80%.
Table 2 compares the experimental methods and data formats in the literature.

Table 1. The comparison of different sensors used in FL.

Works Node Features Data Type Dataset

Llisterri Giménez et al. [26] Arduino Nano 33
Implementing a KWS application through federated

learning training using the Arduino Nano 33 BLE Sense
development board.

non-IID Self-recorded voice
samples [43]

Zhang et al. [44] Raspberry Pi
In an IoT environment, employing federated learning
for anomaly detection using the FedDetect algorithm
and an adaptive optimizer for efficient local training.

IID N-BaIoT/LANDER

Ullah et al. [38] Nvidia Jetson Nano
Utilizing sparse learning techniques to freeze

significant nodes during local training phases and
retrain weaker nodes.

IID

MNIST/
CIFAR-10/
OCSLab/

UCI-HAR/EC10

Mathur et al. [45]
Android smartphones Investigating the implementation of federated learning

on various smartphones and embedded devices using
the Flower framework.

IID
Office-31

Nvidia Jetson
devices + Raspberry Pi CIFAR-10

Jiang et al. [39] Raspberry Pi
Introduces a method called “PruneFL”, which reduces

model complexity through pruning techniques,
enabling its efficient execution on edge devices.

IID CIFAR-10/
ImageNet-100

non-IID FEMNIST/CelebA
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Table 2. The comparison of experimental methods and data formats in the literature.

Works Structured Unstructured IID Non-IID Node

Ours 4 4 4 4 Jetson Nano

Jiang et al. [39] Combining adaptive and distributed
parameter pruning method. 4 4 Raspberry Pi

Vahidian et al. [40] 4 4 4 8

Yu et al. [41] 4 4 8

Ullah et al. [38] 4 Jetson Nano

Wulfert et al. [24] 4 STM32F446

Kopparapu et al. [25] 4 Arduino

Llisterri Giménez et al. [26] 4 Arduino

3. Methodology

This section elucidates the data preprocessing and implementation methods used in
this work, which explicates the architecture of federated learning, the algorithms associated
with deep learning, and the pertinent formulas and techniques utilized in this study.

3.1. Dataset Description

The datasets utilized in this study are sourced from PhysioNet [46], a publicly avail-
able resource for ECG data. We apply two distinct arrhythmia databases: the MIT-BIH
Arrhythmia Database (MIT-BIH database) [47] and the St Petersburg INCART 12-lead
Arrhythmia Database (St database) [48]. Note that the MIT-BIH database comprises ECG
recordings from 48 patients, each lasting 30 min. Each recording includes 2 standard ECG
leads, sampled at a rate of 360 Hz to ensure high-quality data collection. The St database,
encompassing ECG recordings from 32 patients, comprises 75 half-hour ECG recordings,
with each record lasting 30 min. Each recording includes 12 standard ECG leads, sampled
at a rate of 257 Hz to ensure high-quality data collection.

The choice of these datasets is based on their wide availability and significance in
ECG research. The MIT-BIH database is highly regarded as it provides extensive, long-
duration ECG records from multiple patients, making it suitable for a wide range of
arrhythmia studies.

3.2. Model Architecture

The architecture of Convolutional Neural Network (CNN) consists of two convolu-
tional operations, two pooling operations, and two fully connected operations. Typically,
CNNs add pooling layers after convolutional layers to reduce the dimension of feature
maps. Through multiple rounds of convolution and pooling, low-level features grad-
ually combine to form higher-level features. Ultimately, the neural network performs
classification based on the extracted high-level features. CNN’s convolution operation
exhibits characteristics of local connectivity and weight sharing, enabling it to effectively
capture local features within the signal, making it particularly advantageous for processing
electrocardiogram data with spatial structure.

3.3. Pruning

Structured pruning is a technique employed to prune structural elements of a model,
such as neurons or convolutional kernels within a neural network. This pruning method
typically adheres to the structure and topology of the model to ensure that the connectivity
and hierarchical structure of the network remain unchanged. The structured pruning used
in this work involves setting the weights of certain neurons to zero, thereby disabling
the associated connections. On the other hand, unstructured pruning involves pruning
individual weights within the model, regardless of their location or structure. In this
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scenario, pruning is typically achieved by setting weights with smaller values to zero.
This may result in some weights within the model being entirely eliminated, thereby
reducing the model’s size. Unstructured pruning is often used to further reduce the
model’s storage requirements and computational costs, but it may require sophisticated
techniques to minimize its impact on model performance. In this work, we utilized
the sparse optimization framework provided by DessiLB [14] to transform the original
unstructured architecture into a structured one and make it iteratively adapt to our model.

Figure 2a shows the initial network. The unstructured (weight) pruning (Figure 2b)
and structured (filter) pruning (Figure 2c) approaches are techniques for reducing the size of
deep learning models, improving efficiency, and mitigating overfitting. Structured pruning
cuts out full filters and kernel rows, leading to fewer intermediate feature maps, unlike
just pruning connections [49]. The primary distinction between them lies in their focus on
pruning different types of elements within the model (Figure 3). In [10], it is mentioned that
conventional training is applied to specific parameters (weak nodes), while non-specific
parameters (strong nodes) are not subjected to training. Similar to iterative structured
pruning, pruning is applied to strong nodes while iteratively training weak nodes.
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3.4. Layer Freezing

Layer freezing refers to the practice of setting certain layers or weights in a pre-trained
model to an untrainable state. This means that during the fine-tuning stage, the weights
of these frozen layers remain unchanged and do not obtain updated. The frozen layers
technique is particularly applicable when you already possess a pre-trained model that has
been trained on large-scale data relevant to your new task. Such a pre-trained model can
provide valuable features and knowledge, and you only need to fine-tune it to adapt it to
your specific requirements.
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In the field of deep learning, the layer freezing technique is an important strategy for
effectively leveraging prior model knowledge. By freezing a subset of the model’s layers
or weights, we ensure that these layers will not undergo retraining, thus preserving the
knowledge they acquired from previous tasks. This helps expedite the model fine-tuning
process, reduces reliance on large-scale data, and enhances the model’s generalization
capabilities. In summary, the layer freezing technique is a powerful tool in deep learning
that streamlines transfer learning and the adaptation of models to new tasks, making the
process more efficient and feasible.

3.5. Early Stopping

Early stopping is employed to prevent model overfitting and improve the model’s
generalization ability. Its principle lies in periodically evaluating the model’s performance
during training, and once the performance reaches a specified criterion, the training process
is halted, preventing further training beyond the convergence of the training error. By termi-
nating unnecessary training prematurely, early stopping can save time and computational
resources, particularly in the training of large-scale deep learning models.

3.6. Model Evaluation

Model evaluation is the process of using various evaluation metrics to understand
the performance strengths, and weaknesses of a machine learning model. This process
is crucial for assessing the model’s efficacy in the early stages of research. It also plays
a vital role in model monitoring, ensuring that the model continues to progress towards
its intended goals while preventing unnecessary retraining. After the model completes
training, it is essential to evaluate its usability and effectiveness in real-world applications.
To assess how well the model performs on new data, various evaluation metrics can be
employed. In this work, the F1 score and the confusion matrix are used as the primary
evaluation metrics.

4. System Description

This section presents the federated learning system architecture, including a compact
embedded computing device (i.e., The Jetson Nano from NVIDIA Corporate, Santa Clara,
CA, USA [50]), a framework for federated learning, heterogeneous datasets, federated
learning algorithms, and an optimization approach. We utilized the commonly used Linux
operating system as the computational platform and integrated it with the Flower federated
learning framework along with two Jetson Nano devices to establish a federated learning
environment. Furthermore, this section will also describe the optimization methods used
in this study.

4.1. Flower FL

Flower [51] is an open-source framework designed specifically for federated learning,
aimed at addressing the challenges of machine learning in multi-node environments. The
design of the Flower framework is both flexible and scalable, supporting a variety of
mainstream machine learning frameworks, such as TensorFlow and PyTorch [52]. This
enables developers to experiment with and deploy federated learning in diverse hardware
environments and software platforms. Due to its open-source nature, Flower facilitates
collaboration between academia and industry, thereby accelerating the innovation and
application of federated learning technologies.

Especially in embedded systems, mobile devices, or edge computing environments [45],
Flower demonstrates its unique advantages. In scenarios like the one presented in this
paper, where data volume can be massive and dispersed, Flower effectively coordinates the
computational resources of these devices, facilitating efficient model training and updates
across different nodes.
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4.2. Data Heterogeneity

In this study, we confront the challenge of statistical heterogeneity. Specifically, this
heterogeneity refers to the fact that the data held by different devices is not independently
and identically distributed, and there is an imbalance in the data. Due to the isolation of
patient data from different hospitals, the data sources used on the two embedded boards
are completely different. In this study, the data we collected originates from various sources
of arrhythmia data, as detailed in Section 3.1, and the data preprocessing procedures are
outlined in Section 3.2. Under a normal scenario, the number of instances representing
normal heartbeats significantly outweighs those representing abnormal heartbeats. We
categorized the classes into three categories: Normal beat (N), Atrial premature contraction
(A), and Premature ventricular contraction (V). In the MIT-BIH database, the ratio between
each class is 5.28:1:1.1, while in the St database, the ratio is 5.45:1:1.15. Table 3 depicts the
proportion distribution of N, A, and V data.

Table 3. The proportion distribution of N, A, and V data.

MIT-BIH St Petersburg INCART

N 16,696 18,568
A 3160 3406
V 3489 3943

5.28:1:1.1 5.45:1:1.15

4.2.1. FedProx

In traditional federated learning methods such as federated averaging (FedAvg) [23],
while they demonstrate effectiveness in distributed data processing, their performance
is often limited when dealing with data heterogeneity. To address these limitations of
the FedAvg algorithm, Ref. [22] introduced improvements and proposed the federated
proximal (FedProx) algorithm, which aims to solve system heterogeneity while providing
theoretical guarantees.

The FedProx algorithm is an enhanced version of FedAvg, with a key innovation being
the introduction of a proximal term during the local update process. The introduction
of this regularization term is primarily aimed at mitigating model bias arising from data
heterogeneity and plays a crucial role in reconciling differences in model updates across
different devices. Through this approach, FedProx not only enhances the stability of the
model in data-heterogeneous environments but also accelerates convergence, effectively
reducing the adverse effects of data heterogeneity. The local model update formulas of
FedProx are described as follows:

minwhk
(
w; wt) = Fk(w) +

µ

2

∥∥w − wt∥∥2 (1)

where minwhk
(
w; wt) means γt

k-intexact solution and γ is a variable for different devices
and at different iterations. Fk(w) means the local objective function for device k, µ represents
the regularization parameter for the proximal term, controlling the extent of the proximal
term’s impact. 1

2

∥∥w − wt
∥∥2 means the proximal term itself, which is half the squared norm

of the difference between the current model parameters w and the model parameters wt

after the last global update. The purpose of this term is to prevent the model parameters
updated locally from deviating too far from the global model parameters wt.

In this system, each participating node (such as Jetson Nano) performs model training
locally and then uploads the model updates to the central server. After collecting all the
model update data from the nodes, the FedProx algorithm is applied to construct a more
accurate and updated global model on the server. This design not only improves the overall
model accuracy but also ensures the privacy and security of user data, as the data does not
need to leave the local device to complete the training process.
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4.3. Model Optimization

Figure 4 illustrates a workflow diagram for federated learning, providing a detailed
depiction of the complete process, from global model download to local training, and then
from local training to ultimate model aggregation. The specific steps are as follows:
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• Step 1: Global Model Download

In this work, we employed a deep learning model trained on the MIT-BIH database
with an impressive accuracy of up to 99% on the PC platform. This CNN model was
initially trained on the MIT-BIH database and subsequently tested on an embedded sys-
tem within the context of federated learning. The CNN architecture of the model is
depicted in the accompanying Figure 5 and is categorized into three classes. Note that the
numbers 300/150/75/38/3 represent the input feature size for each layer, the numbers
1/4/16/32/64 represent the filter size, and the conceptual widths with grey and cadet grey
are related to the size of individual layers. This phase involves the download of the current
global model from the central server, which is implemented using the Flower framework
(Section 4.1). This marks the commencement of the federated learning process, involving
clients downloading the global model from the central server.
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• Step 2: Local Training

In this stage, each client locally trains the downloaded global model on its local data to
update model parameters. To address system failures, computational resource constraints,
and external disturbances, we save model checkpoints every two training cycles, facilitating
rapid recovery in case of interruptions and thereby minimizing time and resource waste.
Additionally, we incorporate the use of early stopping (Section 3.5) to prevent overfitting.
Referring to Figure 6, Client 1 focuses on enhancing local training by freezing the first two
convolutional layers, which adopts a strategy of freezing the first two convolutional layers
of the model (Section 3.4). The primary objective of this approach is to maintain accuracy
in recognizing existing classes while strengthening the learning capacity of the remaining
layers for new tasks. Freezing the first two layers reduces the demand for computational
resources, which is particularly important for devices with limited computing capabilities,
such as embedded systems. Moreover, it aids in rapid adaptation to new datasets, as
this portion of the model has stabilized during previous training and performs well on
diverse datasets.

Future Internet 2024, 16, x FOR PEER REVIEW 13 of 24 
 

 

on actual performance and requirements, reducing the risk of overfitting while maintain-
ing high accuracy. 

In summary, the application of the above two steps in the local training phase con-
tributes to enhancing the model’s generalization ability when dealing with data from dif-
ferent sources. It also maintains efficiency and stability in embedded systems and feder-
ated learning environments. 
• Step 3: Uploading a Local Model Update 

Upon completing local training, clients upload their locally trained model updates to 
the central server. This process ensures that all clients participate in the overall model 
update and optimization, promoting the efficiency and effectiveness of the collective 
learning process. 
• Step 4: Model Aggregation 

After receiving model updates from all clients, the server aggregates the models us-
ing the FedProx algorithm (Section 4.2.1). In this step, updates from each client are com-
bined to form a new global model. This iterative process is repeated to create a more re-
fined and efficient global model. This stage is at the core of federated learning, allowing 
different clients to collaborate while preserving the privacy of their respective data. 

These four steps collectively constitute a complete federated learning process, from 
global model download to local training, model update upload, and aggregation, ulti-
mately resulting in an efficient, stable, and highly generalized deep learning model. 

 
Figure 6. Experimental system architecture [53]. 

5. Experimental Results 
This section aims to compare and evaluate the deep learning model optimization 

techniques applied in this study for the heartbeat classification task. After multiple rounds 
of experimental data, this research identifies the most suitable optimization methods for 
handling data heterogeneity. In addition to presenting the specific results of each experi-
ment, this section will delve into the performance and characteristics of the model as a 
whole. 

5.1. Experimental Environment 
To construct the federated learning environment, we combined a local PC and two 

ReComputer Jetson Nano J1010 devices from NVIDIA Corporate, Santa Clara, CA, USA. 
The local PC is used to create a virtual machine (VM) for controlling and coordinating the 

Figure 6. Experimental system architecture [53].

For Client 2, it employs L2 regularization to prune internal nodes within fully con-
nected layers [42], where the choice is made to implement pruning techniques (Section 3.3)
rather than Sparse Learning, based on several considerations. Firstly, pruning, as a post-
training model optimization technique, allows for more precise model adjustments after
training. By removing weights or neurons with minimal contribution to predictions, prun-
ing reduces model complexity and computational burden, which is critical for devices with
limited computational capabilities, such as embedded devices. Additionally, compared
to sparse learning, pruning provides greater flexibility and adaptability. Sparse learning
fixes the model structure during training and may be constrained when handling vastly
different datasets. In contrast, pruning allows for fine-tuning after training based on ac-
tual performance and requirements, reducing the risk of overfitting while maintaining
high accuracy.

In summary, the application of the above two steps in the local training phase con-
tributes to enhancing the model’s generalization ability when dealing with data from
different sources. It also maintains efficiency and stability in embedded systems and
federated learning environments.
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• Step 3: Uploading a Local Model Update

Upon completing local training, clients upload their locally trained model updates
to the central server. This process ensures that all clients participate in the overall model
update and optimization, promoting the efficiency and effectiveness of the collective
learning process.

• Step 4: Model Aggregation

After receiving model updates from all clients, the server aggregates the models using
the FedProx algorithm (Section 4.2.1). In this step, updates from each client are combined
to form a new global model. This iterative process is repeated to create a more refined and
efficient global model. This stage is at the core of federated learning, allowing different
clients to collaborate while preserving the privacy of their respective data.

These four steps collectively constitute a complete federated learning process, from
global model download to local training, model update upload, and aggregation, ultimately
resulting in an efficient, stable, and highly generalized deep learning model.

5. Experimental Results

This section aims to compare and evaluate the deep learning model optimization
techniques applied in this study for the heartbeat classification task. After multiple rounds
of experimental data, this research identifies the most suitable optimization methods
for handling data heterogeneity. In addition to presenting the specific results of each
experiment, this section will delve into the performance and characteristics of the model as
a whole.

5.1. Experimental Environment

To construct the federated learning environment, we combined a local PC and two
ReComputer Jetson Nano J1010 devices from NVIDIA Corporate, Santa Clara, CA, USA.
The local PC is used to create a virtual machine (VM) for controlling and coordinating
the entire system’s operation. The hardware configuration includes an Intel(R) Core (TM)
i9-10900KF CPU @ 3.70GHz, 128GB RAM, and a Nvidia RTX 3080 graphics card. The
embedded device, the ReComputer Jetson Nano J1010 device, is equipped with a quad-core
ARM® Cortex®-A57 MPCore processor designed for edge computing to support efficient
data processing and machine learning tasks at the device’s edge. Due to the requirements
of the Flower development environment, we configured a PyTorch software environment
compatible with Python 3.8 on this device. Note that, due to the support limitations of
Nvidia JetPack 4.6.1, Python versions above 3.6 are not supported for GPU acceleration.
Therefore, in our experimental setup, although the Jetson Nano device has GPU computing
capabilities, we could only utilize the CPU for computations in this environment.

Figure 6 shows the federated learning architecture employed in this experiment, which
includes a central server and two clients. Communication between each client and the
server is facilitated through gRPC [54], which is a high-performance, open-source, and
general-purpose RPC framework led by Google, allowing for remote procedure calls. The
following are the steps in the operation process:

(1) Server:

On the server side, we have deployed the FedProx algorithm, which is a federated
learning algorithm designed to handle heterogeneous data distributions from different
clients. The primary responsibility of the server is to coordinate the entire learning process,
including receiving model updates from clients, aggregating them, and distributing the
updated global model back to the clients.

(2) Client 1 and Client 2:

Each client (such as Client 1 and Client 2 in Figure 6) has its own dataset for local
model training. Clients utilize their hardware to perform local computations. Once a client
completes local model training, it sends model updates back to the server via gRPC.
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(3) Model Update and Aggregation:

As the server receives updates and performs aggregation, the global model gradually
evolves. The aggregated model is then redistributed to all clients, which subsequently
commence the next round of local training using the new parameters. This iterative learning
cycle enhances the model’s generalization capabilities and enables it to better handle data
from different sources.

To evaluate the system performance, a baseline algorithm (i.e., the FedAvg) and
the proposed FedProx algorithm are examined with the following model optimization
strategies for Clients 1 and 2:

• Strategy 1: Both Client 1 and Client 2 have an initial configuration.
• Strategy 2: Client 1 (Frozen layer); Client 2 (Initial configuration)
• Strategy 3: Both Client 1 and Client 2 are Frozen layer.
• Strategy 4: Client 1 (Frozen layer with unstructured pruning);

Client 2 (Initial configuration with unstructured pruning)
• Strategy 5: Client 1 (Frozen layer with structured pruning);

Client 2 (Initial configuration with structured pruning)

5.2. Performance Evaluation

This subsection compares and contrasts the FedAvg and FedProx algorithms, consid-
ering the five above-mentioned model optimization strategies.

5.2.1. FedAvg/FedProx with Strategy 1

The confusion matrices presented in Figure 7 reflect the classification results obtained
by applying the FedAvg and FedProx algorithms with initial configurations to two different
datasets. Based on the experimental data in this study, we examine the F1 score and
confusion matrix for a comprehensive performance evaluation. The F1 score reveals that
the classification results are superior when employing the FedProx algorithm compared
to FedAvg. Such comparative results indicate the superiority of FedProx over FedAvg in
model performance when handling heterogeneous datasets.
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5.2.2. FedAvg/FedProx with Strategy 2

To enhance the stability of the model on the MIT-BIH database, we introduced the
freeze layer technique. To ensure controlled variables in the experiments, we retained
the original configuration of the model on the ST database. As depicted in Figure 8,
the experimental results indicate that for the application of freeze layers in the MIT-BIH
database, the FedProx algorithm demonstrates excellent performance with an F1 score of
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97.31%, compared to that of the FedAvg with an F1 score of 79.76%. In the ST database
without the use of the freeze layer technique, category A was not accurately classified with
the FedProx algorithm (i.e., yet an overall F1 score of 62.15% was still obtained). In contrast,
comparing the classification results of the FedAvg with Strategy 1 (Figure 7), the FedAvg
algorithm with Strategy 2 achieves significant performance improvements of 40.37% and
9.46% in the MIT-BIH and ST databases, respectively.
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5.2.3. FedAvg/FedProx with Strategy 3

In Figure 9, we applied freezing to two layers (conv1 and conv2) of the model on
both clients and evaluated the impact of this operation on the model’s performance. While
theoretically, freezing the initial layers might contribute to maintaining the stability of
feature extraction, experimental results of both the FedAvg and FedProx algorithms reveal
that the models failed to accurately extract features distinguishing different categories,
thereby affecting their classification accuracy.
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5.2.4. FedAvg/FedProx with Strategy 4

In specific federated learning contexts, we hypothesize that freezing the initial layers
may be disadvantageous for the model to capture sufficient discriminative power to handle
more fine-grained classification tasks. In order to enhance the adaptability and general-
ization capabilities of the model across different datasets, we introduced the open-source
tool DessiLB for implementing unstructured pruning in this study. Figure 10 presents
the corresponding confusion matrix, following the approach outlined in [38] with tests
conducted at three different pruning percentages (i.e., 10% (Figure 10a), 20% (Figure 10b),
and 80% (Figure 10c) pruning percentages).
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For the FedProx algorithm, experimental results indicate that, across various pruning
percentages, 10% pruning (95.58% and 63.47%) achieves the most competitive performance,
compared to the results in Figure 8 (97.31% and 62.15%). However, even with a 10%
pruning percentage, the pruning strategy still falls short of accurately classifying category
A. Despite the simplicity and flexibility inherent in unstructured pruning and its ability
to rapidly compress models in certain contexts, this pruning strategy did not significantly
improve the model’s classification performance in this experiment.



Future Internet 2024, 16, 142 17 of 23

Nonetheless, for the FedAvg algorithm, Strategy 4 with 20% and 80% pruning per-
centages achieves better classification performance, respectively, with (88.75% and 72.75%)
and (71.13% and 86.56%), compared to the results of the FedProx algorithm respectively
with (90.40% and 51.94%) and (79.23% and 47.69%), which implies that compared with
those of the FedAvg with Strategy 1 (Figure 7) and the FedProx, implementing optimization
Strategy 4 (i.e., unstructured pruning and layer freezing) may achieve effective balance
between model complexity and classification accuracy of the FedAvg algorithm.

5.2.5. FedAvg/FedProx with Strategy 5

To further enhance the model’s performance, we subsequently modified the open-
source code DessiLB to implement a structured pruning strategy, conducting experiments
with multiple pruning percentages (i.e., 10% (Figure 11a), 20% (Figure 11b), 40% (Figure 11c),
and 80% (Figure 11d) pruning percentages). Based on the experimental results in Figure 11,
we observed that the FedAvg with structured pruning has performance deterioration
compared to the classification performance of the FedAvg with unstructured pruning.
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On the other hand, at a pruning rate of 10%, the FedProx with structured pruning
achieved the best F1 scores, reaching 96.01% and 77.81% (Figure 11a), respectively, which is
superior to those of the FedProx with unstructured pruning, reaching 95.58% and 63.47%
(Figure 10a), respectively. However, with an increasing pruning percentage, the F1 scores
exhibited a decreasing trend, reaching a minimum at the 40% pruning rate, followed by a
subsequent rising trend. This phenomenon may be attributed to the substantial pruning of
nodes, leading the model to undergo a near-retraining process, thereby highlighting the
impact of structured pruning on model performance within specific contexts.

To assess the training efficiency, Figure 12 depicts the F1 score with respect to the
number of epochs using the FedProx algorithm with Strategy 5 at a pruning rate of 10%
and an early stopping mechanism. Note that in this typical run, with the pruning operation,
the model size and parameters are reduced by removing connections, leading to improved
generalization. Moreover, given that the training process consists of three rounds with
10 epochs at each round. Observe that Figure 12 provides an example where the training
process with the proposed approach stops 12 epochs earlier than that without early stopping
(which stops with a 30 epoch delay). Accordingly, the training efficiency of Fl has improved.
The series of experimental results underscores the sensitivity of structured pruning to
model performance at different pruning levels, providing valuable insights for further
exploration of optimized pruning strategies.
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Figure 12. The F1 score with respect to the number of epochs on the ST dataset using the FedProx
algorithm at a pruning rate of 10%.

5.2.6. Comparative Analysis

As mentioned in [22], while FedAvg has demonstrated empirical success in hetero-
geneous settings, it does not fully address the underlying challenges when learning over
data from non-IID data distributions (i.e., statistical heterogeneity). Accordingly, to tackle
heterogeneity in federated networks with the FedAvg algorithm, this work applies the
layer freezing technique and the unstructured pruning method to effectively strike the
right balance between model complexity and classification performance, compared with
the performance of the FedAvg with the optimization strategies proposed in Section 5.1.

For the FedProx algorithm, this series of research results strongly demonstrates the
significant advantages of structured pruning in improving the overall performance of
the FedProx model, particularly in enhancing the model’s capability to recognize spe-
cific categories. By selectively removing entire channels or filters, structured pruning
systematically reduces the complexity of the model, showcasing better adaptability to
heterogeneous datasets while effectively improving computational efficiency. This holds
particular significance for resource-constrained application environments. Therefore, in
this study, structured pruning technology is identified as a superior model optimization
method. In summary, structured pruning successfully enhances the model’s performance
on heterogeneous datasets, confirming its feasibility in maintaining model accuracy and
opening new possibilities for resource-efficient optimization.
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By combining the FedProx algorithm, layer freezing technique, and structured pruning
method, this study successfully demonstrates the practical effectiveness of these methods
in optimizing deep learning models in a federated learning environment. Importantly,
federated learning aims to enhance the overall network performance rather than focusing
solely on the accuracy of individual nodes. This discovery points to new research direc-
tions and methodological pathways for future exploration and application in the field of
federated learning. Table 4 summarizes the classification performance of the FedAvg and
FedProx algorithms with optimized operations.

Table 4. Comparison of model optimization for MIT-BIH and ST databases.

Figure Database Initial Frozen Unstructured
Prune

Structured
Prune

FedAvg
F1 Score

FedProx
F1 Score

Figure 7
MIT-BIH 4 0.5682 0.6612

ST 4 0.8580 0.8990

Figure 8
MIT-BIH 4 0.7976 0.9731

ST 4 0.9392 0.6215

Figure 9
MIT-BIH 4 0.5714 0.2797

ST 4 0.4240 0.2778

Figure 10a
MIT-BIH 4 0.6941 0.9558

ST 4 0.8121 0.6347

Figure 10b
MIT-BIH 4 0.8875 0.9040

ST 4 0.7275 0.5194

Figure 10c
MIT-BIH 4 0.7113 0.7923

ST 4 0.8656 0.4769

Figure 11a
MIT-BIH 4 0.5404 0.9601

ST 4 0.8325 0.7781

Figure 11b
MIT-BIH 4 0.4843 0.9061

ST 4 0.6157 0.6348

Figure 11c
MIT-BIH 4 0.7991 0.7931

ST 4 0.7801 0.5881

Figure 11d
MIT-BIH 4 0.4270 0.8290

ST 4 0.4086 0.6539

5.2.7. With Imbalanced Class Distribution

To further assess the robustness of the pruned models, here we explore system perfor-
mance with respect to imbalanced class distribution by increasing the distribution variation
in the datasets (i.e., changing the ratio among each class 5.28:1:1.1 (the MIT-BIH database)
and 5.45:1:1.15 (the St database) in Table 3 to the ratio 4.5:1:1.1 and 7.5:1:1.01, as shown in
Table 5). Referring to the experimental results with a less imbalanced class distribution (e.g.,
Table 3), the FedProx with structured pruning at a pruning rate of 10% achieves the best F1
scores, reaching 96.01% and 77.81% (Figure 11a), respectively. In contrast, Figure 13 depicts
that with a more imbalanced class distribution (e.g., Table 5), at a pruning rate of 20%, the
FedProx with structured pruning achieved the best F1 scores, reaching 98.46% and 64.14%,
respectively. Thus, considering the scenario of an imbalanced class distribution, the results
suggest that we may adaptively adjust the pruning ratio to suppress the degradation of
pruned model accuracy. Table 6 presents a comparison of model accuracy for MIT-BIH and
ST with the FedProx given an imbalanced class distribution.
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Table 5. The proportion distribution of N, A, and V data with an imbalanced dataset.

MIT-BIH St Petersburg INCART

N 26,861 29,852
A 5907 3955
V 6808 4009

4.5:1:1.15 7.5:1:1.01
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Table 6. Comparison of model optimization for MIT-BIH and ST with an imbalanced dataset.

Prune
Percent Database Initial Frozen Unstructured Prune Structured Prune FedProx

F1 Score

10%
MIT-BIH 4 0.9422

ST 4 0.6250

20%
MIT-BIH 4 0.9846

ST 4 0.6414

40%
MIT-BIH 4 0.9892

ST 4 0.5097

60%
MIT-BIH 4 0.9788

ST 4 0.4922

80%
MIT-BIH 4 0.9848

ST 4 0.6087
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6. Conclusions

This work employs the Flower federated learning framework and Jetson Nano devices
to deeply explore and optimize federated learning for heterogeneous data at the edge. It
improves the FedProx algorithm to effectively address non-IID data distribution challenges
and enhances training efficiency through layer freezing and data pruning techniques.
The research demonstrated the viability of federated learning across various datasets,
offering a new solution for privacy protection in sensitive areas like healthcare. By parallel
processing across multiple nodes, the study optimized medical data distributed across
different healthcare institutions and devices, devising strategies for resource-constrained
devices like the Nvidia Jetson Nano to boost the practicality of federated learning in edge
computing environments. This study establishes a solid foundation for the application
of federated learning technology in healthcare and other data-sensitive domains, which
provides crucial technical support for the development of big data and artificial intelligence
technologies in the future, allowing more people to benefit from intelligent healthcare
systems. These advancements not only drive technological innovation but also offer new
possibilities for improving the quality of global healthcare.

Based on the system architecture and experimental results of the proposed frame-
work, the future directions of research include (1) introductions of classic datasets (e.g.,
MNIST, Cifar10/100, and Tiny-ImageNet) and system heterogeneity (e.g., considering the
systems characteristics on heterogeneous devices in the network), weight adjustments or
the utilization of more advanced methods for handling class imbalance, aiming to enhance
the model’s performance on rare classes; (2) data security assessment and model appli-
cability (e.g., introducing more advanced encryption techniques and privacy protection
mechanisms to further safeguard the data of participating nodes); (3) balancing model
complexity and performance (e.g., improving computational efficiency while maintaining
model performance with limited network resources). Through the comprehensive applica-
tion of these approaches, federated learning models will become more suitable for edge
computing environments, making a greater contribution to future healthcare systems.
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