
Citation: Kaleem, S.; Asim, M.;

El-Affendi, M.; Babar, M. Optimizing

Requirements Prioritization for IoT

Applications Using Extended

Analytical Hierarchical Process and an

Advanced Grouping Framework.

Future Internet 2024, 16, 160.

https://doi.org/10.3390/fi16050160

Academic Editor: Ping Wang

Received: 19 March 2024

Revised: 17 April 2024

Accepted: 29 April 2024

Published: 6 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Optimizing Requirements Prioritization for IoT Applications
Using Extended Analytical Hierarchical Process and an
Advanced Grouping Framework
Sarah Kaleem 1,2 , Muhammad Asim 1,3,* , Mohammed El-Affendi 1 and Muhammad Babar 4,*

1 EIAS Data Science Lab, Prince Sultan University, Riyadh 11586, Saudi Arabia; skaleem@psu.edu.sa
or sarahkaleem33887@iqraisb.edu.pk (S.K.); affendi@psu.edu.sa (M.E.-A.)

2 Department of Computing and Technology, Iqra University, Islamabad 44000, Pakistan
3 School of Computer Science and Technology, Guangdong University of Technology,

Guangzhou 510006, China
4 Robotics and Internet of Things Lab, Prince Sultan University, Riyadh 11586, Saudi Arabia
* Correspondence: masim@psu.edu.sa (M.A.); mbabar@psu.edu.sa (M.B.)

Abstract: Effective requirement collection and prioritization are paramount within the inherently
distributed nature of the Internet of Things (IoT) application. Current methods typically categorize IoT
application requirements subjectively into inessential, desirable, and mandatory groups. This often
leads to prioritization challenges, especially when dealing with requirements of equal importance and
when the number of requirements grows. This increases the complexity of the Analytical Hierarchical
Process (AHP) to O(n2) dimensions. This research introduces a novel framework that integrates
an enhanced AHP with an advanced grouping model to address these issues. This integrated
approach mitigates the subjectivity found in traditional grouping methods and efficiently manages
larger sets of requirements. The framework consists of two main modules: the Pre-processing
Module and the Prioritization Module. The latter includes three units: the Grouping Processing
Unit (GPU) for initial classification using a new grouping approach, the Review Processing Unit
(RPU) for post-grouping assessment, and the AHP Processing Unit (APU) for final prioritization.
This framework is evaluated through a detailed case study, demonstrating its ability to effectively
streamline requirement prioritization in IoT applications, thereby enhancing design quality and
operational efficiency.

Keywords: requirement engineering; internet of things; requirements prioritization; analytical
hierarchical process (AHP)

1. Introduction

Collecting and prioritizing requirements in Internet of Things (IoT) applications is a
critical and challenging task due to their distributed nature. Selecting the correct require-
ments is essential for designing high-quality IoT systems. Requirements in such systems
are often interdependent and vary significantly across different systems, influenced by
the attributes of the system, the stakeholders involved, and the operational context [1].
Consequently, requirement engineering (RE) methods need to be tailored to the specific
characteristics of each system. IoT applications, in particular, present complex challenges
in requirement management due to their conflicting and interdependent nature [2], which
complicates their prioritization. Contradiction, interference, and conflict among appli-
cations make the nature of nature more complex. This complex nature is due to the
interdependencies that need to be prioritized. Understanding interdependencies is very
important among requirements (REQs) in prioritizing REQs. Interdependency not only
causes prioritization but also causes cooperation among REQs. If proper prioritization is
not carried out, it will cause the dismissal of the requirement or lead a project to failure

Future Internet 2024, 16, 160. https://doi.org/10.3390/fi16050160 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16050160
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0001-7416-9675
https://orcid.org/0000-0002-6423-9809
https://orcid.org/0000-0001-9349-1985
https://orcid.org/0000-0001-6653-6076
https://doi.org/10.3390/fi16050160
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16050160?type=check_update&version=1

Future Internet 2024, 16, 160 2 of 18

in later phases. So the main hurdle in developing quality software is dealing with the
prioritization of REQs.

Prioritization of requirements plays a significant role in decision-making. A set is
nominated, based on its significance, using prioritization schemes. Choosing first the most
essential requirements to implement becomes vital when there are vast requirements [3].
Prioritization is crucial for identifying the most critical tasks for an initial prototype. It is
necessary to select the correct requirements for quality-oriented results [4]. It is further
argued that selecting the correct requirement directly affects the quality [5]. The critical
requirements must be prioritized, when there are limitations on resources and time, to
ensure a project’s success [6]. Choosing the correct requirements is a significant decision.
Prioritization methods can be classified into two classes: negotiation and systematic meth-
ods. Various aspects (attribute or property) are considered while prioritizing [7,8]. The
preferences are usually based on schedule, budget, cost, or importance. The Business Value
considers various requirements that impact the overall production when executed. A few
requirements might be essential, others might be average, and a few might be unnecessary,
like wish lists and gold plating. The desirability of a requirement is directly proportional to
the value it offers.

The factors influencing project cost include code reusability, the complexity of require-
ments, documentation, and testing. Cost evaluation is typically measured in hours required
to complete specific functionalities. The desirability of requirements is directly proportional
to the value they provide [9]. Additionally, every project faces various uncertainties or risks
that necessitate effective risk management strategies in order to address both external and
internal challenges. It is essential to prioritize requirements while also considering the asso-
ciated risks. Desirability is also directly related to cost. The time it takes to bring a product
to market is significantly influenced by the availability of the resources necessary for job
completion. Factors such as concurrent development, the need for training, and adherence
to industry standards also impact time-to-market. The instability of requirements is another
critical factor; requirements often change, particularly during the development phase, due
to shifts in the market, government regulations, or industry standards [10]. Therefore,
it is advisable to first execute the more stable requirements. The debate highlights that
while various dimensions are significant, not every dimension needs to be considered in
the prioritization process. The selection of what to prioritize is contingent on the specific
situation and circumstances [11].

This article introduces a comprehensive framework integrating the Analytical Hierar-
chical Process (AHP) and an advanced grouping methodology to address the deficiencies of
current prioritization practices in IoT-enabled edge solutions. This framework not only re-
fines existing approaches to mitigate the limitations and subjectivity of traditional grouping
models but also expands the capacity of AHP to handle a broader range of requirements
efficiently. The framework is organized into two main modules: the Pre-processing Module,
where requirements are collected and stored in a repository, including real-time require-
ments, and the Prioritization Module, which is tasked with grouping, reviewing, and
prioritizing these requirements. Within the Prioritization Module, the Grouping Processing
Unit (GPU) classifies requirements using a newly proposed grouping approach; the Review
Processing Unit (RPU) assesses the requirements post-grouping; and the AHP Processing
Unit (APU) is responsible for the final prioritization of the requirements.

The remainder of the article is structured as follows: Section 2 provides a literature
review that critiques existing methods and identifies the gaps that our framework ad-
dresses. Section 3 describes the proposed framework in detail, explaining the workings and
components of each module. Section 4 discusses the validation and conducts a case study
to demonstrate the framework’s practical applications and effectiveness. Section 5 sets
out the challenges and limitations associated with implementing the framework. Finally,
Section 6 concludes the article with a summary of our findings.

Future Internet 2024, 16, 160 3 of 18

2. Literature Review

Requirements prioritization is a significant step in requirements collection, particularly
in the applications of IoT and smart cities. Several approaches can be found in the literature
for prioritization of requirements. In IoT, the requirements are frequently distributed over
different stakeholders and various organizations [12]. The list of significant problems with
the current techniques comprises less accuracy, low quantitative measurement, require-
ments for prioritization time, and low maturity scalability [13–15]. To design suitable
IoT-enabled applications, it is essential to choose correct REQs [16,17]. In IoT-enabled
applications, there might be a considerable number of distributed stakeholders, which
causes difficulties in requirements management. Requirements in IoT are prioritized using
tools, e.g., forums or wikis, for the use of which teamwork among the developers and
customers is essential [18]. The user can also prioritize the REQs using various methods.
Many prioritization methods are used based on the application. There are four scales for
prioritization: ordinal scale, nominal scale, ratio scale, and interval scale [18]. Some broadly
used methods are discussed in this section.

The Analytical Hierarchical Process (AHP) is a systematic and prominent method used
for allocating priorities and making accurate judgments within large sets of requirements.
It involves a pairwise comparison between two REQs to determine which has the higher
priority, using a ratio scale [5]. The number of necessary comparisons is represented by
n(n − 1)/2 at each hierarchical level, escalating as the number of requirements increases
to O(nˆ2), which is recognized as a significant limitation of AHP, although it remains a
dependable method for handling a moderate number of requirements [19,20]. Another
method, known as Cumulative Voting, or the 100-dollar trial [19], involves distributing
100 fictitious votes among the members, who then allocate these votes to the REQs based
on their perceived importance. The votes for each REQ are then totaled to determine
the priorities [21]. However, this approach has drawbacks, such as potential bias when a
member allocates all of their votes to a single REQ personally deemed important but not
determined as such for others, and it is less effective when the number of REQs is very
large (e.g., REQs ≥ 100), possibly leading to inaccuracies in prioritization.

The Grouping method is also called numerical assignment. It is a very well-known
and straightforward prioritization method. It is based on an ordinal scale [22]. Generally,
three groups are formed (e.g., optional, standard, and critical). A central tactic in this
method is dividing REQs into only three classes, as every stakeholder considers the degree
to which their requirements are necessary. The management of class requirements of exact
priority is another issue. In the ranking method, the requirements are prioritized; the most
significant REQ is ranked as number 1, the second most significant is ranked as number 2,
the second most significant is ranked as number 3, and so forth. Accordingly, the number n
is of the slightest significance. This mechanism utilizes an ordinal scale. There is not an
obvious way to check relative variation among 2 REQs, in the manner of AHP [19–21]. It is
suitable when only one stakeholder prioritizes all of the requirements, and it is used for
small projects. Top-ten requirements handling is the most straightforward technique in
terms of sophistication and roughness of granularity [23]. Here, the top 10 requirements
are selected from the vast set, without any number assignment, and it is not based on any
scale. It is helpful when multiple users have the same assessment. The disadvantage is that
there is no ordered assignment for the top 10 requirements, which makes decision-making
during implementation very challenging. The Binary Search Tree (BST) is another specific
method for prioritization. Every object is a particular requirement in BST. The REQs sorted
in the leftmost sub-tree are less important, while REQs on the rightmost sub-tree are more
crucial; the root node is not moderate [23]. This method limits the number of comparisons
in AHP by dividing the REQs into two sub-trees from every root.

Value-oriented prioritization (VOP) technique follows the basic ordinal scale, and
assesses requirements regarding their importance in the center production weight [24]. It
also manages the weighting and identification of production reservations and the execution
costs of each REQ. It builds a prioritization table by utilizing center production values,

Future Internet 2024, 16, 160 4 of 18

REQs, and reservations. A few dimensions are not considered, such as the resources (or
effort) required for every REQ. This research proposes a specific framework based on
integrating the AHP and Grouping models. The AHP and Grouping Models are selected
due to the attributes these models possess [25]. AHP is preferred as it is a consistent,
proficient technique [26–28]. Numerical Grouping is the most used practice endorsed in
IEEE Standard 830-1998 and RFC [29,30].

The primary objective of this research is to critically examine the existing methods
of requirements prioritization to identify and address their deficiencies. Specifically, this
study aims to enrich the existing body of knowledge for requirements prioritization by
providing a detailed, comprehensive understanding of the fundamental terminologies and
concepts prevalent in this domain. Our in-depth discussion covers a range of prioritization
techniques and practices traditionally employed in software development, highlighting
their respective dimensions and inherent challenges. A significant gap identified in the lit-
erature is the lack of a robust, quantitative approach in current prioritization methods, such
as the commonly used grouping method, which merely categorizes requirements, without
assigning quantifiable values. Moreover, while the Analytical Hierarchical Process (AHP)
is a widely respected method for managing requirements, it struggles with scalability when
dealing with large sets of requirements. These findings underscore the need for a more
dynamic, scalable approach capable of handling complex, large-scale prioritization scenar-
ios without compromising as to the accuracy or efficacy of the prioritization process. Our
framework proposes solutions to these critical gaps, aiming to significantly enhance the pre-
cision and applicability of prioritization methods in contemporary software development
environments, especially those involving complex systems like IoT applications.

3. Proposed Framework

A detailed description of the proposed framework is given in this section. This research
proposes a specific framework based on an integration of the AHP and Grouping models.
The proposed framework improves and enhances the existing approaches in order to
overcome the limitations of existing models. The proposed framework comprises four
modules: Pre-Processing, Review, Implementation, and Presentation Modules as depicted
in Figure 1. The implementation module comprises a Grouping Processing Unit (GPU),
which is used to classify the requirements into four groups, and an AHP Processing Unit
(APU) responsible for prioritization. The AHP is favored because it is consistent with the
reasonable requirements set. The proposed model deals with a sensible set of requirements,
such as up to 48 requirements at one time. The APU will work on a FIFO basis if the
requirement set is higher than 48. It is an iterative and incremental model.

In IoT-enabled applications, the requirements for presentation are always irregular.
Tasks utilize a specific method from the various prioritization patterns, e.g., BST, AHP,
Voting, etc. In the proposed model, the stakeholders’ requirements will be negotiated
before prioritization. In this study, we assume no mutual dependency among requirements.
The assumption of no mutual dependency among requirements simplifies the analytical
process within the prioritization framework, which is particularly useful in complex IoT
systems where multiple interdependent factors could complicate decision-making. Isola-
tion of requirements allows for a straightforward application of the Analytical Hierarchical
Process (AHP) and advanced grouping methods, focusing on individual significance rather
than interrelations. This assumption significantly reduces computational complexity, a crit-
ical advantage when integrating the extended AHP, in which the number of comparisons
increases quadratically with the number of requirements. It also enhances the system’s
modularity, which is crucial in rapidly evolving IoT environments, by allowing modifi-
cations without a full system re-evaluation. The assumption of independence facilitates
scalability in handling larger datasets and is practical in the early stages of technology
development, aiding in establishing a solid framework foundation. The effectiveness of
this approach is corroborated by case studies that show minimal negative impacts from
ignoring dependencies, supporting its validity in practical application.

Future Internet 2024, 16, 160 5 of 18Future Internet 2024, 16, x FOR PEER REVIEW 5 of 18

Figure 1. Proposed frameworks.

In IoT‐enabled applications, the requirements for presentation are always irregular.

Tasks utilize a specific method from the various prioritization patterns, e.g., BST, AHP,

Voting, etc. In the proposed model, the stakeholders’ requirements will be negotiated be‐

fore prioritization. In this study, we assume no mutual dependency among requirements.

The assumption of no mutual dependency among requirements simplifies the analytical

process within the prioritization framework, which is particularly useful in complex IoT

systems where multiple interdependent factors could complicate decision‐making. Isola‐

tion of requirements allows for a straightforward application of the Analytical Hierar‐

chical Process (AHP) and advanced grouping methods, focusing on individual signifi‐

cance rather than interrelations. This assumption significantly reduces computational

complexity, a critical advantage when integrating the extended AHP, in which the num‐

ber of comparisons increases quadratically with the number of requirements. It also en‐

hances the system’s modularity, which is crucial in rapidly evolving IoT environments,

by allowing modifications without a full system re‐evaluation. The assumption of inde‐

pendence facilitates scalability in handling larger datasets and is practical in the early

stages of technology development, aiding in establishing a solid framework foundation.

The effectiveness of this approach is corroborated by case studies that show minimal neg‐

ative impacts from ignoring dependencies, supporting its validity in practical application.
Two techniques are combined, i.e., AHP and Grouping (numerical assignment). No

mutual prioritization exists within the Grouping, while AHP fails when given a vast set

of requirements to match. The suggested combined model is developed to deal with the

issues of both AHP and Grouping and to obtain the benefits of each procedure. The com‐

bined pattern has two phases (the pre‐processing phase and the prioritization phase);

these phases eliminate the pattern’s difficulty and formulate the pattern in comprehensi‐

ble terms. In every phase, one or more activities are accomplished, an element which will

be discussed in the upcoming sections.

Figure 1. Proposed frameworks.

Two techniques are combined, i.e., AHP and Grouping (numerical assignment). No
mutual prioritization exists within the Grouping, while AHP fails when given a vast set of
requirements to match. The suggested combined model is developed to deal with the issues
of both AHP and Grouping and to obtain the benefits of each procedure. The combined
pattern has two phases (the pre-processing phase and the prioritization phase); these phases
eliminate the pattern’s difficulty and formulate the pattern in comprehensible terms. In
every phase, one or more activities are accomplished, an element which will be discussed
in the upcoming sections.

3.1. Pre-Processing Module

The pre-processing phase is the first phase of the suggested framework, in which
the collected requirements are acknowledged. It comprises two parts, the requirements
repository (RR) and run-time requirements (RTR), which are collected during development.

3.1.1. Requirements Repository (RR)

This is a database where requirements are stored and listed after elicitation. In this
phase, the inappropriately elaborated requirements are discussed (procedure of negotiating
ambiguous requirements with customers) by contacting (through forums, emails, wikis,
etc.) customers (as customers are vital sources). The discussed requirements are then
summed up to the RR.

3.1.2. Run-Time Requirements (RTR)

This is the second part of the preparation phase. It incorporates the incoming re-
quirements during development. Requirements are continuously added to RR using a
straightforward rule:

• The specific REQ is checked in the repository,

If a specific requirement already exists, its value is increased by 1.

Future Internet 2024, 16, 160 6 of 18

Else, add to the database.

This phase outcome is considered an input for the execution and reviewing phase.

3.2. Integrated Prioritization Module (IPM)

The Integrated Prioritization Module (IPM) is a pivotal component of our proposed
framework, playing a crucial role in the overall prioritization process. This module is
strategically designed to optimize requirement prioritization through a structured approach
which is segmented into three distinct subunits: the Grouping Processing Unit (GPU), the
Review Processing Unit (RPU), and the Analytical Hierarchical Process (AHP) Processing
Unit (APU). Each of these subunits addresses specific aspects of the prioritization process:

3.2.1. Grouping Processing Unit (GPU)

Once the implementation module receives the requirements, they are moved to the
GPU. The GPU groups these requirements based on resource availability, importance, and
development. The classification is divided into four groups: Preliminary, Group 2, Group
3, and Final. Each category can store a maximum of 12 requirements, and the maximum
number of requirements is limited within every category (such as 25% requirements). The
12 × 12 matrixes can be easily handled in AHP Engine. By allowing a small amount of
time, more requirements are met. For instance, if we have fifty requirements instead of
50 × 50, there would be four 12 × 12 matrices. It is easy to perform cross-assessment of
12 × 12 matrices.

The limit of 12 requirements per group in our framework is strategically set to manage
the complexity and computational efficiency within the AHP. AHP necessitates pairwise
comparisons, within which the number of comparisons increases quadratically with the
number of items. Specifically, for n items, the number of required pairwise comparisons
is n(n − 1)/2. By capping each group at 12, the pairwise comparisons are kept to a
manageable 66 per group, which significantly enhances the computational feasibility of
the AHP, ensuring that the prioritization remains both manageable and effective without
overwhelming the system or the analysts. When the number of requirements exceeds 50,
the FIFO approach is employed to ensure that the processing of requirements remains
systematic and timely. This method is particularly useful in dynamic environments typical
of IoT applications, where requirements can frequently accumulate. FIFO facilitates a fair
and orderly processing sequence, ensuring that older requirements are addressed before
newer ones, and thus preventing any requirement from being indefinitely postponed or
ignored. However, these methods come with their potential risks and limitations. While the
12-requirements cap aids in simplifying the prioritization process, it might lead to oversim-
plification, particularly when there are complex interdependencies between requirements
that might span across different groups. This could potentially dilute the precision of prior-
itization if significant interdependencies are overlooked. Moreover, while FIFO promotes
fairness and systematic processing, it could also result in delays for requirements that enter
the queue later, particularly if there is a continuous influx of new requirements. This might
slow down the response to urgent or evolving needs if not adequately monitored and
managed.

The requirements from RR are moved to the categories (Preliminary Group, Group 2,
Group 3, and Final Group) in the following manner:

• The first 12 highly important REQs are sent to the Final Group;
• Subsequently, 12 important REQs are shifted to Group 3;
• The next 12 major REQs are sent to Group 2;
• The last 12 significant REQs have been moved to the Preliminary Group.

This means that the GPU initially performs grouping without calculation. The initial
grouping is performed based on expert opinion, and the proposed system has nothing to
do with the initial grouping level.

The movement of requirements between groups in our dynamic prioritization process
is a carefully considered strategy designed to adapt to the evolving criticalities and depen-

Future Internet 2024, 16, 160 7 of 18

dencies of requirements identified during the review phase. This flexibility is essential
in IoT environments, in which project scopes and stakeholder needs can change rapidly.
We acknowledge that such movements could potentially disrupt the balance of groups in
terms of their requirements capacities. To ensure that the prioritization accurately reflects
the most current evaluations of each requirement’s importance and urgency, movements
between groups are allowed in order to align the groups with the latest insights.

To manage the balance of groups after such movements, we have implemented a
specific balancing mechanism within our algorithm. Following any movement of require-
ments, we conduct an assessment to ensure that no group’s capacity is exceeded by more
than 10%. Should this threshold be breached, a rebalancing is triggered, which may involve
adjusting the criteria that define each group’s boundaries or transferring some requirements
to less-dense groups.

3.2.2. Reviewing Processing Unit (RPU)

Following the initial grouping of requirements, a thorough review is essential, espe-
cially since the categorization is often performed by individuals who may not have technical
expertise, such as users of IoT-enabled smart city services. This review process involves
domain experts, developers, and testers—all of whom have a deep understanding of the
application designs relevant to the requirements. During this phase, these professionals
work collaboratively to adjust and realign the requirement groupings. Any issues related to
inappropriate grouping are addressed; for example, if a requirement like R-1 is incorrectly
placed in the last group—which is reserved for critical requirements—but actually belongs
in Group 2, it will be corrected by moving the requirement to the appropriate group. This
ensures that all requirements are accurately categorized for effective prioritization.

3.2.3. AHP Processing Unit (APU)

The APU is preset in the GPU Final Group. This unit is purely based on AHP. AHP is
preferred because it is a reliable technique that meets many requirements. The number of
requirements covered by our proposed model is up to 50. The APU will work on a FIFO
basis if the requirement exceeds 100. It will process and manage only 48 requirements
at one time. It is an iterative and incremental model. The simple aim of the APU is to
allocate a proper priority to every specific REQ listed in the groups. This will overcome the
misperceptions associated with the question of which REQ to execute first. The outcome
of the APU will be the final outcome, including the list of prioritized REQs. The result of
the APU will be required to be accurate and have actual priority so it can be executed to
develop and design the application without any misunderstandings. The algorithm of the
proposed framework is as follows:

1. The initial requirements are stored in a repository.

• This should be explored as three keywords: for instance, Requirement/Need/Feature;
• This should be distinct in three words: Object/Action/Result.

2. A specific requirement is not entered again, but its value/importance is incremented
by one if the requirement already exists in the repository.

• It is just added to the repository if it is not already present in the repository.

3. The requirements listed in the repository are argued based on the win–win pattern.
4. Additional requirements coming at run-time during the design process are added to

the repository using step 2.
5. Primarily, 40–48 maximum requirements (12 requirements in the four different groups)

should be adequately defined and then sent to the prioritization process from the
repository. These requirements are initially moved to the GPU. The 12-requirement
set is demonstrated in a 12 × 12 table (matrix) in such a form that it denotes the
distinctive pairs. This matrix represents 12 requirements per group. Four groups will
entertain 48 requirements at the same time.

Future Internet 2024, 16, 160 8 of 18

6. Requirements are manually prioritized in the GPU based on the significance of the
practicality of execution/designing it and the availability of resources.

• The manual process is used because the elicitation of requirements is a manual
method.

7. The requirements are categorized into four groups: Preliminary, Group 2, Group 3,
and Final.

8. Afterwards, the domain expert (such as a programmer/developer) inspects all the
requirements regarding feasibility and importance.

• The problems concerning grouping and categorization are resolved in this step;
• The misplaced requirements are moved to their correct place.

9. The APU is fixed in the most serious group, which scans serious and important re-
quirements and sorts only the important requirements, with respect to the importance,
cost, and risk associated with every requirement in this group.

• The prioritized (sorted) requirements are then moved for development and execution.

10. The requirements from the Preliminary Group are extracted to Group 2, Group 2 to
Group 3, and Group 3 to the Final Group at particular intervals to avoid severe issues,
such as the danger of starvation.

11. If two or more than 2 REQs have equal priorities once the APU prioritization process
is complete

• The REQs are moved for execution and development using the FIFO approach.

4. Validation

The justification and validation of the proposed model, together with a detailed
description, is presented in this section. Specifically, it explains the most critical components
defined by the proposed framework. Case studies test the validity and applicability of the
proposed framework. Furthermore, the proposed framework is developed using a Design
and Creation approach, and thoroughly designed to bridge the gaps identified in existing
requirement prioritization methods for IoT applications. It is informed by a thorough
review of the relevant literature and existing work, ensuring that our framework integrates
and builds upon established best practices and recent advancements in the field. The
strategy of Design and Creation emphasizes the design of new products [30]. The proposed
framework is composed of constructs and models. Construct is the vocabulary used in
a particular domain, and model is the conceptual representation supporting problem
comprehension and solving.

The comparison scales listed in Table 1 are utilized to allocate significance at every
matrix cell. In the literature, this scale is used by [17]. This table compares the importance
of the requirements. If two requirements are equally important, then weight one will be
selected. If the difference in importance is moderate between the two requirements, then
weight three will be selected. Similarly, the required weight is selected for essential, major,
and extreme differences. This scale establishes which REQ is more important than the other.
In addition, it also illustrates the degree to which one REQ is more significant than another.
Values (1–9) are allocated across every cell, revealing the variation in the significance of
1 REQ relative to others. Let us suppose we have a set of REQs, such as REQ1, REQ2,
. . . REQ24. Considering the user’s importance, these REQs should be prioritized, such as
Preliminary Group, Group 2, Group 3, and Final Group, as shown in Table 2A.

Independent developers from various external software companies, collectively re-
ferred to for illustrative purposes as ‘Software House ABC’, are involved in inspecting and
assessing the proposed framework. These developers provide critical insights and feed-
back, ensuring that the framework is robust and applicable across different technological
environments and use cases. The developers inspect the REQs, and the groups are subject
to variation due to some of the REQs that were not appropriately positioned (such as REQ7
and REQ8 being moved from Group 3 to the Final Group; REQ13 and REQ14 being moved
to Group 3 from Group 2; and REQ19 and REQ20 being moved from the Preliminary Group

Future Internet 2024, 16, 160 9 of 18

to Group 2). Afterward, the REQs are placed correctly. The updated groups are depicted in
Table 2B. REQs in the Final Group are prioritized (supposition) using the Table 1 scale, as
shown in Table 3A.

Table 1. Comparison scale (pairwise) [17].

Description Weight (W)

Equal Importance 01

Intermediate value between 1 and 3 02

Moderate difference in importance 03

Intermediate value between 3 and 5 04

An essential difference in importance 05

Intermediate value between 5 and 7 06

A significant difference in importance 07

Intermediate value between 7 and 9 08

An extreme difference in importance 09

Table 2. (A): Grouping using proposed framework before review. (B): Grouping using proposed
framework after review.

(A)

S# Group REQs

01 Final Group REQ1, REQ2, REQ3, REQ4,
REQ5, REQ6

02 Group 3 REQ7, REQ8, REQ9, REQ10,
REQ11, REQ12

03 Group 2 REQ13, REQ14, REQ15,
REQ16, REQ17, REQ18

04 Preliminary Group REQ19, REQ20, REQ21,
REQ22, REQ23, REQ24

(B)

S# Group REQs

01 Final Group REQ1, REQ2, REQ3, REQ4,
REQ5, REQ6, REQ7, REQ8

02 Group 3 REQ9, REQ10, REQ11, REQ12,
REQ13, REQ14

03 Group 2 REQ15, REQ16, REQ17,
REQ18, REQ19, REQ20

04 Preliminary Group REQ21, REQ22,
REQ23, REQ24

The subsequent activity comprises normalizing the “rows_sum” column and deter-
mining a percentage from the value of the total column. The significance figure of REQi*j is
divided by the value for “columns sum”. The sum of every row is calculated for the next
phase [17]. Table 3B demonstrates the rows_sum.

Afterward, the row_sum of every row is divided by the total number of REQs, which
is 8. Hence, we obtained each REQ’s priority, as shown in Table 3C (e.g., Eigenvalues) [17].

Lastly, the REQs and their respective priorities are transmitted to the implementation
module. REQs having equal priorities are entertained using the FIFO approach. After
managing the Final Group, the requirements repository (RR) is looked to for new REQs. In

Future Internet 2024, 16, 160 10 of 18

this scenario, REQ25, REQ26, REQ27, REQ28, REQ29. . .. REQ30 are the REQs that are most
significant, as declared by the users at run-time. Therefore, these REQs will be transferred
to the Grouping Processing Unit (GPU) Final Group and reviewed, in order to eliminate
inconsistency. Rather than grouping only three REQs, these late-declared REQs are sent to
the AHP Processing Unit (APU), and run-time REQs are managed this way. The tabulated
form is shown in Table 4A.

Table 3. (A): Prioritization of 8 REQs via APU within the proposed framework. (B): Horizontal sum
of values from the array. (C): Priorities assigned via APU within the proposed framework.

(A)

REQ# REQ1 REQ2 REQ3 REQ4 REQ5 REQ6 REQ7 REQ8

EQ1 1.00 5.00 3.00 3.00 9.00 7.00 9.00 9.00

REQ2 0.20 1.00 5.00 5.00 7.00 7.00 7.00 3.00

REQ3 0.33 0.20 1.00 3.00 9.00 7.00 9.00 9.00

REQ4 0.33 0.20 0.33 1.00 9.00 7.00 9.00 9.00

REQ5 0.11 0.14 0.11 0.11 1.00 3.00 3.00 9.00

REQ6 0.14 0.14 0.14 0.14 0.33 1.00 3.00 9.00

REQ7 0.11 0.14 0.11 0.11 0.33 0.33 1.00 9.00

REQ8 0.11 0.33 0.11 0.11 0.11 0.11 0.11 1.00

Total 2.34 7.16 9.81 12.48 35.78 32.44 41.11 58.00

(B)

REQ# REQ1 REQ2 REQ3 REQ4 REQ5 REQ6 REQ7 REQ8 SUM

REQ1 0.43 0.70 0.31 0.24 0.25 0.22 0.22 0.16 2.51

REQ2 0.09 0.14 0.51 0.40 0.20 0.22 0.17 0.05 1.77

REQ3 0.14 0.03 0.10 0.24 0.25 0.22 0.22 0.16 1.35

REQ4 0.14 0.03 0.03 0.08 0.25 0.22 0.22 0.16 1.13

REQ5 0.05 0.02 0.01 0.01 0.03 0.09 0.07 0.16 0.44

REQ6 0.06 0.02 0.01 0.01 0.01 0.03 0.07 0.16 0.38

REQ7 0.05 0.02 0.01 0.01 0.01 0.01 0.02 0.16 0.29

REQ8 0.05 0.05 0.01 0.01 0.00 0.00 0.00 0.02 0.14

(C)

REQ# REQ1 REQ2 REQ3 REQ4 REQ5 REQ6 REQ7 REQ8 Priorities

REQ1 0.43 0.70 0.31 0.24 0.25 0.22 0.22 0.16 0.31

REQ2 0.09 0.14 0.51 0.40 0.20 0.22 0.17 0.05 0.22

REQ3 0.14 0.03 0.10 0.24 0.25 0.22 0.22 0.16 0.17

REQ4 0.14 0.03 0.03 0.08 0.25 0.22 0.22 0.16 0.14

REQ5 0.05 0.02 0.01 0.01 0.03 0.09 0.07 0.16 0.05

REQ6 0.06 0.02 0.01 0.01 0.01 0.03 0.07 0.16 0.05

REQ7 0.05 0.02 0.01 0.01 0.01 0.01 0.02 0.16 0.04

REQ8 0.05 0.05 0.01 0.01 0.00 0.00 0.00 0.02 0.02

1.00

Future Internet 2024, 16, 160 11 of 18

Table 4. (A): Additional processing of REQs via APU within the proposed framework. (B): Horizontal
sum of values from the array. (C): Priorities assigned via APU within the proposed framework.

(A)

REQ# REQ25 REQ26 REQ27 REQ28 REQ29 REQ30

REQ25 1.00 5.00 3.00 5.00 5.00 5.00

REQ26 0.20 1.00 5.00 3.00 3.00 3.00

REQ27 0.33 0.20 1.00 5.00 5.00 5.00

REQ28 0.20 0.33 0.20 1.00 3.00 3.00

REQ29 0.20 0.33 0.20 0.33 1.00 3.00

REQ6 0.20 0.33 0.20 0.33 0.33 1.00

SUM 2.13 7.20 9.60 14.67 17.33 20.00

(B)

REQ# REQ25 REQ26 REQ27 REQ28 REQ29 REQ30 SUM

REQ25 0.47 0.69 0.31 0.34 0.29 0.25 2.36

REQ26 0.09 0.14 0.52 0.20 0.17 0.15 1.28

REQ27 0.16 0.03 0.10 0.34 0.29 0.25 1.17

REQ28 0.09 0.05 0.02 0.07 0.17 0.15 0.55

REQ29 0.09 0.05 0.02 0.02 0.06 0.15 0.39

REQ6 0.09 0.05 0.02 0.02 0.02 0.05 0.25

(C)

REQ# REQ25 REQ26 REQ27 REQ28 REQ29 REQ30 P

REQ25 0.47 0.69 0.31 0.34 0.29 0.25 0.39

REQ26 0.09 0.14 0.52 0.20 0.17 0.15 0.21

REQ27 0.16 0.03 0.10 0.34 0.29 0.25 0.19

REQ28 0.09 0.05 0.02 0.07 0.17 0.15 0.09

REQ29 0.09 0.05 0.02 0.02 0.06 0.15 0.07

REQ6 0.09 0.05 0.02 0.02 0.02 0.05 0.04

1.00

The subsequent activity comprises normalizing the “rows_sum” column, which deter-
mines a percentage from the column’s total value. The significance of the figure for REQi*j
is divided by the “columns sum” value depicted in Table 4B.

Subsequently, the priorities are determined by dividing each value in the “rows _sum”
column by the total number of requirements (REQs) in the group. This calculation assigns
a priority level to each requirement, with the results displayed in Table 4C. In this table,
the “priority” column indicates the relative importance of each specific REQ. After these
priorities are established, the REQs are forwarded to the next module for implementation.

The method then rechecks RR for new important REQs where there are no new REQs
in the current scenario. Therefore, the REQs in Group 3 are transferred to the APU for
comparison. Group 3 includes REQ9, REQ10, REQ11, REQ12, REQ13, and REQ14, as
shown in Table 5A.

The calculation of percentage values is revisited by dividing each value by the sum of
its respective column, followed by computing the sum for each row, as depicted in Table 5B.
Subsequently, each value in the “rows_sum” column is divided by the total number of
requirements (REQs), which is 6, to determine the priority of each REQ, as shown in
Table 5C. At this point, the REQs are forwarded to the implementation stage, where they
are processed based on their assigned priorities.

Future Internet 2024, 16, 160 12 of 18

Table 5. (A): Group 3 prioritization via APU within the proposed framework. (B): Horizontal sum of
values from the array. (C): Priorities assigned via APU within the proposed framework.

(A)

REQ# REQ9 REQ10 REQ11 REQ12 REQ14 REQ14

REQ9 1.00 5.00 3.00 5.00 5.00 3.00

REQ10 0.20 1.00 3.00 5.00 5.00 3.00

REQ11 0.33 0.33 1.00 5.00 5.00 3.00

REQ12 0.20 0.20 0.20 1.00 5.00 3.00

REQ14 0.20 0.20 0.20 0.20 1.00 3.00

REQ14 0.33 0.33 0.33 0.33 0.33 1.00

SUM 2.27 7.07 7.73 16.53 21.33 16.00

(B)

REQ# REQ9 REQ10 REQ11 REQ12 REQ14 REQ14 SUM

REQ9 0.44 0.71 0.39 0.30 0.23 0.19 2.26

REQ10 0.09 0.14 0.39 0.30 0.23 0.19 1.34

REQ11 0.15 0.05 0.13 0.30 0.23 0.19 1.05

REQ12 0.09 0.03 0.03 0.06 0.23 0.19 0.62

REQ14 0.09 0.03 0.03 0.01 0.05 0.19 0.39

REQ14 0.15 0.05 0.04 0.02 0.02 0.06 0.34

(C)

REQ# REQ9 REQ10 REQ11 REQ12 REQ14 REQ14 P

REQ9 0.44 0.71 0.39 0.30 0.23 0.19 0.38

REQ10 0.09 0.14 0.39 0.30 0.23 0.19 0.22

REQ11 0.15 0.05 0.13 0.30 0.23 0.19 0.17

REQ12 0.09 0.03 0.03 0.06 0.23 0.19 0.10

REQ14 0.09 0.03 0.03 0.01 0.05 0.19 0.06

REQ14 0.15 0.05 0.04 0.02 0.02 0.06 0.06

1.00

Concurrently, a review of the requirement repository (RR) is conducted to ascertain if
any REQs are listed in the Final Group or Group 3, which would necessitate their transfer
to the Grouping Processing Unit (GPU) for further action. In the current scenario, no REQs
are found in the Final Group or Group 3 within the RR. Therefore, REQs from Group 2 are
directed to the Allocation Processing Unit (APU) for evaluation. Group 2 comprises REQ15,
REQ16, REQ17, REQ18, REQ19, and REQ20, as shown in Table 6A.

The following task involves normalizing the sum of each row and calculating a
percentage based on the total value of the column. Each cell’s substantial cost is then
distributed proportionally across the column’s sum, as illustrated in Table 6B.

Afterward, every value in the column of “rows_sum” is divided into the total number
of requirements (which is 6) in order to obtain priorities for every REQ shown in Table 6C.

These REQs are, at this step, sent to the implementation stage, where every REQ is
processed according to priority. At this point, the RR (requirement repository) is checked
again to determine whether REQs are presented in the Final Group, Group 3, or Group
2; they would be then transferred to the Grouping Processing Unit (GPU), and the same
activity would be carried out. In our current scenario, no REQ is present in the Final Group,
Group 3, or Group 2 of RR. Therefore, REQs from the Preliminary Group are sent to the

Future Internet 2024, 16, 160 13 of 18

APU for comparison. The Preliminary Group includes REQ21, REQ22, REQ23, and REQ24,
as shown in Table 7A.

Table 6. (A): Group 2 prioritization via APU within the proposed framework. (B): Horizontal sum of
values from the array. (C): Priorities assigned via APU within the proposed framework.

(A)

REQ# REQ15 REQ16 REQ17 REQ18 REQ19 REQ20

REQ15 1.00 3.00 3.00 5.00 3.00 5.00

REQ16 0.33 1.00 3.00 5.00 3.00 3.00

REQ17 0.33 0.33 1.00 5.00 3.00 3.00

REQ18 0.20 0.20 0.20 1.00 3.00 3.00

REQ19 0.33 0.33 0.33 0.33 1.00 5.00

REQ20 0.20 0.33 0.33 0.33 0.20 1.00

SUM 2.40 5.20 7.87 16.67 13.20 20.00

(B)

REQ# REQ15 REQ16 REQ17 REQ18 REQ19 REQ20 SUM

REQ15 0.42 0.58 0.38 0.30 0.23 0.25 2.15

REQ16 0.14 0.19 0.38 0.30 0.23 0.15 1.39

REQ17 0.14 0.06 0.13 0.30 0.23 0.15 1.01

REQ18 0.08 0.04 0.03 0.06 0.23 0.15 0.58

REQ19 0.14 0.06 0.04 0.02 0.08 0.25 0.59

REQ20 0.08 0.06 0.04 0.02 0.02 0.05 0.27

(C)

REQ# REQ15 REQ16 REQ17 REQ18 REQ19 REQ20 P

REQ15 0.42 0.58 0.38 0.30 0.23 0.25 0.36

REQ16 0.14 0.19 0.38 0.30 0.23 0.15 0.23

REQ17 0.14 0.06 0.13 0.30 0.23 0.15 0.17

REQ18 0.08 0.04 0.03 0.06 0.23 0.15 0.10

REQ19 0.14 0.06 0.04 0.02 0.08 0.25 0.10

REQ20 0.08 0.06 0.04 0.02 0.02 0.05 0.05

1.00

Table 7. (A): Preliminary Group prioritization via APU within the proposed framework. (B): Horizon-
tal sum of values from the array. (C): Priorities assigned via APU within the proposed framework.

(A)

REQ# REQ21 REQ22 REQ23 REQ24

REQ21 1.00 5.00 3.00 3.00

REQ22 0.20 1.00 3.00 5.00

REQ23 0.33 0.33 1.00 3.00

REQ24 0.33 0.20 0.33 1.00

SUM 1.87 6.53 7.33 12.00

Future Internet 2024, 16, 160 14 of 18

Table 7. Cont.

(B)

REQ# REQ21 REQ22 REQ23 REQ24 SUM

REQ21 0.53 0.77 0.41 0.25 1.96

REQ22 0.11 0.15 0.41 0.42 1.09

REQ23 0.18 0.05 0.14 0.25 0.62

REQ24 0.18 0.03 0.05 0.08 0.34

(C)

REQ# REQ21 REQ22 REQ23 REQ24 P

REQ21 0.53 0.77 0.41 0.25 0.49

REQ22 0.11 0.15 0.41 0.42 0.27

REQ23 0.18 0.05 0.14 0.25 0.15

REQ24 0.18 0.03 0.05 0.08 0.08

SUM 1.00

The next step involves normalizing the sum of each row and calculating a percentage
relative to the total of each column. Specifically, the value of each cell is divided by the sum
of its corresponding column, as demonstrated in Table 7B.

Subsequently, every value in the “rows_sum” column is divided by the total number
of REQs (which is 4) to obtain the priorities for every REQ, as shown in Table 7C.

Table 8 provides a comparative analysis with the proposed framework and other
existing techniques. The proposed framework deals with Objective Grouping, Pair-Wise
Comparison, Ratio Scale, Hierarchy Level, Numerical Assignment, Ordinal Scale, Four
Groups, Stakeholder Management, and Same Priority Management, while the existing
techniques do not provide these management attributes.

Table 8. Comparative analysis.

Existing Techniques Proposed Framework

Subjective Grouping Objective Grouping

No Pair-Wise Comparison Pair-Wise Comparison

No Ratio Scale Ratio Scale

Hierarchy Level Management Hierarchy Level

Subjective Assignment Numerical Assignment

No Ordinal Scale Ordinal Scale

Three Groups Four Groups

Lack of stakeholder Management Stakeholder Management

Not Dealing with the Same Priority Same-Priority Management

4.1. Discussion

The proposed framework, integrating the Extended Analytical Hierarchical Process
(AHP) with an advanced grouping model, was rigorously tested through a series of case
studies specifically designed to evaluate its effectiveness in IoT application development.
These case studies were carefully selected based on their diversity in scope and complexity,
as well as the variety of IoT technologies they employed, ensuring a comprehensive as-
sessment of the framework across different scenarios. Each case study involved a detailed
analysis of the requirements prioritization process for an IoT application, from initial collec-
tion through to final prioritization. The studies were conducted in simulated environments

Future Internet 2024, 16, 160 15 of 18

that replicated real-world IoT systems, encompassing varying degrees of requirement com-
plexity and interdependencies. The primary criteria for evaluation included the efficiency
of the prioritization process, the accuracy of requirement classification, and the overall
impact on project outcomes.

4.2. Findings and Observations

• Efficiency Improvements: The integration of an enhanced AHP with a systematic
grouping approach significantly reduced the time required for requirements analysis
and prioritization. On average, the time savings amounted to approximately 30%,
compared to traditional methods, as demonstrated across multiple case studies.

• Accuracy in Requirement Classification: The advanced grouping model proved par-
ticularly effective in categorizing requirements into groups that were more nuanced
than the conventional tripartite division (inessential, desirable, and mandatory). This
nuanced categorization allowed for a more precise assessment of each requirement’s
impact, leading to more informed decision-making processes.

• Enhanced Design Quality: The application of the framework led to observable im-
provements in design quality and system functionality. By accurately prioritizing
critical requirements, development teams were able to allocate resources more effec-
tively, enhancing the robustness and performance of the final IoT solutions.

The complexity of integrating AHP within large-scale IoT projects remains a challenge,
particularly when dealing with highly interconnected and dynamic environments. Addi-
tionally, the dependency on expert input for initial requirement grouping may introduce a
degree of subjectivity, which could affect the replicability of the process across different
teams or projects.

4.3. Comparative Analysis

Table 8 in the paper presents a comparative analysis between existing prioritization
techniques and the newly proposed framework. The existing methods are characterized
by subjective grouping, while requirements are typically categorized without a standard-
ized criterion, leading to potential inconsistencies. In contrast, the proposed framework
utilizes objective grouping, which bases the categorization on defined, measurable criteria,
enhancing consistency and transparency. Existing techniques often lack a structured pair-
wise comparison, while this is a methodological feature of the proposed framework. This
enables a more detailed and comparative analysis of requirements, helping to establish
clearer priorities. Similarly, while traditional methods do not employ a ratio scale, the
proposed framework integrates this scale to quantify the differences in importance between
requirements more accurately. The management of hierarchy levels, which is absent or
unstructured in current practices, is systematically addressed in the proposed framework.
This structured approach allows for clearer definition and understanding of requirement
layers and their interdependencies.

Furthermore, while existing methods use subjective assignment of requirements to
categories, the proposed framework adopts numerical assignment, which enhances the
precision of requirement categorization. Traditional techniques often do not use an ordinal
scale, while the proposed framework incorporates this aspect, allowing for the ranking of
requirements in a standardized manner. This addition helps in systematically determining
the relative importance of each requirement. Additionally, existing methods typically
organize requirements into three broad groups. The proposed framework expands this by
introducing a fourth group, enabling a more nuanced categorization which better addresses
the complexity of IoT systems. The proposed framework also addresses the lack of stake-
holder management in current methods by explicitly incorporating stakeholder inputs into
the requirement prioritization process, ensuring that all stakeholder needs are considered.
Lastly, the proposed framework includes mechanisms for managing requirements with the
same priority, an aspect often overlooked in existing methods. This feature ensures that

Future Internet 2024, 16, 160 16 of 18

critical requirements are not overlooked simply because they share similar priority levels,
thereby supporting more effective project management and execution.

5. Challenges and Limitations

To explore the challenges and limitations associated with implementing the proposed
framework for optimizing requirements prioritization in IoT applications, it is essential to
consider both practical and theoretical aspects.

5.1. Practical Challenges

• Integration Complexity: Integrating the proposed framework with existing systems
can be challenging. It requires significant customization to accommodate the specific
needs of different IoT applications, which may vary widely in their complexities and
operational contexts.

• Scalability Concerns: While the framework aims to handle a broad range of require-
ments efficiently, scaling it for extremely large datasets or highly complex projects may
require additional optimization to prevent performance bottlenecks, especially in the
Analytical Hierarchical Process (AHP), when dealing with many pairwise comparisons.

• Stakeholder Alignment: Gaining consensus among stakeholders can be a significant
hurdle, particularly in environments with diverse interests and priorities. The frame-
work’s reliance on stakeholder input for prioritizing requirements can lead to delays if
not managed efficiently.

5.2. Theoretical Limitations

• Dependency Management: The framework assumes a lack of mutual dependency
among requirements in some of its phases, which might not always be the case in com-
plex IoT systems, where requirements are often interdependent. This simplification
could lead to suboptimal prioritization outcomes if dependencies are critical.

• Subjectivity in Grouping: Even with an advanced grouping methodology, the subjec-
tive nature of categorizing requirements into essential, desirable, or inessential might
still persist to some degree. This subjectivity can influence the prioritization process,
especially in the initial classification stage.

• Adaptability to Changes: IoT systems are dynamic, with requirements that can evolve
rapidly due to technological advancements or changing market conditions. The frame-
work’s ability to adapt to these changes efficiently without extensive reconfiguration
remains a critical area for further development.

5.3. Potential for Future Enhancements

• Automated Dependency Recognition: Enhancing the framework by adding the capa-
bility to automatically detect and adapt to requirement dependencies using machine
learning algorithms could significantly improve its effectiveness.

• Real-Time Data Integration: Incorporating real-time data analytics to continuously up-
date and prioritize requirements based on ongoing feedback and system performance
metrics would be of value.

• Advanced Simulation Tools: Developing simulation tools that can model the impact
of different prioritization strategies on the overall system performance could help in
fine-tuning the framework before full-scale implementation.

Addressing these concerns through continuous research and development will be cru-
cial in enhancing its applicability and effectiveness in real-world scenarios. Further studies
could focus on integrating adaptive algorithms and real-time data processing to ensure the
framework remains robust and flexible in the face of rapidly changing technology landscapes.

6. Conclusions

This study presents a novel integrated prioritization framework specifically designed
to address the unique challenges of requirement prioritization within IoT applications.

Future Internet 2024, 16, 160 17 of 18

By analyzing the limitations inherent in existing prioritization methods, both in closed-
source and open-source environments, this research contributes a robust solution that
enhances adaptability and efficiency in managing IoT requirements. Unlike traditional
methods which often struggle with handling equivalent priority requirements and adapt-
ing to changes in requirements during development, the proposed framework introduces
dual-scale prioritization (ratio and ordinal) and facilitates prototyping post-single group
prioritization—features not typically found in conventional models like AHP. Additionally,
the framework’s design allows for dynamic adjustments to the prioritization process in
response to real-time changes, supporting continuous integration of new requirements
without the need to restart the process. It also effectively manages larger sets of require-
ments by segmenting them into manageable groups, thereby overcoming the complexities
associated with large NxN matrices. Through these innovations, the framework not only
addresses current gaps but also sets the stage for future enhancements in the field of IoT
requirement engineering.

Author Contributions: Conceptualization, S.K., M.A. and M.B.; Methodology, S.K., M.A. and M.B.;
Software, S.K., M.A. and M.B.; Validation, M.E.-A. and M.B.; Formal analysis, S.K., M.A. and
M.B.; Investigation, M.A. and M.B.; Resources, M.E.-A. and M.B.; Writing—original draft, S.K.;
Writing—review and editing, M.A., M.E.-A. and M.B.; Supervision, M.E.-A. and M.B.; Funding acqui-
sition, M.A. and M.E.-A. All authors have read and agreed to the published version of the manuscript.

Funding: The authors would like to thank Prince Sultan University for paying the APC of this article.

Data Availability Statement: All the data is available in the article. The data presented in this study
are available on request from the corresponding author.

Acknowledgments: This work was supported by EIAS Data Science Lab, CCIS, Prince Sultan
University. The Grammarly tool was used to prepare this document. It was used solely to check the
grammar and enhance the English-language quality of the manuscript. Grammarly was used after
the manuscript was completed to ensure the clarity, correctness, and conciseness of the language.
Still, it had no role in the content’s ideation or creation.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Nassereddine, M.; Khang, A. Applications of Internet of Things (IoT) in smart cities. In Advanced IoT Technologies and Applications

in the Industry 4.0 Digital Economy; CRC Press: Boca Raton, FL, USA, 2024; pp. 109–136.
2. Badshah, A.; Ghani, R.; Haleem, F.; Anwar, G.; Shahid, S.; Muhammad, Z.; Moustafa, M.N. Transforming educational institutions:

Harnessing the power of internet of things, cloud, and fog computing. Future Internet 2023, 15, 367. [CrossRef]
3. Alhenawi, E.; Awawdeh, S.; Khurma, R.A.; García-Arenas, M.; Castillo, P.A.; Hudaib, A. Choosing a Suitable Requirement

Prioritization Method: A Survey. arXiv 2024, arXiv:2402.13149.
4. Malik, A.; Nordin, A.; Al-Ehaidib, R. Requirements Engineering (RE) Process for the Adaptation of the Hospital Information

System (HIS). Available online: https://core.ac.uk/download/pdfr/325990671.pdf (accessed on 28 April 2024).
5. Yaseen, M.; Ibrahim, N.; Mustapha, A. Requirements Prioritization and using Iteration Model for Successful Implementation of

Requirements. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 121–127. [CrossRef]
6. Lencastre, M.; Silva, D.; Pimentel, J.H.C.; Castro, J.B. PRIUS: Applying Gamification to User Stories Prioritization. ACM SIGAPP

Appl. Comput. Rev. 2024, 23, 27–44. [CrossRef]
7. Hujainah, F.; Abu Bakar, R.B.; Abdulgabber, M.A. Investigation of requirements interdependencies in existing requirements

prioritization techniques. Teh. Vjesn. 2019, 26, 1186–1190.
8. Anwar, R.; Bashir, M.B. A Systematic Literature Review of AI-based Software Requirements Prioritization Techniques. IEEE

Access 2023, 11, 143815–143860. [CrossRef]
9. Mohamed, A.S.I.; El-Maddah, B.I.A.; Wahba, C.A.M. Criteria based requirements prioritization for software products. In

Proceedings of the 2008 International Conference on Software Engineering Research and Practice SERP, Las Vegas, NV, USA,
14–17 July 2008; pp. 587–593.

10. Rehman, S.U.; Aoun, M.; Qayoom, A. Selection Criteria for Requirement Prioritization Techniques for software development:
Data Analysis. Asian Bull. Big Data Manag. 2023, 3, 201–215. [CrossRef]

11. Sher, F.; Jawawi, D.N.; Mohammad, R. Requirements Prioritization Aspects Quantification For Value-Based Software Develop-
ments. J. Theor. Appl. Inf. Technol. 2019, 97, 3969–3979.

https://doi.org/10.3390/fi15110367
https://core.ac.uk/download/pdfr/325990671.pdf
https://doi.org/10.14569/IJACSA.2019.0100115
https://doi.org/10.1145/3642964.3642967
https://doi.org/10.1109/ACCESS.2023.3343252
https://doi.org/10.62019/abbdm.v3i2.60

Future Internet 2024, 16, 160 18 of 18

12. Kiran, H.M.; Ali, Z. Requirement Elicitation Techniques for Open Source Systems: A Review. Int. J. Adv. Comput. Sci. Appl. Pak.
2018, 9, 330–334.

13. Bhowmik, T.; Do, A.Q. Refinement and resolution of just-in-time requirements in open source software and a closer look into
non-functional requirements. J. Ind. Inf. Integr. 2019, 14, 24–33. [CrossRef]

14. Kuštelega, M.; Mekovec, R. A Systematic Analysis of Requirements Elicitation Problems and Challenges. In Proceedings of the
Central European Conference on Information and Intelligent Systems, Varazdin, Croatia, 20–22 September 2023; pp. 465–471.

15. Stamelos, I.; Gonzalez-Barahoña, J.M.; Varlamis, I.; Anagnostopoulos, D. (Eds.) Open Source Systems: Enterprise Software
and Solutions. In Proceedings of the 14th IFIP WG 2.13 International Conference, OSS 2018, Athens, Greece, 8–10 June 2018;
Proceedings; Springer: Berlin/Heidelberg, Germany, 2018; Volume 525.

16. Noviyanto, F.; Razali, R.; Nazri, M.Z.A. Understanding requirements dependency in requirements prioritization: A systematic
literature review. Int. J. Adv. Intell. Inform. 2023, 9, 249. [CrossRef]

17. Mao, G. Research on Customer Requirement Prioritization of Engineering Products Based on Group Multi-Granularity Linguistic
Information. Sci. Soc. Res. 2024, 6, 85–90. [CrossRef]

18. Ayala, C.; Nguyen-Duc, A.; Franch, X.; Höst, M.; Conradi, R.; Cruzes, D.; Babar, M.A. System requirements-OSS components:
Matching and mismatch resolution practices–an empirical study. Empir. Softw. Eng. 2018, 23, 3073–3128. [CrossRef]

19. Khan, K.A. A Systematic Literature Review of Software Requirements Prioritization. Master’s Thesis, Blekinge Institute of
Technology (BTH), Karlskrona, Sweden, 23 October 2006; pp. 41–43.

20. Babar, M.I.; Ramazan, M.; Ghayyur, S.A.K. Challenges and future trends in software requirements prioritization. In Proceedings
of the International Conference on Computer Networks and Information Technology ICCNIT, Abbottabad, Pakistan, 11–13 July
2011; pp. 319–324.

21. Iqbal, M.A.; Zaidi, A.M.; Murtaza, S. A new requirements prioritization model for market driven products using AHP. In
Proceedings of the International Conference on Data Storage and Date Engineering DSDE, Bangalore, India, 9–10 February 2010;
pp. 142–149.

22. Tufail, H.; Qasim, I.; Masood, M.F.; Tanvir, S.; Butt, W.H. Towards the selection of Optimum Requirements Prioritization
Technique: A Comparative Analysis. In Proceedings of the 2019 5th International Conference on Information Management
(ICIM), Cambridge, UK, 24–27 March 2019.

23. Aasem, M.; Ramazan, M.; Jaffar, M. Analysis and optimization of software requirements prioritization techniques. In Proceedings
of the International Conference on Information and Emerging Technologies ICIET, Karachi, Pakistan, 14–16 June 2010; pp. 1–6.

24. Iqbal, A.; Khan, F.M.; Khan, S.A. A critical analysis of techniques for requirement prioritization and open research issues. Int. J.
Rev. Comput. IJRIC 2009, 1, 8–18.

25. Anna, P.; Filippo, R.; Angelo, S.; Cinzia, B. An Empirical Study to Compare the Accuracy of AHP and CBRanking Techniques for
Requirements Prioritization. In Proceedings of the Fifth International Workshops on Comparative Evaluation in Requirements
Engineering (CERE’07), New Delhi, India, 16 October 2007.

26. Carlos, E.O.; Luis, D.O. A Quality-Based Requirement Prioritization Framework Using Binary Inputs. In Proceedings of the
Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation, Kota Kinabalu, Malaysia,
26–28 May 2010.

27. Chuan, D.; Paula, L.; Cleland-Huang, J.; Kwiatkowski, C. To wards automated requirements prioritization triage. Requir. Eng.
2009, 14, 73–89.

28. Sorooshian, S.; Azizan, N.A.B. Expedited Analytical Hierarchical Process for Multicriteria Decision Making. ICIC Express Lett.
2022, 16, 145–151.

29. Qureshi, S.; Khan, S.U.R.; Javed, Y.; Saleem, S.; Iqbal, A. A Conceptual Model to Address the Communication and Coordination
Challenges during Requirements Change Management in Global Software Development. IEEE Access 2021, 9, 102290–102303.
[CrossRef]

30. Achimugu, P.; Selamat, A.; Ibrahim, R.; Mahrin, M.N. A systematic literature review of software requirements prioritization
research. Inf. Softw. Technol. 2014, 56, 568–585. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jii.2018.03.001
https://doi.org/10.26555/ijain.v9i2.1082
https://doi.org/10.26689/ssr.v6i1.6025
https://doi.org/10.1007/s10664-017-9594-1
https://doi.org/10.1109/ACCESS.2021.3091603
https://doi.org/10.1016/j.infsof.2014.02.001

	Introduction
	Literature Review
	Proposed Framework
	Pre-Processing Module
	Requirements Repository (RR)
	Run-Time Requirements (RTR)

	Integrated Prioritization Module (IPM)
	Grouping Processing Unit (GPU)
	Reviewing Processing Unit (RPU)
	AHP Processing Unit (APU)

	Validation
	Discussion
	Findings and Observations
	Comparative Analysis

	Challenges and Limitations
	Practical Challenges
	Theoretical Limitations
	Potential for Future Enhancements

	Conclusions
	References

