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Abstract: Speech separation, sometimes known as the “cocktail party problem”, is the process of
separating individual speech signals from an audio mixture that includes ambient noises and several
speakers. The goal is to extract the target speech in this complicated sound scenario and either make
it easier to understand or increase its quality so that it may be used in subsequent processing. Speech
separation on overlapping audio data is important for many speech-processing tasks, including
natural language processing, automatic speech recognition, and intelligent personal assistants. New
speech separation algorithms are often built on a deep neural network (DNN) structure, which seeks
to learn the complex relationship between the speech mixture and any specific speech source of
interest. DNN-based speech separation algorithms outperform conventional statistics-based methods,
although they typically need a lot of processing and/or a larger model size. This study presents
a new end-to-end speech separation network called ESC-MASD-Net (effective speaker separation
through convolutional multi-view attention and SuDoRM-RF network), which has relatively fewer
model parameters compared with the state-of-the-art speech separation architectures. The network
is partly inspired by the SuDoRM-RF++ network, which uses multiple time-resolution features
with downsampling and resampling for effective speech separation. ESC-MASD-Net incorporates
the multi-view attention and residual conformer modules into SuDoRM-RF++. Additionally, the
U-Convolutional block in ESC-MASD-Net is refined with a conformer layer. Experiments conducted
on the WHAM! dataset show that ESC-MASD-Net outperforms SuDoRM-RF++ significantly in the
SI-SDRi metric. Furthermore, the use of the conformer layer has also improved the performance of
ESC-MASD-Net.

Keywords: speech separation; conformer; multi-view attention; residual conformer network

1. Introduction

Speech separation involves the processing of audio signals in order to separate multiple
speech signals that overlap, with the objective of identifying and processing each speaker’s
speech separately. speech separation is very beneficial in diverse interference conditions,
such as while recording conferences, making phone conversations, or mixing music. It
allows us to isolate distinct speech outputs and solve the problem of speaker overlap.
Effective speech separation methods usually involve a comprehensive understanding of
signal processing, machine learning, and artificial intelligence.

Deep neural network (DNN) techniques have greatly improved state-of-the-art speech
separation approaches. To enhance the functionality of speech separation systems, the state-
of-the-art methods employ a variety of DNN designs and training techniques [1], including
the following.

• Deep clustering-based methods [2,3] learn embeddings from mixed audio signals
that can be used to distinguish between different speakers. In [2], the spectrogram
embeddings are learned through a DNN to be discriminative for clustering, and the
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work in [3] extends the deep clustering framework by end-to-end training with better
regularization, longer temporal context, and a deeper structure.

• Time-Domain Audio Separation Network (TasNet) [4,5] circumvents the drawbacks of
time-frequency representation by operating directly in the time domain to separate
speech signals. TasNet employs a 1D convolutional encoder–decoder system, with the
separation module as its fundamental component. This module is responsible for
estimating source masks based on the encoder outputs. These masks are employed to
measure the encoded mixed signal in order to separate different sources.

• The ability to capture longer contextual information has been greatly improved with
the rise of self-attention mechanisms and transformer design [6], leading to even
better speech separation quality. Sepformer [7] and DPTNet [8] are two examples of
speech separation systems that adopt transformers. They are typically implemented
in the dual-path architecture, which introduces a large number of parameters due to
the fact that these systems model intra-chunk local features and inter-chunk global
relationships separately.

Several studies have developed more efficient speech separation architectures to
address the growing concern over large models with significant computing demands.
For example, the dual-path recurrent neural network (DRPNN) [9] is a lightweight speech
separation model that efficiently models long sequences in time for a single channel.
DPRNN splits the sequence into smaller chunks and, thus, allows for better gradient
flow and easier optimization. This structure also enables the network to capture both
local and global dependencies in the sequence. Another study [10] uses a BLSTM-based
binary masking module to create a comparable lightweight speech separation system.
This masking module is designed to separate the sound source of interest (SOI) from
the cumulative environmental interference. Furthermore, TDANet [11] simulates the
human brain’s top-down attention mechanism by performing speech separation using
global attention and cascaded local attention layers, providing comparable performance
to Sepformer but with significantly less computational complexity. In addition, SuDoRM-
RF [12] and its derivative SuDoRM-RF++ [13] use successive depth-wise convolutional
downsampling to extract multi-resolution temporal features, reducing the number of layers
needed while effectively capturing long-term temporal relationships for speech separation.

This study presents a new network called ESC-MASD-Net to improve the performance
of speech separation models. This network is based on the SuDoRM-RF++ architecture
but with two additional modules: the residual conformer network (ResCon) and the multi-
view attention (MA) network. These two modules are crucial elements of the MANNER
network [14]. We also enhance the U-Convolutional blocks in ESC-MASD-Net by adding
a conformer layer [15]. We evaluate our model using the WHAM! dataset [16], and the
results indicate that ESC-MASD-Net outperforms SuDoRM-RF++ in terms of scale-invariant
signal-to-distortion ratio improvement (SI-SDRi) scores. This improvement is due to the
contribution of each additional component (ResCon, MA, and the conformer layer). These
findings suggest that ESC-MASD-Net has the potential to be a solution for speech separation
in real-world applications.

The main contributions of this study can be summarized as follows.

• We propose ESC-MASD-Net, a speech separation framework that achieves state-of-the-
art performance while maintaining low computation load and compact model size.

• ESC-MASD-Net is built on the SuDoRM-RF++ structure, and it considers the input
feature stream’s channel, global, and local information by employing a multi-view
attention (MA) block. Additionally, the framework uses a residual conformer (ResCon)
block that tunes the input channel numbers flexibly for extracting information without
any loss due to the residual connection arrangement. Evaluation experiments indicate
that adding MA and ResCon blocks significantly improves SI-SDRi.

• We investigate the conformer layer structure presented in [15] and propose three
different arrangements to adopt the conformer layer in the U-Convolution blocks in
ESC-MASD-Net. The evaluation results exhibit that ESC-MASD-Net equipped with
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the conformer layer achieves superior performance, and thus, the conformer layer is
well additive to ESC-MASD-Net.

The rest of the paper is organized as follows. Section 2 provides a brief overview
of the SuDoRM-RF++ framework, while Section 3 introduces the new ESC-MASD-Net,
which incorporates two modules, ResCon and MA, to enhance SuDoRM-RF++. The use
of the comformer layer in the U-Convolutional blocks of ESC-MASD-Net is explained in
Section 4. Section 5 provides details on the experimental setup, while Section 6 presents
the experimental results and discussions. Finally, Section 7 concludes the paper with
some remarks.

2. SuDoRM-RF++

The SuDoRM-RF++ method is depicted in Figure 1a. SuDoRM-RF++ adheres to the
ESD architecture, which comprises three main components: the Encoder, Separator, and De-
coder. The encoder is responsible for converting a mixture x ∈ RT , which contains audio
signals from K speakers and interferences into a representation vx that characterizes the
signal. Subsequently, the separator produces K latent representations {v̂k, k = 1, 2, · · ·, K}
for each speaker in the mixture. Finally, the decoder proceeds to reconstruct the separated
K source signals in the time domain, with each signal being denoted as ŝk ∈ RT .

Figure 1. (a) The flowchart of SuDoRM-RF++. (b) The flowchart of a single U-Convolution block.

2.1. Encoder

The encoder E architecture is a one-dimensional convolutional network with CE
channels, kernel size KE , and stride KE/2. To ensure non-negativity, the output of the
convolutional network is passed via a rectified linear unit (ReLU) layer. Hence, the encoded
representation of the input mixture is expressed as:

vx = E(x) = ReLU(Conv1D(x)) ∈ RCE×L. (1)

2.2. Separator

The separator S initially applies a point-wise convolution and global layer normaliza-
tion (GLN) on the encoded representation vx, expressed by:

y0 = Conv1D(GLN(vx)) ∈ RC×L. (2)
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The outcome y0 is subsequently processed using a sequence of U-Convolutional blocks.
The U-Convolutional block serves as the signature operation of SuDoRM-RF++, employing
temporal downsampling and resampling operations in succession to extract separation
information from inputs of various resolutions. The U-Convolutional block structure is
illustrated in Figure 1b, while a comprehensive explanation of its specific operations can be
found in [13]. We omit this part due to the extensive description required and its exclusion
from the scope of our study.

The output of the B consecutive U-Convolutional blocks, y(B), is passed through
a convolution network in order to extract separated latent representations for multiple
speakers in concatenation v̂ = [v̂1, v̂2, ..., v̂K], as follows:

v̂ = Conv1D
((

yB
))

∈ RKCE×L. (3)

2.3. Decoder

The decoder is a transposed convolution network that shares the same stride and
kernel size as the encoder. With the latent representation v̂k corresponding to the kth
speaker, the decoder outputs the separated signal sk:

ŝk = Conv1DT(v̂k). (4)

It is important to note that only one trainable convolution network is used to turn the
latent representation back into the time-domain signals. This means that all speakers use
the same decoder.

3. Presented Method: ESC-MASD-Net

With SuDoRM-RF++ as the archetype, this study proposes a new speech separation
framework, ESC-MASD-Net; the flowchart is depicted in Figure 2. Comparing Figure 2
with Figure 1a, ESC-MASD-Net modifies SUDORM-RF++ in two distinct stages in the
separator: first, it substitutes the point-wise convolution after the GLN process with a
residual conformer (ResCon) block; second, it adds a multi-view attention (MA) block after
the serial U-ConvBlocks. In the following, we introduce the operations of ResCon and
MA blocks, which are two fundamental blocks of MANNER [14], a highly-effective speech
enhancement framework.

Figure 2. Flowchart of effective speaker separation through convolutional multi-view attention and
SuDoRM-RF network (ESC-MASD-Net).
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3.1. Residual Conformer Block

The residual conformer (ResCon) block, depicted in Figure 3, is a variation of the
Conformer convolution block that increases the channel size to produce enriched channel
representation. The primary branch of ResCon comprises a series of operations, including
point-wise convolution with a channel growth factor of G0, batch normalization, gated
linear unit (GLU), depth-wise convolution, another batch normalization, Swish activation,
and point-wise convolution with a channel growth factor of G1. As a residual connection
added to the main branch, the second branch consists of a point-wise convolution layer with
channel growth factor G1. The ReLU activation is applied to further process the output.

Below are some of the key features and advantages of the ResCon block.

1. The branch of the ResCon block expands channels for information capture and en-
hancement. Furthermore, this branch uses depthwise separable convolution, which
combines depth-wise and point-wise convolution to drastically reduce overall pro-
cessing requirements when compared to a standard convolution network.

2. The ResCon block uses a GLU (Gated Linear Unit) which operates as follows:

Y = (X ∗ W + b)⊗ σ(X ∗ V + c), (5)

where X is the input, W, V, b, and c are learnable affine transformation parameters,
and σ is the sigmoid function. The GLU assists in learning which features of the
input to pass through and which to block, allowing it to focus on relevant features
for the given task. In addition, the number of channels can be adjusted using GLU’s
affine transformations.

3. The Swish function is represented as y = xσ(βx), where β is a learnable parameter
and σ is the sigmoid function. Swish has been demonstrated to outperform ReLU
activation for deep neural network training. Unlike ReLU, Swish does not have the
problem of terminating the learning process when the input is negative.

4. The ResCon block’s residual connection branch preserves all input information, guar-
anteeing that the main branch only grasps information that will improve or sustain
performance. Furthermore, the point-wise convolution applied to the residual connec-
tion aids in alternating the number of input channels with little computational effort.

Figure 3. Flowchart of residual conformer block.
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3.2. Multi-View Attention Block

The Multi-view Attention (MA) block, which consists of channel, global, and local
attention, is integrated into the separation network’s core architecture to fully represent the
signal information provided by the output of the U-Conv Block. Channel attention, first
of all, highlights representations from compressed channels. Meanwhile, dual-path-based
global and local attention effectively reflects long sequential features. Figure 4 shows the
architecture of the MA block.

Figure 4. Flowchart of multi-view attention block.

Fundamentally, the MA block performs the following changes to the latent representa-
tion [14].

• Path Separation: The input travels through three routes in the MA block, each of
which has a convolution layer that changes the channel size from C to ⌊C/3⌋. We use
chunking with a 50% overlap ratio for both global and local attention paths, splitting
x ∈ R⌊C/3⌋×L into x ∈ R⌊C/3⌋×P×S, where P and S stand for chunk size and number
of chunks, respectively. This way, long sequential features are efficiently presented
due to separating the global and local information. The three perspectives of attention
are described as follows.
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1. Channel Attention: Given the input xc ∈ R⌊C/3⌋×L for the channel attention
path, the average and max pooling processes are used to aggregate the signal
information for each channel i = 1, 2, ..., ⌊C/3⌋. The pooling outputs, xavg

c and
xmax

c , are then passed through a common densely connected network with one
hidden layer having ⌊C/6⌋ nodes, followed by the sigmoid activation function σ
to obtain the channel attention weight αc ∈ R⌊C/3⌋×1:

αc = σ
(

W1

(
W0

(
xavg

c

))
+ W1(W0(xmax

c ))
)

, (6)

where W1 ∈ R⌊C/3⌋×⌊C/6⌋ and W0 ∈ R⌊C/3⌋×⌊C/6⌋ denote the weights of the used
densely connected network. The channel attention weight is then broadcasted
along the time dimension and multiplied with xc to produce the channel attention
output x′c ∈ R⌊C/3⌋×L.

2. Global Attention: The global attention is based on the self-attention of Trans-
former, in which the chunk-wise representation xg ∈ R⌊C/3⌋×P×S for the global
attention input is taken into account. The corresponding output x′g ∈ R⌊C/3⌋×P×S

is determined by multi-head self-attention (MHA):

αg = softmax

(
QK⊤
√

dk

)
, x′g = W

(
αgV

)
, (7)

where the linear transformation with each weight, Wq,k,v ∈ R1×S×S, and
xg ∈ R⌊C/3⌋×P×S, represent Q, K, and V ∈ R⌊C/3⌋×P×S. Ultimately, a linear
layer, W ∈ R1×S×S, is applied to αgV in order to extract the global attention output.

3. Local Attention: The local sequential features in each chunk are represented by
local attention. On the chunked input xL ∈ RP×⌊C/3⌋×S, a depthwise convolu-
tion layer with a kernel size of ⌊S/2⌋ − 1 is applied. Following the depthwise
convolution layer, we concatenate the channel-wise average and max pooling to
estimate the local attention weight αl ∈ RP×1×S as follows:

αl = σ(F([xavg
l ; xmax

l ])), (8)

where F is the convolution layer that halves the channel size. At last, we express
the final result of the local attention path as:

x′l = xl × αl . (9)

• Path Aggregation: Following the three attention paths, each output is concatenated
and then passed through a convolution layer. A residual gate with sigmoid activation,
hyperbolic tangent activation, and ReLU is used to process the resulting output further.
Finally, a residual connection is made.

4. U-Convolutional Blocks Enhanced with Conformer Layer

The work in [15] proposes a mask estimation network topology with consecutive sub-
sampling and supersampling layers close to the U-Convolutional block used in SuDoRM-
RF++. However, conformer layers are applied at the output of the final subsampling layer.
The flowchart of a conformer layer is depicted in Figure 5, showing that it is composed of a
feed-forward module, a convolution module, a multihead self-attention (MHSA) module,
and another feed-forward module. As stated in [15], the conformer layer operates as a
dual-path network, sequentially processing both local and global contexts while being
less computationally demanding. In this study, we suggest incorporating the conformer
layer into the U-Convolutonal blocks of the separator for ESC-MASD-Net to investigate its
potential additive nature. We propose the following three locations for the conformer layer:
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(a) Right before the U-Convolutional blocks;
(b) At the bottom (right after mostly downsampled layer) of the first U-Convolutonal

block.
(c) At the bottom of all U-Convolutional blocks.

Figure 5. Flowchart of a conformer layer [15].

These three arrangements are depicted in Figures 6–8 for clarity. In these figures,
the ordinary U-convolutional block and revised U-convolutional block (with conformer
at the bottom of the ordinary U-Convolutional block) are depicted in Figures 9 and 10.
Options (a) and (b) utilize just a single conformer layer, but option (c) employs B conformer
layers. Nevertheless, the conformer layer employed in options (b) and (c) exhibits a
significantly reduced number of parameters compared to the one utilized in option (a).
This disparity arises from the fact that the data processed in options (b) and (c) undergo
temporal downsampling, but the data in (a) does not.
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Figure 6. Option (a): the conformer layer is right before the B U-Convolutional blocks.

Figure 7. Option (b): the conformer layer is at the bottom of the first U-Convolutional block, and thus
there is one revised U-Convolutional block in the beginning, concatenated with (B − 1) ordinary
U-Convolutional blocks.
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Figure 8. Option (c): the conformer layer is at the bottom of all U-Convolutional blocks, and thus
there are B revised U-Convolutional blocks in concatenation.

Figure 9. Flowchart of an ordinary U-Convolutional block.
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Figure 10. Flowchart of a revised U-Convolutional block, which adds a conformer layer to the bottom
of an ordinary U-Convolutional block.

5. Experimental Setup
5.1. Data

We have evaluated various speech separation networks using the WHAM! dataset [16]
and task. WHAM! is a noisy variant of WSJ0-2Mix [2], which is used to train models for
separating speech in audio mixtures. However, the WSJ0-2Mix dataset is less practical
because it cannot generalize to speeches from a wider range of speakers due to the overlap
between the two speakers’ audios being 100%. WHAM! improves upon this by blending
speeches with background noise captured in cafes, restaurants, and bars. Furthermore,
the noise samples utilized in this dataset have undergone processing to exclude any parts
that contain intelligible speech. The noise in WHAM! poses a more significant barrier
to mixed audios compared to WSJ0-2Mix, mostly because of its consistently sampled
signal-to-noise ratio (SNR), which varies between −6 dB and 3 dB.

5.2. Data Generation and Augmentation

To create a speech mixture, the following method is used: Initially, a pair of speakers
is chosen at random. Subsequently, short segments lasting 4 s are randomly selected from
two audio source files. The source segments are finally combined and noise is applied at a
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random signal-to-noise ratio (SNR). The training set consists of 20,000 mixtures, while the
validation and test sets each contain 3000. The choices of utterances for training, validation,
and test sets exactly follow the arrangement of the works SuDoRM-RF [12] and SuDoRM-
RF++ [13]. All audio clips are downsampled to 8 kHz and normalized by subtracting their
mean and dividing by their standard deviation.

5.3. Separation Network Configurations

For the single-channel separation task with training data under anechoic condition,
the SuDoRM-RF++ architecture, as documented in [13], serves as the foundational model for
ESC-MASD-Net. Hyperparameters for SuDoRM-RF++ and ESC-MASD-Net are configured
to mirror those yielding optimal performance as reported in [13]. Within the encoder and
decoder modules, a kernel size (KE ) of 21 and a basis count (CE ) of 512 are applied to input
mixtures sampled at 8 kHz. Each U-ConvBlock configuration entails an input channel count
(C) of 128, four successive resampling operations, and an expanded channel count of 512.
Subsampling operations reduce the temporal dimension by a factor of 2, while depth-wise
separable convolutions feature a kernel length of 5 and a stride of 2. The separation network
incorporates 4 U-Conv Blocks (B = 4), aligning with the minimal configuration across
diverse SuDoRM-RF versions.

Regarding the multi-view attention block, parameters include a channel count (CM) of
512, four attention heads, attention dimensions of 256, and an attention dropout rate of 0.1.

5.4. Training Objectives

The objective function used for training the speech separation networks is the scale-
invariant source-to-distortion ratio (SI-SDR). This function calculates the difference between
the estimated speech signal ŝ and the clean source signal s. SI-SDR is developed to address
the misuse of SDR and improve the accuracy of evaluation results.

The SI-SDR is calculated by:

ρ(ŝ, s) = 10 log10


∥∥∥ ⟨ŝ,s⟩
⟨s,s⟩ s

∥∥∥2

∥∥∥ŝ − ⟨ŝ,s⟩
⟨s,s⟩ s

∥∥∥2

, (10)

where ⟨·, ·⟩ denotes the inner product operation. The term ⟨ŝ,s⟩
⟨s,s⟩ s denotes the orthogonal

projection of the estimated speech signal ŝ on the line spanned by the clean source signal
s, while the term ŝ − ⟨ŝ,s⟩

⟨s,s⟩ s denotes the (error) residual in ŝ that is orthogonal to the clean
source signal s. As the result, the SI-SDR is not affected by the absolute power (loudness)
of ŝ and s serves as a robust measure for speech separation.

In speech separation, the multiple clean source signals may be swapped, leading to a
permutation problem. To overcome this issue, permutation invariant training (PIT) [17] is
used to find the maximum SI-SDR value.

5.5. Evaluation Details

We report the scale-invariant signal-to-noise ratio improvement (SI-SDRi) as objective
measures of separation accuracy. SI-SDR is defined in Equation (10). The improvement is de-
fined as the gain between the SI-SDR of the separated signal and the SI-SDR of the mixture.
According to [16], the average SI-SDR for the utterances in the 8 kHz test set of the WHAM!
database is −4.5 dB. A higher SI-SDRi value indicates a better separation performance.

5.6. Programming

In order to evaluate the ESC-MASD-Net framework, we utilize publicly available
scripts for SuDoRF++ [18], ResCon and MA blocks in MANNER [19], as well as the
conformer layer [20]. In the near future, we will enhance the readability of the codes
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associated with ESC-MASD-Net by reorganizing them and subsequently making them
accessible online.

6. Experimental Results and Discussion

First, Table 1 displays the SI-SDRi scores obtained using SuDoRM-RF++ and the newly
provided ESC-MASD-Net, which includes ResCon and MA blocks while retaining the
original U-ConvBlock. Each of these networks is trained for 100 epochs. The table provides
the following observations.

1. The given ESC-MASD-Net outperforms SuDoRM-RF++ by 1.33 in SI-SDRi, demon-
strating the success of SC-MASD-Net in speech separation.

2. Regarding an ablation study, the SI-SDRi decreases by 0.11 when the MA block is
removed from ESC MA-SDNet, whereas it decreases by 0.54 when the ResCon block is
removed from ESC-SDNet. These findings suggest that ESC-MASD-Net may benefit
more from ResCon than MA in speech separation.

3. ESC-MASD-Net with MA alone and ESC-MASD-Net with ResCon alone perform
better than SuDoRM-RF++. As a result, MA and ResCon both have the potential to
improve SuDoRM-RF++’s separation behavior.

Table 1. The signal-to-distortion ratio improvement (SI-SDRi) obtained by various speech separa-
tion frameworks.

Model SI-SDRi

SuDoRM-RF++ 12.38

ESC-MASD-Net 13.71

ESC-MASD-Net without MA block 13.60

ESC-MASD-Net without ResCon block 13.17

Next, we evaluate alternative extensions of ESC-MASD-Net by inserting conformer
layers into different positions of its four U-Convolutional blocks. Table 2 shows the
outcomes of this evaluation. Our observations are as follows.

1. The inclusion of the conformer layer to ESC-MASD-Net consistently increased the
SI-SDRi score, regardless of where it was in the network. This demonstrates the utility
of the conformer layer.

2. We obtained the best overall performance (SI-SDRi score of 13.95) when a single
conformer layer was inserted directly before the first U-Convolutional block. Adding a
conformer layer to the first U-Convolutional block (at the bottom, most downsampled
portion) yielded an SI-SDRi score of 13.80. Adding a conformer layer to each of the
four U-Convolutional blocks, on the other hand, resulted in an SI-SDRi score of 13.90,
which was a 0.1 improvement over the previous example but required three additional
conformer layers.

Furthermore, we conduct experiments to see if increasing the number of training
epochs could enhance the performance of ESC-MASD-Net. The original 100 epochs setting
is found to be nearly optimal for SuDoRM-RF++, but it may not be the best option for
ESC-MASD-Net. We list the SI-SDRi results for ESC-MASD-Net and its two variants that
incorporate a conformer layer with optimal validation performance epochs in Table 3.
By increasing the number of epochs from 100 to over 150 for ESC-MASD-Net and its two
variants, we observe an SI-SDRi improvement of at least 0.20. As a result, ESC-MASD-Net
significantly outperforms its archetype SuDoRM-RF++, with an SI-SDRi improvement from
12.38 to 14.24.
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Table 2. The signal-to-distortion ratio improvement (SI-SDRi) obtained by Effective Speaker separa-
tion through convolutional multi-view attention and SuDoRM-RF network (ESC-MASD-Net) with
conformer at different locations.

Model SI-SDRi

ESC-MASD-Net 13.71

ESC-MASD-Net
with Conformer layer

(a) right before the
U-Convblocks 13.95

(b) at the bottom of the
first U-Convblock

13.80

(c) at the bottom of all
four U-Convblocks

13.90

Table 3. The signal-to-distortion ratio improvement (SI-SDRi) obtained by effective speaker separation
through convolutional multi-view attention and SuDoRM-RF network (ESC-MASD-Net) variants
using different number of epochs.

Model Epoch SI-SDRi

SuDoRM-RF++ 100 12.38

ESC-MASD-Net
100 13.71

153 13.94

ESC-MASD-Net with
a single conformer

layer

(a) right before the
U-Convblocks

100 13.95
151 14.24

(b) at the bottom of the
first U-Convblock

100 13.80
153 14.02

Finally, Table 4 includes the model size and achieved SI-SDRi results of some state-of-
the-art speech separation methods performed on the Wham! dataset. From this table, we
see that our best model achieved the SI-SDRi score of 14.24 using 3.6M parameters. We also
observed that our best model performs on par or even outperforms several state-of-the-art
methods with much higher computational resource needs.

Table 4. Model size and performance comparison of the presented effective speaker separation
through convolutional multi-view attention and SuDoRM-RF network (ESC-MASD-Net) with the
other state-of-the-art speech separation models on WHAM!

Model Parameters (Millions) SI-SDRi

Conv-TasNet [4] 5.1 12.7

DPRNN [9] 2.7 13.9

SuDoRM-RF2.5x [12] 6.4 14.1

Sepformer [7] 26 15.0

MossFormer [21] 42.1 17.3

MossFormer2 [22] 55.7 18.1

ESC-MASD-Net (Ours) 3.6 14.24

7. Conclusions

The purpose of this study is to improve the state-of-the-art speech separation frame-
work, SuDoRM-RF++, by incorporating it with a number of different convolution-based
modules. These modules include residual conformer network, multi-attention network,
and conformer layers. Having demonstrated that each additional module offers greater
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separation performance, we also show that these modules can work together to lead to
even better outcomes than can be achieved by each module functioning independently. We
will, in the future, research ways to lessen the complexity of the presented ESC-MASD-Net
without compromising its performance.
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