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Abstract: Energy management strategies for hydrogen fuel cell hybrid electric vehicles (FCHEVs)
are a key factor in achieving real-time vehicle energy optimization control, vehicle driving economy,
and fuel cell durability. In this paper, for an FCHEV equipped with a fuel cell and supercapacitor,
the quantitative information, logic rules, and operational constraints are transformed into linear
integer inequalities according to its different operating modes, and the Hysdel language is used
to establish its mixed logic dynamic model (MLD). Then, the energy management strategy based
on model predictive control (MPC) is developed using the MLD model as the prediction model
and the equivalent hydrogen consumption and the performance degradation of the fuel cell as
the optimization performance indexes. Finally, under the World Light Vehicle Test Cycle, a joint
simulation was carried out with Advisor and Simulink to verify the proposed strategy’s superiority
by comparing it with the power following control strategy (PFCS) and the compound fuzzy control
strategy (CFCS). The results show that the strategy not only ensures real-time FCHEV energy control,
but also reduces hydrogen consumption by 10.98% and 1.98% and the number of start/stop times of
a fuel cell by six and four, compared to PFCS and CFCS, respectively, which improves the economy
of the whole vehicle as well as the durability of the fuel cell.

Keywords: fuel cell hybrid electric vehicle; energy management strategy; mixed logic dynamic model;
model predictive control; real time; economy; durability

1. Introduction

According to the International Energy Agency (IEA) [1], the world’s vehicle own-
ership was about 1.5 billion in 2020, and despite the impact of the COVID-19 epidemic,
transportation still accounted for over 53% of global oil consumption and around 37% of
global CO2 emissions. The use of new energy is a solution to improve the environment and
reduce dependence on fossil fuels, and the unique advantages of low-carbon hydrogen
energy are promising and irreplaceable for a wide range of applications in industry and
transportation [1]. Hybrid vehicles with hydrogen fuel cells (FCs) as the main energy
source are gradually developing in the field of new energy vehicles. Fuel cell hybrid electric
vehicles (FCHEVs) equipped with FCs and supercapacitors (SCs) can improve the economy
of the whole vehicle by reasonably distributing the power of the two energy sources, so
that the comprehensive performance of the whole power system can reach the best state [2].

Based on different control methods, energy management strategies for FCHEVs
are generally classified into three main categories: rule-based, optimization-based, and
learning-based [3]. Rule-based strategies are further categorized into deterministic rule-
based [4] and fuzzy rule-based [5], which do not require precise modeling and are simple
and easy to apply in practice, but have difficulty in achieving the optimal effect, and whose
parameters are greatly affected by the vehicle driving conditions [3]. Optimization-based
strategies mainly include global optimization and real-time optimization. Global optimiza-
tion strategies, such as linear programming (LP), dynamic programming (DP), etc., require
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prior knowledge of the full driving condition information and the establishment of accurate
mathematical models [6], need more complicated optimization calculation, and are difficult
to be applied in practice and are mostly used for theoretical analysis. Learning-based
strategies include reinforcement learning, neural networks, support vector machines, etc.
The main advantage is that they are based on data and do not require modeling, but they
require a lot of time to build libraries and complex artificial intelligence knowledge [7]. The
following discussion focuses on optimization-based strategies.

Real-time optimization strategies include Pontryagin’s Minimal Principle (PMP),
model predictive control (MPC), etc. As a constrained optimization method, PMP re-
quires the introduction of Lagrange multiplier vectors and predicted driving condition
information during the optimization calculation [8–11], and real-time optimization can only
be achieved through careful design. MPC [12–16] has gained widespread attention for its
superiority in implementing real-time optimal control by transforming global optimization
within the entire driving conditions into local optimization within the prediction time do-
main [17–21]. In energy optimization control based on MPC for the full cell hybrid power
system (FCHPS), earlier research was based on dynamic matrix-based MPC control [13],
and then, with the goal of improving energy economy, scholars carried out research on
single-layer MPC control with an FC + SC structure [14], FC + battery (BA) structure, and
FC + BA + SC structure [15,16]. However, the conventional single-layer MPC has difficulty
meeting the growing dynamic performance of vehicles as well as multi-objective require-
ments, and its multi-parameter optimization computation still requires a very large amount
of power, so two layers of MPC, the economic optimization layer and the optimization
control layer, are used to collaborate and share the task [17]. This type of MPC has the
problems of complicating the whole control strategy, how to coordinate among multiple
MPCs, and how to guarantee the control performance. In order to solve the multi-objective
optimization and real-time problems, the fusion of MPC with other control algorithms is
used, such as incorporating fuzzy C-mean clustering combined with a Markov chain [18],
and an online learning Markov chain [19] that can improve the prediction speed. However,
the questions of how to further reduce nonlinear optimization calculations and how to
ensure the optimality and robustness of the control still warrant continuous research. On
the other hand, most of the research has been conducted by establishing exact mathematical
models, fuzzy prediction models [20], and neural network models [21] as the prediction
models of MPC. However, the FCHPS is a hybrid system which includes both continuous
dynamic variables and discrete logic variables, and there is constant alternation between
the two kinds of variables [14,22]. So, establishing a mixed logic dynamic model (MLD) as
the prediction model helps with the MPC-based energy optimization control.

There are two main types of modeling methods for hybrid systems, “aggregation”
and “extension” [23]. The so-called “aggregation” method is to divide the interval for the
discrete event problem in the system to represent the continuous state. This method is
commonly modeled by hybrid Petri net models [24] and hybrid automata models [25].
The “extension” method is mainly based on the MLD and the Piecewise Affine models
(PWA). Scholars have tried to apply MLD modeling methods to vehicle engineering, such as
through intelligent vehicle longitudinal dynamics [26], yaw stability control of distributed
drive electric vehicles [27], and energy management of hybrid electric vehicles [28], but the
literature review shows that there is a lack of research on the application of FCHEVs, and
further research is needed.

Based on the above analysis of a typical hybrid system for FCHEVs, this paper pro-
poses to establish its MLD model as a prediction model and model predictive energy
management strategy for FCHEVs. The mixed-integer linear programming algorithm is
applied to achieve the optimization using a minimum of 100 km hydrogen consumption
and FC performance degradation as the optimization objectives.

The remainder of this paper is structured as follows. In Section 2, the configuration of
the FCHPS and the components are modeled. How to build the MLD model for the FCHPS
is discussed in detail in Section 3. A detailed introduction to the energy management
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strategy based on MLD-MPC is elaborated on in Section 4. In Section 5, the simulation
validation is carried out. The performance of the proposed strategy is compared with the
power following control strategy (PFCS) and the compound fuzzy control strategy (CFCS).
Section 6 draws the main conclusions of the paper.

2. Fuel Cell Hybrid Vehicle Model
2.1. Fuel Cell Hybrid Powertrain Architecture

The block diagram of the structure of the FCHEV is shown in Figure 1. The FC is
connected to a unidirectional DC/DC and the supercapacitor to a bidirectional DC/DC.
The two are then connected in parallel to drive the motor that ultimately moves the wheel.
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The main components of the FCHPS will be modeled in order to build a simulation
system to carry out this study. Their modeling is discussed below.

2.2. Fuel Cell Model

A Proton Exchange Membrane Fuel Cell (PEMFC) was chosen as the primary power
source for the FCHEV. During the operation of the PEMFC, there are irreversible losses and
a gradual drop in output voltage. These irreversible losses are reflected in the polarization
overpotential, and the actual output voltage of the FC is determined by the polarization
overpotential and the ideal electrical potential. The PEMFC monomer output voltage Vcell
is expressed as follows [29]:

Vcell = ENernst − Vact − Vohm − Vcon (1)

where ENernst is the ideal electric potential; Vact is the activation overpotential; Vohm is the
ohmic overpotential; and Vcon is the concentration difference overpotential.

The total voltage as well as the output power of the fuel cell stacks are

Vf c = N f cVcell (2)

Pf c,s = I f cVf c (3)

where N f c is the number of FC units connected in series; Vf c and I f c are the total voltage
and the current of the FC stacks, respectively; and Pf c,s is the actual output power of the
FC stacks.
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To subsequently facilitate MLD modeling, the nonlinear PEMFC system needs to
be linearized. The linearization takes into account the polarization curves, so that the
input/output relationship for the FC is approximated as follows [30]:

τf
.
P f c,s = k f Pf c,d − Pf c,s (4)

where τf is the time constant, here with a value of 0.2 s; k f is the gain factor, here with a
value of 1; and Pf c,d is the power required by the FC stacks.

The power efficiency curve of the FC is shown in Figure 2 [19]. It can be seen that
the FC operates with relatively high efficiency when its output power is in the range of
7–50 kW, and therefore the powers in this range are identified as the high-efficiency zone
of the FC.
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2.3. Supercapacitor Model

The supercapacitor serves as an auxiliary energy source that can supply energy to the
FCHEV or recover braking energy from the FCHEV. Based on its operating characteristics
and using the classical equivalent circuit model, the output power of a single supercapacitor
is as follows [31]: 

Psc = Usc × Isc

Usc = EC − Rs × Isc

Isc = IC + IF

IC = −C dEC
dt

IF = EC
RF

(5)

where Psc is the output power of the supercapacitor; Usc and Isc are the voltage and current
of the supercapacitor, respectively; Ec is the equivalent capacitance voltage; C is the capacity
of the equivalent capacitor; RS is the charge/discharge resistance; RF is the self-discharge
loss resistance; and IC and IF are the current values flowing through the equivalent capacitor
and self-discharge loss resistance, respectively.

The supercapacitor state of charge (SOC) is calculated as follows [31]:

SOC =
Usc − Uscmin

Uscmax − Uscmin
(6)

where Uscmin and Uscmax are the minimum and maximum voltages of the supercapacitor,
respectively.
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2.4. DC/DC Model

The output power of the unidirectional DC/DC converter connected to the FC is

Pd1 = Pf c,sηd1 (7)

The output power of the bidirectional DC/DC converter connected to the supercapaci-
tor is

Pd2 = Pscηd2 (8)

where ηd1 and ηd2 are the efficiencies of the unidirectional and the bidirectional DC/DC
converters, respectively.

2.5. Vehicle Dynamic Model

The required power of the motor in the driven state is

Pm,d =
Pm

ηm
(9)

Pm =
Tmnm

9550
(10)

where Pm,d is the gross motor power; Pm and ηm are the output mechanical power and the
conversion efficiency of the motor, respectively; Tm is the motor output torque; and nm is
the actual motor output speed.

The motor power required for braking is similar to that for driving, and the power
generated during braking can be calculated as follows:

Pmec =
Tmbnm

9550
(11)

Pmb = Pmec · ηmb (12)

where Pmec is the braking mechanical power of the motor; Tmb is the motor braking torque;
ηmb is the conversion efficiency of the motor as a generator; and Pmb is the electrical energy
generated during braking.

The dynamic response of the motor can be expressed linearly as

τm
.
Tm = kmTm,d − Tm (13)

where τm is the motor time constant with a value of 1.1, and Tm,d is the demanded torque
of the motor.

The output torque of the motor is calculated based on the vehicle parameters and
forces. According to the dynamic equations of vehicle driving, the forces on the vehicle
during driving are

Ft = Fr + Fa + Fg + Fj (14)

Fr = f mgcosθ

Fa =
CD A f v2

a
21.15

Fg = mgsinθ

Fj = βm dua
dt

(15)

where Ft is the driving force of the vehicle; Fg is the grade resistance, Fa is the air resistance,
Fj is the acceleration resistance, and Fr is the rolling resistance to which the vehicle is
subjected; m is the mass of the whole vehicle; β is the rotating mass conversion factor; f is
the wheel roll resistance coefficient; A f is the windward area; va is the driving speed; θ is
the road slope; and CD is the air resistance coefficient.
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In Table 1, the main parameters of the FCHEV and the models are given out for the
simulation application.

Table 1. Main technical parameters of FCHEV.

Name Parameter/Unit Numerical Value

Whole vehicle section

Total vehicle mass m
kg 1138

Wind resistance coefficient CD 0.335

Windward area A f

m2 2

Tires

Wheel radius r
m 0.282

Rolling resistance factor f 0.009

Rotating mass conversion factor β 1

Motor drive
Maximum power kW 75

Peak efficiency 0.92

Fuel cell

Maximum net power kW 50

Peak efficiency 0.6

Number of FC units N f c 411

Supercapacitor

Capacity of equivalent capacitor C 2

Charge/discharge resistance RS 0.0026

Self-discharge loss resistance RF 965

Rated voltage V 2

Number of groups 80

DC/DC model
Efficiency of unidirectional DC/DC converter ηd1 96

Efficiency of bidirectional DC/DC converter ηd2 97

Motor
Conversion efficiency of motor ηm 92

Motor time constant τm 1.1

3. MLD Modeling of Fuel Cell Hybrid Powertrain

Regarding hybrid systems, Bemporad and Morari [32] proposed to utilize MLD models
to describe such complex systems. The use of MLD models can centralize all the variables
in the system and the relationships between the variables in a model framework that clearly
reflects the dynamic logical relationships between the system variables, the switching of
states, and the operational constraints. The relationships between the inputs, states, and
outputs of the hybrid system can also be clearly established. The key to the modeling
approach of the MLD model is logical propositions, which are mainly based on the logical
rules of the system as well as qualitative knowledge. The logical propositions are then
expressed as linear inequalities for integers and continuous variables.

3.1. MLD Model Architecture of FCHPS

It is known from the above discussion that the FCHPS is mainly powered by the FC
and supercapacitor, so there is a complex kinetic relationship among its various components.
In order to effectively reduce fuel consumption, FC performance degradation, etc., it needs
to be divided into different operating modes in the driving process of the FCHEV, and then
the corresponding operating mode must be chosen according to the actual situation on the
road. The operating modes of the FCHEV are shown in Table 2.
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Table 2. Operating modes defined for FCHEV.

Operating Mode Fuel Cell Operating
Conditions

Supercapacitor Operating
Conditions

Joint driving On Discharge
Line charging On Charging

Separate driving for supercapacitor Off Discharge
Recovery of braking energy Off Charging

Simply using a combination of continuous and discrete-time dynamic variables makes
it difficult to provide an accurate description of the system, and the MLD modeling ap-
proach can be used to bring together the complexity of multiple operating modes in this
system in a single mathematical model. The analysis of the system shows that the genera-
tion of discrete variables in the FCHPS is mainly due to the on and off operation of the FC
and supercapacitor, so the modeling framework shown in Figure 3 is used to represent the
MLD model of the FCHPS, where f c and sc denote the Boolean quantities for the on and
off states of the FC and supercapacitor, respectively, ub =

[
f c, sc]T ; and mH2 denotes the

hydrogen consumption of the FC.
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3.2. Hysdel-Based MLD Model Construction

In order to solve the inefficiency problem of traditional MLD modeling, Bemporad
et al. [32] investigated the use of the Hysdel language for modeling. By using this method
to model the hybrid system, the manual derivation process can be avoided, which saves
time and improves the modeling efficiency to a great extent and ensures the accuracy of
the model.

The Hysdel language consists of IMPLEMENTATION and INTERFACE, where IN-
TERFACE is mainly used to detail variables such as inputs, outputs, and states of the
system, while IMPLEMENTATION establishes relationships among variables. The model-
ing process has the following main steps:

1. Definition of all variables in the system

According to the above analysis, the input variables of the MLD model are the demanded
power of the FC and the output power of the supercapacitor, u(k) =

[
Pf c,d(k), Psc(k)]T ;

the output variables are the gross motor power, the hydrogen consumption, and the
supercapacitor SOC, y(k) =

[
Pm,d(k), mH2(k), SOC]T ; and the state variables are x(k) =[

Pm,d(k), mH2(k), SOC, t f c, tsc]T , where t f c and tsc are the discharge times of the FC and
supercapacitor, respectively.
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2. Definition of system auxiliary variables

The main purpose of defining auxiliary variables is to be able to describe more ac-
curately the constraints between the variables and the evolution process within the MLD
model. Logical variables are defined according to linear affine constraints:

δk
e (k) = f (x(k), u(k), k) (16)

According to the above equation, the logical variables are related to the state variable,
the input variable, and the time, and they are the key to triggering the occurrence of the
event. Based on the characteristics of the FC and supercapacitor, the trigger events of the
FCHPS can be categorized into the following two types:

• The corresponding auxiliary discrete variables are set according to the threshold value
of the FC (i.e., the FC high-efficiency region in Figure 2) and the magnitude of the
discharge time, as follows:

When Pf c ≤ 50 kW, δ1
e (k) = 1, otherwise δ1

e (k) = 0;
When Pf c ≥ 7 kW, δ2

e (k) = 1, otherwise δ2
e (k) = 0;

When t f c > 5 s, δ3
e (k) = 1, otherwise δ3

e (k) = 0;
When t f c < 25 s, δ4

e (k) = 1, otherwise δ4
e (k) = 0.

• The auxiliary discrete variables are set according to the charge state and the discharge
time magnitude of the supercapacitor, as follows:

When SOC > 0.5, δ5
e (k) = 1, otherwise δ5

e (k) = 0;
When tsc ≥ 30 s, δ6

e (k) = 1, otherwise δ6
e (k) = 0;

When t f c ≤ 60 s, δ7
e (k) = 1, otherwise δ7

e (k) = 0.
The finite state machine model of the FCHEV dynamical system is a discrete state

equation, mainly related to the binary of the individual components, the input control
variables, and the above trigger events, which evolved from a logical state update function,
which is a function of

.
xb = h(xb, ub, δe) (17)

where h denotes the function associated with xb, ub, and δe.
Since there are four modes of operation, xb =

[
x1

b , x2
b , x3

b , x4
b
]
, and the meaning of each

quantity is shown below:
x1

b = f c&sc means that both the FC and supercapacitor are on;
x2

b = f c&¬sc means the FC is on and the supercapacitor is off;
x3

b = ¬ f c&sc means the FC is off and the supercapacitor is on;
x4

b = ¬ f c&¬sc means both the FC and supercapacitor are off.
Thus, the discrete dynamic mode i(k) of the system is determined by xb and δe.

3. System operation constraints

To ensure that the optimal problem can obtain the optimal solution, it is necessary to
impose the appropriate logical constraints on it:

∑ i(k) = 1 (18)

In order to adapt to the characteristics of the supercapacitor and to work in a better
state when the vehicle is in motion, the constraint is set for the supercapacitor SOC as
follows [33]:

0.2 ≤ SOC ≤ 0.8 (19)

Once the setup is completed following the steps described above, the MLD model of
the FCHPS can be compiled by Hysdel to obtain its standard mathematical expression. The
model obtained is a difference equation with five state variables, two input variables, two
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output variables, and the mixed-integer linear inequality constraint that should be satisfied
among the variables, as follows:

x(k + 1) = Ax(k) + B3z(k)
y(k) = Cx(k) + D3z(k)

E2δ(k) + E3z(k) ≤ E1u(k) + E4z(k) + E5

(20)

where z(k) refers to the auxiliary variables used in linking the discrete variables in the
system to the continuous variables, z(k) = δ(k)u(k); and δ(k) is the logic variable, δ(k) ∈
{0, 1}; the variable coefficient matrices B3: 5 × 15, D3: 3 × 15, E1: 68 × 2, E2: 68 × 3, E3:
68 × 15, E4: 68 × 15, and E5: 68 × 1 are not described in detail here because of their high
dimensionality:

A =


−5 0 0 0 0
0 −0.03125 0 0 0

−0.00218 −2.4 0.00218 0 0
0 0 0 0 0
0 0 0 0 0

, C =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

.

4. Energy Management Strategy Based on MLD-MPC

When designing energy management strategies for the FCHPS, the fuel economy and
hydrogen FC durability should be considered. To this end, it is necessary to obtain the
equivalent hydrogen consumption of the FCHEV based on the operating characteristics of
the key components and the consumption model. In order to improve the durability of the
FC, it is necessary to quantify its lifetime degradation caused by variable load conditions,
and thus to establish its degradation model. The details are discussed as follows.

4.1. Evaluation Indicators for Energy Management Strategies
4.1.1. Equivalent Hydrogen Consumption Model

By analyzing the working principle of the FC, it can be seen that in a dry external
environment, its output current has a crucial influence on its hydrogen consumption, so
the hydrogen consumption per unit of time can be calculated according to the following
formula:

fH2 =
SH2 MH2 N f c I f c

2000F
(21)

where SH2 is the excess coefficient of hydrogen, SH2 = 1.2; MH2 is the molar mass of
hydrogen, taken as 2 g·mol−1; and N f c is the number of FCs.

Thus, the real-time hydrogen consumption of the FC can be calculated as follows:

CH2(t) =
∫ t

0
fH2 dt (22)

The equivalent 100 km hydrogen consumption mH2 is

mH2(t) =
CH2

s
× 100 (23)

where s indicates the traveling distance for the whole driving condition.

4.1.2. Degradation Model of FC

The performance degradation of the FC is mainly caused by changes in driving
conditions such as idling, start/stop, variable load, and large load of the FCHFV, which are
affected by the degree of each driving condition, as shown in Figure 4 [34]. From the figure,
it can be observed that the lifetime of the FC is most affected by the two driving conditions
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of start/stop and variable load, so this paper mainly considers these two influence factors
when establishing the degradation model.
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By limiting the FC output power to operate within the high-efficiency zone, the effects
of performance degradation due to start/stop conditions can be avoided. From the existing
literature [35], for the effect of variable load conditions, the performance degradation rate ρ
of the FC can be solved by the standard deviation of the change in the FC output power
over 5 s:

ρ(t) = − 1
3600

{[
225σ

(
Pt

f c, Pt−1
f c , Pt−2

f c , Pt−3
f c , Pt−4

f c

)
+ 10

]}
(24)

where Pt
f c is the output power of the FC at the current moment; Pt−1

f c , · · · Pt−4
f c are the output

powers of the FC in the adjacent 2~5 s, respectively; t is the current moment of the FC
working, t = 1, 2, · · · , 5; and σ is the standard deviation function.

4.2. Energy Control Based on MLD-MPC

Figure 5 is the schematic diagram of MLD-MPC. It can be seen that the MLD-MPC-
based energy management strategy includes the MLD model that is adopted as the predic-
tive model, the optimization indicators, and the mixed-integer programming which is used
to solve the corresponding optimization problem due to the introduction of MLD, where

yre f (k) =
[

Preq(k), SOCre f (k)
]T

; Preq is the whole vehicle required power calculated ac-

cording to the driving conditions; yp(k) = [Pm,d(k), SOC(k)]T is the output of the predictive

model; u(k) =
[

Pf c,d(k), Psc(k)]T ; and ub =
[

f c, sc]T .
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When performing the optimization calculation, the supercapacitor SOC should be set
in a reasonable range and the FC output power in the range of the high-efficiency zone, so
that the optimization results obtained ensure that the whole vehicle has good dynamics.
Based on the above considerations, the objective function is established as shown below:

L = Q
(
mH2(t)

)2dt + R(ρ(t))2dt (25)

0.4 ≤ SOC ≤ 0.8 (26)

7 kW ≤Pf c ≤ 50 kW (27)

According to the above equation, the objective function in the prediction time domain
of the MPC used for optimization is

J = min
∫ t+∆T

t
Q
(
mH2(t)

)2

dt + R(ρ(t))2dt (28)

where ∆T is the prediction interval; Q and R denote the weight matrices.
The corresponding discrete objective function is established as shown in the following

equation, where the reference values of hydrogen consumption and motor output power
are both zero:

J(k) =
Np

∑
i=1

∥∥∥yre f − y(k + i)
∥∥∥2

Q

+
NC−1

∑
i=0

∥u(k + i)∥
2

R

(29)

where Np is the prediction time domain; Nc is the control time domain.
All the linear integer inequalities to be used by the FCHPS are already included in

the established MLD model, associated with the objective function set above, and so the
objective function of the FCHPS can be written as

minJ[x(k), u] =
Np

∑
i=1

∥∥∥yre f − y(k + i)
∥∥∥2

Q
+

NC−1
∑

i=0
∥u(k + i)∥

2

R

subj.to.



x(k + 1) = Ax(k) + B3z(k)
y(k) = Cx(k)

E2δ(k) + E2z(k) ≤ E1u(k) + E4z(k) + E5

xmin ≤ x(k + j) ≤ xmax, j = 0, 1, . . . , Np

ymin ≤ y(k + j) ≤ ymax, j = 0, 1, . . . , Np

umin ≤ u(k + i) ≤ umax, i = 0, 1, . . . , Nc − 1

(30)

Following the state space expression of Equation (20), the state prediction equation
and output prediction equation in the prediction time domain can be further introduced as

x
(
k + Np

)
= ANp x(k) +

Np−1

∑
i=0

Ai[B1u
(
k + Np − 1 − i

)
+ B2δ(k + Np − 1 − i)

+ · · ·+ B3z(k + Np − 1 − i)]

y(k + Np) = CANp x(k) +
Np−1

∑
i=0

CAi[B1u
(
k + Np − 1 − i

)
+ B2δ(k + Np − 1 − i)

+ · · ·+ B3z(k + Np − 1 − i)] + D1u(k + Np) + D2δ(k + Np)

+D3z(k + Np)

(31)

5. Simulation Test and Results Analysis

In order to verify the superiority of the proposed strategy in this paper, the control ef-
fects are compared with those of PFCS and CFCS [36] with real-time control. The following
section mainly discusses the related simulation results and comparative analysis.
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5.1. Simulation Model Construction

In this paper, Matlab/Simulink and Advisor 2002 software were used to jointly build
the simulation model, shown in Figure 6. Advisor 2002 is the Advanced Vehicle Simulator
which was mainly used to build the whole fuel cell vehicle power system, including the
whole vehicle power model, fuel cell, supercapacitor, motor, power bus, management
strategy, and other modules. Table 3 gives the names of the modules and what they
represent. As shown in the red dashed part in the figure, Simulink was used to build
the MLD-MPC control strategy module. First, the control sequence of MLD-MPC was
solved in Simulink using the MPT toolbox developed by the Bemporad A team, as well
as by applying the state prediction equations, the input/output prediction equations, the
optimization objective function, and the inequality constraints established above; second,
its control sequence was ported to the Advisor control strategy module (MPC module)
through function calls. The inputs to the control strategy module are the overall vehicle
demand power and the SOC of the supercapacitor, and the output is the demand power of
the fuel cell.
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Table 3. The significance of each major module in Figure 6.

Name of the Module Meaning

Drive cycle Driving conditions of vehicle
Vehicle Whole vehicle module

Wheel and axle Wheel and axle of vehicle
Final drive Main reducer

Gearbox Mechanical gearbox
Motor/controller Driving motor and its controller
Boost converter Boost DC-DC converter

Buck/boost converter Buck/boost DC-DC converter
Power bus Direct current power bus

Electric acc loads Electric accessory power calculation module
Energy storage Supercapacitor

MPC <cs> MLD-MPC control strategy
Fuel converter Fuel cell

Exhaust system Emission treatment module
<vc> fuel cell Vehicle control module

<sdo> fuel cell Data output module
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5.2. Dynamic Validation of Control Strategies

The World Light Vehicle Test Cycle (WLTC) is typically used for fuel consumption,
electric consumption, and electric-only range testing, mainly covering urban, rural, ring
road, and highway sections, and taking into account the driving congestion of vehicles.
According to different driving speeds, the WLTC is divided into four parts—low speed,
medium speed, high speed, and ultra-high speed—which is more in line with the actual
driving of vehicles. Therefore, in order to better verify the accuracy of the model and the
performance of the energy management strategy, the WLTC was selected for simulation
and analysis. The specific information in the WLTC is shown in Table 4, including vehicle
driving time, driving distance, maximum and average speed, maximum and average
acceleration, maximum and average deceleration, and so on. The WLTC can simulate the
road conditions of light vehicles.

Table 4. WLTC information.

Entry Data

Driving time 1800 s
Distance traveled 23.27 km
Maximum speed 131.33 km/h
Average speed 46.51 km/h

Maximum acceleration 1.75 m/s2

Maximum deceleration −1.5 m/s2

Average acceleration 0.42 m/s2

Average deceleration −0.44 m/s2

Idle time 235 s
Number of starts and stops 8

Initial SOC for supercapacitors 70%

The simulation experiments under the WLTC were carried out to validate the dynamics
of the three control strategies, shown in Figure 7. From the figure, it can be seen that three
real-time energy control strategies can accomplish the speed following curve requirements
under the WLTC, and the following error is small, indicating that they can meet the dynamic
requirements of the whole vehicle and verifying their effectiveness. As shown in Figure 8,
speed following errors can be controlled within tolerance limits.
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5.3. Analysis of Simulation Results
5.3.1. Parameter Selection for the Control Strategy

When the simulation experiments were carried out, the weight matrices of the objective
function were chosen to be, respectively, as follows:

Q = [qyij]2×2 =

{
qyij = 25, i = j = 2

qyij = 0, ∀i, j and i = j ̸= 2

R = [rxij]5×5 =

{
rxij = 300, i = j = 2

qxij = 0, ∀i, j and i = j ̸= 2

Different Np and Nc values were selected for the simulation experiments, and the
variation in hydrogen consumption obtained is shown in Table 5. From the table, it can
be seen that when Np is the same and the value of Nc is changed from small to large, the
hydrogen consumption changes from large to small; however, when the value of Nc is
large to a certain extent, the hydrogen consumption will increase again. Therefore, the
value of Nc should be appropriate to obtain the best control effect. When Nc is too large,
the hydrogen consumption will increase, and the objective function solving process then
requires a larger computational effort to increase the time. Similarly, when Nc is the same,
the change in the value of Np has the same effect on the hydrogen consumption control as
in the above case.

Table 5. Hydrogen consumption for different values of Np and Nc.

Parameters Equivalent Hydrogen Consumption per Hundred Kilometers/
L·100 km−1

Np = 15, Nc = 2 45.3
Np = 15, Nc = 5 44.6

Np = 15, Nc = 10 46.4

Np = 10, Nc = 5 45.7
Np = 15, Nc = 5 44.6
Np = 20, Nc = 5 47.5
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The smoothness comparison curves of FC output power for different Np and Nc
values are shown in Figure 9. From the figure, it can be seen that although the output
power is smoother for Np = 15, Nc = 10, the hydrogen consumption is larger compared
to Np = 15, Nc = 5, and the system has a large amount of computation time and poor
real-time performance. Based on the above analysis, considering the real-time performance,
economy, and durability of the whole vehicle and the FC, Np = 15, Nc =5 is selected for
simulation and analysis in this paper.
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“Smoothness” is usually a relative concept that describes the degree of change, or the
smoothness of the rate of change, of a physical quantity.

In order to quantify the degree of smoothness of the fuel cell output, the smoothness S
of the fuel cell output power curve is defined as follows:

S =

∫ t
0

∣∣∣ dPf c
dt

∣∣∣dt

PMAX

where PMAX is the maximum net output power of the fuel cell.
As shown in Figure 9, the lower the smoothing value, the smoother the fuel cell output

power, which will help to improve the durability of the fuel cell.

5.3.2. Results and Analysis

Under the MLD-MPC strategy, the variation curve of the supercapacitor SOC is shown
in Figure 10; the variation curves of the output power of the FC and supercapacitor are
shown in Figure 11. From the figures, it can be observed that the FC plays the role of
the main power source and provides most of the energy in the whole driving process.
When designing the MLD-MPC strategy, the output power of the FC is constrained in
the high-efficiency area, so it can be seen from the figures that in the first 600 s when the
demanded power of the whole vehicle is relatively small, the output power of the FC can
meet the driving demands of the vehicle most of the time, and the output power of the
supercapacitor is small and changes infrequently, and the change in its SOC is also relatively
small; after 1200 s, as the driving conditions begin to enter the high-speed and ultra-high-
speed stages, the demanded power of the whole vehicle will be correspondingly larger, so
that the FC output power is larger, and the supercapacitor as an auxiliary energy source
also provides part of the power, and its output power will be changed more frequently with
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the vehicle driving conditions. At the same time, the SOC fluctuates significantly during
this time period. However, no matter how the driving conditions change, the change in
SOC is always kept between 0.4 and 0.8 (note: the red line in Figure 10 indicates the upper
limit of the SOC at 0.8, the blue indicates the SOC variation of supercapacitor), which is
favorable for protecting the supercapacitor.
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The real-time efficiency of the FC under the MLD-MPC strategy is shown in Figure 12.
From the figure, it can be seen that the efficiencies of the proposed strategy are kept between
0.52 and 0.6 during the whole WLTC and the average efficiency is 0.57, all of which are in
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the high-efficiency area and can improve the economy of the whole vehicle. The variation
curves of the FC output power under different control strategies are shown in Figure 13.
As can be seen from the figure, during the whole WLTC, the number of FC starts/stops
under the proposed strategy is zero, and the numbers under the PFCS and CFCS strategies
are six and four, respectively. It has been shown [37] that the performance degradation of
FCs is mainly related to the number of switches, fluctuation, and high-power runtime, so
the proposed strategy is beneficial in prolonging the FC lifetime. Calculating the hydrogen
consumption at 100 km (L·100 km−1) under each control strategy, as shown in Table 6, it is
44.8 for MLD-MPC, and 50.1 and 45.4 for PFCS and CFCS, respectively, which are reduced
by 10.98% and 1.98%, respectively; the average values of the real-time efficiency of the FC
for PFCS and CFCS are 0.53 and 0.55. It is clear that the MLD-MPC strategy makes the FC
have higher working efficiency.
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Table 6. Comparison of simulation results of different energy management strategies.

Performance Indicators PFCS CFCS MLD-MPC

Equivalent hydrogen consumption per hundred kilometers(
L · 100 km−1) 50.1 45.5 44.6

Number of FC starts/stops 6 4 0
Average efficiency of FC 0.53 0.55 0.57

Average efficiency of supercapacitor 0.98 0.98 0.98

6. Conclusions

In this paper, taking an FCHPS equipped with a hydrogen FC and supercapacitor as
the research objective, an energy management strategy based on MLD-MPC is proposed,
aiming to minimize hydrogen consumption and FC performance degradation under the
premise of ensuring real-time optimization. The important findings are attached as follows:

• The Hysdel language is utilized to establish the MLD model of the FCHPS. Based
on the mathematical modeling of the key components of the FCHPS, such as the FC,
supercapacitor, DC/DC converters, and motor, the characteristics of different regions
are described by the segment linearization method; the logic variables are used to
organically link the different operating modes of the FCHPS with the constraints,
logic rules, quantitative information, and charging/discharging operating modes of
the segment linearization intervals, which are transformed into hybrid-integer linear
inequalities. The inequalities are combined with the kinetic equations of each key
component to establish the MLD model. The modeling problem for a complex hybrid
system like the FCHPS is solved.

• The MLD-MPC energy management strategy for FCHEVs is established. Using the
MLD model as a prediction model and the equivalent hydrogen consumption and
the performance degradation of the FC as the optimization performance indexes, the
economy of the FCHEV as well as the durability of the FC are improved and the
real-time control of energy is achieved by rolling optimization of the operating states
of the FC and the supercapacitor in the optimized finite time domain.

• Simulation verification under the WLTC shows that the hydrogen consumption of
100 km under the MLD-MPC energy management strategy proposed in this paper
is 44.6 L·100 km−1, which is 10.98% and 1.98% lower than the two types of real-time
control strategies, PFCS and CFCS, respectively; and the number of start/stop times of
the FC under the proposed strategy is reduced by six times and four times, respectively.
So, the strategy in this paper has better economy and FC durability while achieving
optimized real-time control.

In the future, we plan to carry out further research work, such as investigating energy
management strategies for fuel cell hybrid vehicles equipped with three energy sources,
and the application of explicit MPC instead of conventional MPC to provide better real-time
performance.
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