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Abstract: Because of their stochastic nature, the high penetration of electric vehicles (EVs) places
demands on the power system that may strain network reliability. Along with increasing network
voltage deviations, this can also lower the quality of the power provided. By placing EV fast charging
stations (FCSs) in strategic grid locations, this issue can be resolved. Thus, this work suggests a new
methodology incorporating an effective and straightforward Red-Tailed Hawk Algorithm (RTH) to
identify the optimal locations and capacities for FCSs in a real Aljouf Transmission Network located
in northern Saudi Arabia. Using a fitness function, this work’s objective is to minimize voltage
violations over a 24 h period. The merits of the suggested RTH are its high convergence rate and
ability to eschew local solutions. The results obtained via the suggested RTH are contrasted with
those of other approaches such as the use of a Kepler optimization algorithm (KOA), gold rush
optimizer (GRO), grey wolf optimizer (GWO), and spider wasp optimizer (SWO). Annual substation
demand, solar irradiance, and photovoltaic (PV) temperature datasets are utilized in this study to
describe the demand as well as the generation profiles in the proposed real network. A principal
component analysis (PCA) is employed to reduce the complexity of each dataset and to prepare
them for the k-means algorithm. Then, k-means clustering is used to partition each dataset into k
distinct clusters evaluated using internal and external validity indices. The values of these indices
are weighted to select the best number of clusters. Moreover, a Monte Carlo simulation (MCS) is
applied to probabilistically determine the daily profile of each data set. According to the obtained
results, the proposed RTH outperformed the others, achieving the lowest fitness value of 0.134346 pu,
while the GRO came in second place with a voltage deviation of 0.135646 pu. Conversely, the KOA
was the worst method, achieving a fitness value of 0.148358 pu. The outcomes attained validate the
suggested approach’s competency in integrating FCSs into a real transmission grid by selecting their
best locations and sizes.

Keywords: charging stations; electric vehicles; optimal allocation; Aljouf Transmission Grid; Monte
Carlo simulation

1. Introduction

Fossil fuel consumption has increased dramatically recently, particularly in the trans-
portation and electricity generation industries. Due to their greenhouse gas emissions and
contribution to global warming, these sources exacerbate environmental pollution [1]. In
order to lessen pollution, many nations are looking to switch from gasoline-powered cars to
clean energy vehicles known as electric vehicles (EVs) [2]. EVs are more cost-effective and
environmentally friendly than gasoline-powered vehicles. Because of their sophisticated
batteries and power electronics, EVs can operate as controlled loads on a grid. One of the
biggest obstacles to integrating EVs into a power system is the potential for overload-related
transmission line thermal constraints to be violated, which could result in voltage drops
in some sensitive buses in the network. Additionally, the distribution network operator
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faces difficulties due to uncertainties surrounding these vehicles. These uncertainties stem
from factors like daily energy consumption, time rounding, EV battery capacity, and EV
driving range [3]. EVs are typically charged at public charging stations using fast charging
stations (FCSs), which demand high power from the grid to shorten the time needed to
meet the battery’s state-of-charge (SOC) requirements. However, the distribution network
is negatively impacted by the high power demand of these stations, increasing voltage
deviations and power losses. However, renewable energy sources (RESs) can be installed
to supply excess loads during peak hours and lessen the demand on the grid. To reduce
the negative effects that come with FCSs, it is imperative to determine the best locations for
them within the distribution network. Numerous documented methods have been used to
determine optimal FCS sizes and locations.

To reduce active and reactive power losses in the system as well as the investment cost,
a workable methodology for choosing optimal locations of FCSs in distribution networks
was proposed [4]. The methodology mitigated the managed network’s active power loss
from 1015.38 kW to 830.58 kW. One other option for reducing the impact of these stations is
to integrate photovoltaic systems. A bi-level optimization framework for improving the
performance of distribution and transmission networks was developed in [5]. In order
to minimize power purchase costs and maximize the penetration of renewable sources
and EV charging stations, the approach optimized the operations of both renewable and
nonrenewable sources in the presence of EV charging stations. Using a clustering-based
heuristic, the best locations for EV charging stations throughout the French national net-
work were found, resulting in an optimized trip time for lengthy trips [6]. The deployment
of PV-powered EV fast charging stations and energy storage systems in distribution and
transportation networks was optimized by the authors of [7] using particle swarm op-
timization (PSO) and a hybrid fuzzy–satisfaction technique. They concluded that the
installation of both solar PVs and an energy storage system with optimal locations for FCSs
improved the network’s mean voltage deviation reliability index by 18.79% compared to
the base scenario. To find and seize EV charging stations in a transportation network, a
bi-level mixed-integral programming approach has been created [8]. This framework’s
primary goal is to decrease the overall traffic time and investment costs. The optimal
locations and capacities of distributed generation (DG) and charging stations for electric
vehicles (EVs) in balanced radial distribution networks have been assessed using a bat
optimization technique [9]. The optimal locations and sizes for renewable energy sources
and EV fast charging stations in balanced distribution networks are determined using a
red kite optimizer, as described in [10]. The presented approach succeeded in mitigating
power losses for 33-bus and 69-bus networks by 58.24% and 68.39%, respectively. The
goal was to lessen the network’s daily power losses and voltage violations. In a coupled
electrical power distribution and transportation network, the authors of [11] presented a
multi-objective PSO with a constriction factor to determine the best locations and sizes of
fast charging stations along intra-city corridors. To improve EV drivers’ charging decisions,
a multi-agent actor–critic algorithm combined with embedded graph attention networks
has been presented [12]. This algorithm used graph attention networks to take advantage
of the interfaces between agents’ observations. A thorough analysis of the architecture
and concepts for EV fast charging stations, along with their practical applications, was
carried out in [13]. Furthermore, a number of optimization techniques used in the location
and acquisition of FCSs have been considered. Using real-world data, the authors of [14]
presented a customized sub-gradient method-based data-driven framework to evaluate
the profitability of FCSs. Under ideal circumstances, the savings could reach 34.0%, and
when user behavior and battery degradation were taken into consideration, the savings
could reach 22.6%. A grey wolf optimizer (GWO) was used to arrange the grid charging of
EVS ecosystems in order to maximize profits while adhering to operating constraints [15].
Extremely quick charging stations and energy storage systems for EVs were distributed
throughout a grid in [16] using a Markov decision process solved via a deep deterministic
policy gradient with constraints. To assess the best locations for DGs and EV charging
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stations within the distribution network that minimize active power loss while enhancing
the voltage profile and voltage stability index, a methodology that incorporates a transient
search optimizer has been presented [17]. A demand and supply analysis was used to
determine the best locations for EV infrastructure on a highway network, considering the
psychological aspects of driving [18]. With the help of dynamic real data, the authors
of [19] integrated FCSs into Beijing’s third ring in order to optimize the power grid, traffic
conditions, vehicles, and operators. In order to assess optimal locations for EV charging
stations within distribution networks and to manage the charge/discharge schedules of
these stations, a multi-objective PSO utilizing a Monte Carlo simulation was presented [20].
A reduction in power loss, the minimization of power purchased from the network, the
mitigation of voltage deviation, and enhanced reliability were the primary goals. A bi-level
programming technique was presented in [21] to achieve the best possible coordination
between DGs and EV charging stations placed in distribution networks, maximizing profit
for the power supply company. PSO was used by the authors of [22] to integrate EVs into
the National University of Sciences and Technology’s actual distribution network in Pak-
istan while minimizing transformer loading, installation costs, and network losses. The EV
charging infrastructure cost was reduced by 75% and the network losses were mitigated by
82% using the presented approach. The locations of EV charging stations in a distribution
network overlayed with a traffic network have been optimized using differential evolution
and Harris hawks optimizers to minimize energy loss, voltage violation, and land cost [23].
Using a surrogate assisted optimizer, the issue of integrating EV fast charging stations into
a real flexible bus service in Luxembourg was resolved in [24]. Numerous methods for
incorporating EV charging stations into distribution networks and analyzing how EVs
affect cost, environmental factors, and network operation have been examined [25]. In order
to incorporate electric vehicle charging stations into the Guwahati distribution network
in India, a hybrid methodology combining a chicken swarm optimizer and a teaching–
learning-based optimizer has been developed [26]. The goals were to reduce operating
costs, maximize reliability, improve voltage stability, and minimize power loss. In order to
minimize travel time, the locations of charging stations along a road network were chosen
using a multi-commodity flow problem approach [27]. To mitigate the effect of fast charging
on the grid, an integrated solar PV generation system and charging station were included
in an energy management strategy via optimal power flow [28]. Using a multi-objective
GWO and a fuzzy satisfaction-based decision-making approach, the distribution network’s
power loss and voltage violation were minimized, while the amount of EV flow in the
transportation network was maximized [29]. This is how the EV fast charging stations
were distributed in relation to the transportation system. An improved PSO and Voronoi
diagrams were used to determine the best locations and sizes for FCSs within a distribution
network [30]. In [31], the optimal locations and capacities of fast charging stations for
plug-in electric vehicles were determined by a mixed integer linear programming model
that took traffic effects into account. GAMS software was employed by the authors to
resolve the issue. A hybrid strategy that integrates EV charging stations and capacitors
into a distribution network using a quantum neural network and a Eurasian oystercatcher
optimizer is presented in [32]. The goal was to increase network dependability while
reducing active power loss. A genetic algorithm was used in [33] to determine the locations
of EV charging stations in order to minimize the operating costs of a distribution network
installed in Ireland. To optimize the placement of EV charging stations and capacitors
in a grid so as to minimize overall loss, a refined version of the dragonfly optimizer was
developed [34]. In order to reduce the costs associated with system construction, operation,
maintenance, travel, and charging station power loss, the authors of [35] employed binary
PSO to determine the capacity and location of FCSs in distribution networks. To maximize
long-distance trip completions, charging stations were strategically placed in [36] using
data from long-distance travel in the United States. In order to reduce network energy loss,
voltage fluctuations, and costs associated with investment, operation, and maintenance,
solar DGs, fast charging stations, and battery storage systems have been integrated into the
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distribution network in locations chosen by a Harris hawks optimizer and GWO [37]. A
survey of various strategies for strategically placing electric vehicle charging stations can
be found in [38]. Voltage restoration in a real railway network considering the behavior of
the charging station installed in it was investigated in [39].

The slow convergence rate of some approaches used and the decrease in local optimal
solutions account for the accuracy deficit of many reported methods.

The following contributions were made by the authors in order to address all of these
shortcomings in the methods that were reported:

• A novel approach that incorporates the effective and straightforward Red-Tailed Hawk
Algorithm (RTH) is proposed to identify optimal locations and capacities for FCSs in a
real transmission network containing a PV plant.

• PV generation and demand profiles are developed using a principal component
analysis and k-means clustering and estimated probabilistically based on a Monte
Carlo simulation.

• The objective of a fitness function that is taken into consideration is to lower the
network voltage deviation.

• A comparison is made with the KOA, GRO, GWO, and SWO.
• The outcomes attained validate the suggested approach’s competency.

The outline of the paper is as follows: Section 2 describes the electric vehicle model.
The suggested optimization formula is addressed in Section 3. Section 4 presents the
Red-Tailed Hawk Algorithm, and Section 5 provides the suggested approach that incorpo-
rates the RTH. Section 6 explains the probabilistic load modeling, Section 7 provides an
explanation of the results and discussions, and Section 8 provides conclusions.

2. Electric Vehicle Model

Three factors need to be considered in order to model EVs: the anticipated daily
mileage, the energy used per mile, and the amount of time spent waiting in the station.
A lognormal distribution can be used to simulate the first one [40]; one can calculate the
probability density function for the lognormal distribution as

f (x) =
1√

2πσx
exp

(
− (ln(x)− µ)2

2σ2

)
, x > 0 (1)

where x is a randomly generated number with zero mean and one variance; σ and µ denote
parameters of scaling and location, computed as

σ =

√
ln
(

1 +
v

m2

)
, µ = ln

 m√
1 + v

m2

 (2)

where v and m stand for the mean and standard deviation, which are calculated using
historical data. The following is an expression for the anticipated daily mileage:

Md = e(µm+σm×
√
−2×lnc1×cos(2πc2)) (3)

where the lognormal probability distribution’s parameters are σm and µm; the random
variables c1 and c2, which are in the interval [0, 1], have a normal distribution. Using the
standard deviation (σmd) and mean (µmd) of the EV mileage statistical data, µm and σm can
be computed as

µm = ln

 µ2
md√

µ2
md + σ2

md

, σm =

√√√√ln

(
1 +

σ2
md

µ2
md

)
(4)
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The energy consumed per mile, which can be calculated as in [41], is the second crucial
parameter that needs to be considered when modeling an EV; it can be expressed as follows:

Em = α × Kb
EV (5)

where KEV denotes the energy supplied by the battery, and α and b are coefficients of the
EV model. When the battery is fully charged, the EV can reach its maximum mileage,
as follows:

MdMax =
BCap

Em
(6)

where BCap denotes the capacity of the battery. The following formula can be used to
calculate the charging demand:

Ed =

{
BCap Md ≥ MdMax

Md × Em Md < MdMax
(7)

The following formula can be used to determine the amount of time spent waiting in
the station using a Gaussian distribution [42]:

ta = µa + σax1, td = µd + σdx2 (8)

tdur = td − ta (9)

where the times of departure, arrival, and charging are indicated by td, ta, and tdur, respec-
tively, and σd and σa denote the standard deviations of the EV’s departure and arrival from
the station, while µd and µa are the corresponding means. The random variables x1 and x2
have zero mean and one variance.

The following formula can be used to determine the EV battery’s necessary state
of charge [42]:

SOCdesired = min

{(
SOCinit +

Ed
BCap

)
,

(
SOCinit +

tdur
BCap

.rch

)}
(10)

where SOCinit denotes the initial SOC of the battery, while rch is the rate of battery charging.

3. The Proposed Optimization Formula

Finding the optimal places and capacities for EV charging stations is approached as
an optimization problem. The fitness function under consideration minimizes network
voltage violations, and the constraints include generation boundaries, a supply and demand
balance, bus voltage boundaries, thermal limitations, and EV-specific restrictions.

3.1. Problem Fitness Function

The integration of EV charging stations into a grid results in increased generation
and an enhanced network bus voltage; therefore, mitigating the network’s daily voltage
fluctuation is considered the target in this work, and it can be expressed as follows:

Obj = Min∑24
t=1 ∑nb

i=1|1 − Vi,t| (11)

where the voltage at bus i during hour t is represented by Vi,t, and the number of network
buses is indicated by nb.

3.2. Problem Constraints

Generation boundaries, the supply and demand balance, bus voltage boundaries,
thermal limitations, and EV-specific restrictions are the problem constraints considered in
this work, and they are explained below.
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A. Generation boundaries:

The system under consideration in this work is the real Aljouf Transmission Network
located in northern Saudi Arabia. It contains a 300 MW photovoltaic (PV) plant in Sakaka
which is a renewable energy plant. The production of such a plant should adhere to the
following regulations:

PRen,min ≤ PRen,t ≤ PRen,max (12)

where PRen,t denotes the power generated by the PV plant at hour t, where the plant’s
minimum and maximum generations are denoted, respectively, by PRen,min and PRen,max.

B. Supply and demand balance:

A load flow analysis provides this constraint: the power supplied at each bus must
equal the combined demand power and the branch power losses connected to it. These can
be expressed as follows:

PGi,t − PDi,t = Pchi,t + |Vi,t|∑nb
j=1

∣∣Yij
∣∣∣∣Vj,t

∣∣cos
(
δi,t − δj,t − θij

)
(13)

QGi,t − QDi,t = |Vi,t|∑nb
j=1

∣∣Yij
∣∣∣∣Vj,t

∣∣sin
(
δi,t − δj,t − θij

)
(14)

where PGi,t and PDi,t represent the generated and demanded active powers at bus i during
hour t, respectively, Pchi,t denotes the power charged to the EV at bus i during hour t, QGi,t
and Qdi,t represent the generated and demanded reactive powers at bus i during hour t,
respectively, and Yij and θij denote the admittance magnitude of the branch between buses
i and j and the angle between them, respectively.

C. Bus voltage boundaries:

The bus voltage should be maintained within its typical ranges while integrating the
charging station as follows:

Vmin ≤ Vi,t ≤ Vmax (15)

δmin ≤ δi,t ≤ δmax (16)

where the terms min and max represent the respective values.

D. Thermal limitations:

When the EV charging station is integrated into the grid, the power flow through the
transmission lines increases, raising the temperature of the lines. However, the power flow
cannot go beyond the permitted range, which is expressed as follows:

|Si,t| ≤ |Si,max|, i = 1, 2, . . . , nb (17)

where Si,t represents the ith line flow during hour t and Si,max indicates the highest flow
that is permitted in line i.

E. EV-specific restrictions:

The EV’s power needs should fall between the following min and max values:

PEV,min ≤ PEVi,t ≤ PEV,max (18)

where PEVi,t indicates the EV’s output power at bus i during hour t and the minimum and
maximum power values needed by the EV are denoted by PEV,min and PEV,max, respectively.

4. Red-Tailed Hawk Algorithm (RTH)

A red-tailed hawk hunting was the source of inspiration for Ferahtia et al.’s [43] recent
nature-inspired metaheuristic optimization approach, known as the RTH. The process of
hunting involves three steps: high soaring, low soaring, and stooping and swooping. In the
first phase, the red-tailed hawk searches the search space to pinpoint the location of prey.
To select an ideal hunting position, the red-tailed hawk moves inside the prey’s chosen area
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in the low-soaring phase. Finally, the red-tailed hawk swings and strikes its prey in the
last phase.

A. Phase 1—high soaring:

When searching for the best place to find food, the red-tailed hawk will soar high into
the sky; this can be expressed as follows:

X(t) = Xbest +
(

Xmean − X(t−1)
)
× Levy(d)× TF(t) (19)

where X(t) denotes the position of the red-tailed hawk during tth iteration, Xbest indicates
the obtained best position, Xmean represents the mean of the positions, Levy is the flight
distribution function of levy, d denotes the problem dimension, and TF(t) is the function of
the transition factor. The Levy can be computed as follows:

Levy(d) = s
µσ

|v|β−1 (20)

where s represents a constant with a value of 0.01, β denotes a constant with a value of 1.5,
µ and v are random values in the range [0, 1], and σ is a parameter calculated as

σ =

 Γ(1 + β)× sin
(

πβ
2

)
Γ
(

1 + β
2

)
× β × 2(1−

β
2 )

 (21)

where Γ indicates the gamma function. The value of TF(t) can be calculated as

TF(t) = 1 + sin
(

2.5 +
t

Tmax

)
(22)

where t is the current iteration and Tmax denotes the maximum iteration.

B. Phase 2—low soaring:

In this stage, the hawk flies in a spiral pattern much closer to the ground, encircling
the prey; this can be modeled as

X(t) = Xbest +
(

x(t) + y(t)
)
× stepsize(t) (23)

stepsize(t) = X(t) − Xmean (24)

where x(t) and y(t) are the coordinates of direction, and they can be expressed as follows:

{
x(t) = R(t) × sin(θ(t))
y(t) = R(t) × cos(θ(t))

R(t) = R(0) ×
(

r − t
Tmax

)
× rand

θ(t) = A ×
(

1 − t
Tmax

)
× rand


x(t) = x(t)

max|x(t)|
y(t) = y(t)

max|y(t)|
(25)

where R(0) is the initial value of the radius, A is the angle gain, rand denotes a random
number in the range [0, 1], and r indicates the control gain.

C. Phase 3—stooping and swooping:

During this phase, the hawk abruptly lowers its body and strikes the prey while it is
in an optimal position for low-altitude flying. It can be modeled as follows:

X(t) = α(t) × Xbest + x(t) × stepsize1
(t) + y(t) × stepsize2

(t) (26)

stepsize1
(t) = X(t) − TF(t) × Xmean (27)



World Electr. Veh. J. 2024, 15, 172 8 of 21

stepsize2
(t) = G(t) × X

(t)
− TF(t) × Xbest (28)

where α(t) and G(t) indicate the factors of acceleration and gravity, respectively; they can
be calculated as

α(t) = sin2
(

2.5 − t
Tmax

)
(29)

G(t) = 2 ×
(

1 − t
Tmax

)
(30)

where α is the hawk’s acceleration, which rises during the iterative process and aids in
accelerating the algorithm’s convergence. Additionally, when the hawk becomes close
to the prey, G, which represents gravity, decreases as part of the algorithm to lessen the
diversity of exploitation. These merits help the algorithm avoid local solutions. An RTH
flowchart is shown in Figure 1.
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5. The Suggested Approach Incorporated the RTH

The RTH-based methodology suggested as a solution and used to determine the
optimal locations and sizes of FCSs installed in the real Aljouf Transmission Network
located in northern Saudi Arabia is explained in this section. The primary goal is to
minimize voltage violations in order to improve the network’s voltage profile, which
will benefit the network operator. The RTH’s memory is divided into two subsections:
the first one is devoted to the locations of FCSs and is assigned integer numbers, while
the second one is devoted to their capacities. The updating procedures described in
Equations (19), (23) and (26) are modified so that the locations of the FCSs are represented
by an integer number in the first part of each likely solution. As previously mentioned,
the RTH’s high convergence rate is complemented by its ability to eschew local solutions.
The authors were inspired to use it in order to solve the problem at hand using all of these
features. In Algorithm 1, the pseudocode for the suggested methodology is provided.

Algorithm 1. Pseudocode for the suggested methodology

1: Input the RTH parameters (Npop, Tmax, d, lb, and ub).
2: Enter the network under investigation’s line and load data.
3: Analyze the load flow for the original network.
4: Create the initial population within search space (lb and ub).
5: for i = 1: Npop
6: Install the solution Xi in the network
7: Analyze the load flow for the network with installed Xi
8: Calculate the initial evaluation function (F(Xi)).
9: end for
10: While t > Tmax
11: for i = 1:Npop
12: Calculate the Levy flight and transition factor using Equations (20) and (21).
13: Compute the agents’ new positions using Equation (19).
14: Determine the coordination of direction using Equation (25).
15: Compute the agents’ new positions using Equation (23).
16: Calculate the factors of acceleration and gravity using Equations (29) and (30).
17: Compute the agents’ new positions using Equation (26).
18: Calculate the initial evaluation function

(
Ft(Xi)

)
.

19: if Ft(Xi) < Ft−1(Xi)
20: Update the locations and sizes of FCSs.
21: end if
22: i = i + 1
23: end for
24: t = t + 1
25: end while
26: Print the optimal solution.

6. Probabilistic Load Modeling

A load represents the electric power required by a customer, measured in either
kilowatts (kW) or kilovolt-amperes (kVA). To comprehend how and when this power is
used, a load profile is essential [44]. The load profile offers insights into electricity usage
over a specific duration, playing a vital role in constructing a time series of load patterns.
These patterns can be explored either in the time domain, as depicted in [45], or in the
spectral domain, as outlined in [46]. As energy consumption data inherently exhibit a
time series nature, the literature commonly employs the time domain when investigating
load characteristics. Electrical loads are typically modeled in power system studies using
either deterministic or probabilistic models [47]. In deterministic modeling, power system
loads are represented as constant power sinks [48]. This constant power can be derived
one of the three ways: Firstly, it may involve average daily, monthly, or seasonal load
demand curves derived from the historical data of the utility serving the area. Secondly, it
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could represent a worst-case scenario, such as minimal load demand while a distributed
energy resource generates its maximum output. Thirdly, it may comprise constant values
reflecting various loading conditions, encompassing minimum, average, and maximum
loading. Deterministic models solely analyze predetermined scenarios. Therefore, these
models are unsuitable for evaluating the long-term behavior or modeling the random
nature of loads. This random pattern significantly affects power network performance. In
contrast, probabilistic modeling characterizes electrical loads as random variables adhering
to predefined probability density functions (pdfs) [48].

6.1. The Proposed Approach

To initiate the proposed load modeling approach, 24 data points illustrating the loading
conditions on a specific day are assembled into a data segment. A principal component
analysis (PCA) is then employed to evaluate similarities among the resulting 365 data
segments. Subsequently, clustering algorithms are utilized to group together segments
that share similarities, forming corresponding clusters. A representative segment is chosen
for each cluster, and its likelihood of occurrence is calculated. The various steps of the
proposed algorithm are elucidated in the subsequent sections.

6.2. Data Source and Description

A. Load profile:

The load profile utilized in this research is obtained from the IEEE-RTS system, as
described in [49]. This system furnishes information on the hourly peak load, presented as
a percentage of the annual peak load. The supplied data are utilized to generate the load
percentage matrix, denoted as P, with dimensions of 365 days by 24 data points per day.
This matrix, P, serves as a crucial component utilized throughout the subsequent analysis.

B. Solar irradiance:

The performance of the PV panel is predominantly influenced by the irradiance it
receives from the sun, directly affecting both power output and efficiency. In this research,
real-time data from the Sakaka PV plant, spanning an entire year with 365 days and 24 data
points per day, is leveraged. This dataset contains information on the power output gener-
ated by the Sakaka plant, corresponding to different levels of irradiance received by the
modules. This research employs these data to create a probability-based irradiance profile,
providing insights into the likelihood of various irradiance levels occurring throughout the
specified time period.

C. PV temperature:

In this research, a real-time temperature dataset spanning a full year, with records for
each of the 365 days and 24 h per day, is incorporated. This dataset encapsulates tempera-
ture variations over the entire year, providing a detailed account of hourly temperature
fluctuations. This dataset is employed to create a probability-based temperature profile.
This involves analyzing the collected temperature data to assess the likelihood of different
temperature levels occurring at various times throughout the year.

6.3. Preliminary Data Processing

In this phase, the annual dataset undergoes processing through a PCA to extract the
essential features for each day. The PCA serves as a tool for feature extraction, employed to
discern pertinent information within a complex dataset. Its capability lies in reducing the
dimensionality of intricate datasets while preserving inherent variation, thereby revealing
hidden structures and eliminating noise [50]. This reduction is accomplished through an
orthogonal linear transformation that redefines the correlated dataset in a set of new and
more meaningful bases. This ensures that the components of the transformed data are
uncorrelated. The initial coordinate in this new system aligns with the highest variance
in the original data and is designated as the first principal component. The subsequent
coordinate, orthogonal to the first, lies in the direction of the second-highest variation, and
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so forth. The choice of the number of selected principal components is made to ensure the
retention of 90% of the variance within the dataset. The results indicate that preserving
the required variance is achievable by retaining only the first principal component, as
illustrated in Figure 2. The results presented in Figure 2 demonstrate that the first main
component for each profile encompasses more than 90% of the minimum percentage
variance. This implies that rather than employing a representation that involves 365 days
with 24 h each, the dataset can be efficiently depicted by the first principal component,
capturing over 90% of the variability in each profile. Consequently, the representation of
each day in every profile can be characterized by a singular hour rather than the original
24 h. By leveraging the PCA, the total number of data objects undergoes a substantial
reduction. Originally, with 365 days and 24 data points per day, the dataset comprised
8760 objects. However, through the application of the PCA, this is streamlined to a mere
365 objects (365 days multiplied by 1 data point per day). This reduction results in an
impressive 576-fold decrease in computational requirements. In essence, the application
of the PCA not only simplifies the dataset but also significantly enhances computational
efficiency, making the analysis more manageable and resource-effective [48].
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6.4. Data Clustering Stage

The primary objective of employing the k-means algorithm is to partition the data into
k distinct groups while minimizing the within-group distance. To thoroughly explore the
dataset and mitigate the impact of the initial point selection on the clustering outcome, the
k-means procedure is iteratively repeated multiple times, specifically 100 times in this case,
with diverse initial points (a pool of 50 points for each iteration). This iterative process
significantly contributes to enhancing the robustness of the clustering outcomes. The
assessment of the resulting clusters involves the use of both external and internal validity
indices, which are associated with supervised and unsupervised learning, respectively [51].
Two pertinent unsupervised learning indices are the Average Silhouette Coefficient (ASC)
and the Sum of Squares Error (SSE), as described in Equations (31) and (32). These metrics
offer insights into the compactness of the clusters and the overall quality of the partitioning,
respectively. Additionally, an external validity index known as the Average Power Time
Mismatch (APTM) [52], introduced in Equation (33), is used. This index assesses the
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effectiveness of clustering concerning external criteria, providing a measure of how well
clusters align with predefined attributes or classifications.

ξι =
−(φι − ϕι)

max{φι, ϕι}
(31)

SSE = ∑κ

j=1 ∑υ∈σj
dist2(cj, υ

)
(32)

APTM =
1

24 × τ

(
∑24

ι=1 ∑365
d=1

∣∣∣∣1 − γ(ι, d)
λ(ι, d)

∣∣∣∣) (33)

In the given context, ξι denotes the silhouette coefficient for the ιth data point. Within
the formula, φι signifies the average distance from the ιth point to all other points within
the same cluster, while ϕι represents the average distance from the ιth point to all points in
clusters other than its own. The user-defined parameter κ indicates the number of clusters,
and the function dist pertains to the within-group Euclidean distance between the point υ
in the jth cluster σt and its centroid ct. Additionally, τ corresponds to the total number of
days in a year.

6.5. Representative Selection Stage

The ASC, SSE, and APTM indices can be assigned weights, as indicated in Equation (34),
to assess proximity and facilitate the selection of the optimal number of clusters [52].

WEQ =

(
1 − β

2

)
· ASC +

(
1 − β

2

)
· SSE + β · APTM (34)

where γ(ι, d) represents a hypothetical load profile, while λ(ι, d) refers to the actual load
profile for the ιth hour and dth day. The variable β serves as a scaling factor that increments
by 0.1 within a range from 0 to 1. In the representation of the load profile spanning τ days
(i.e., 365 days), a specific number of clusters are employed. Each cluster is characterized
by its centroid, which serves as a representative point for that cluster. When the centroid
corresponds to an actual hour in the original data, the daily profile associated with that
hour is used to represent the entire cluster. However, if the centroid does not align with
an actual hour in the original dataset, the nearest actual hour is chosen to represent the
cluster. Consequently, the daily profile linked to the selected nearest hour is utilized
as the representative profile for that particular cluster. This approach ensures that each
cluster is effectively represented by a meaningful and interpretable daily profile, whether
derived directly from a centroid or approximated through the nearest available hour in the
original data.

6.6. Clustering Results

The k-means algorithm is employed to group similar days within each profile. This
process is iteratively repeated a substantial number of times (250 times) with varied initial
points (50 points each time). This repetition is aims to minimize the impact of the initial
point selection on the resulting groups. The evaluation of clusters involves both supervised
and unsupervised measures, as expressed in Equations (31)–(33). Cluster evaluation results
for PV irradiance, PV temperature, and load profile are depicted in Figures 3a, 4a and 5a.
To determine the optimal number of clusters for each profile, Equation (34) is utilized.
Following a cumulative total of (250 × 11) iterations, each initiated with 50 different
starting points for each profile, the outcomes reveal that the optimal number of clusters
for PV irradiance, PV temperature, and load profile are 22 clusters (representing 22 days),
13 clusters (representing 13 days), and 12 clusters (representing 12 days), respectively, as
illustrated in Figures 3b, 4b and 5b. Consequently, these identified clusters are proposed as
the most suitable groupings for the respective profiles based on this research.
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6.7. Profiles in Monte Carlo Simulation

The representative daily profiles, established through the previous clustering proce-
dure as 22, 13, and 12 clusters, are utilized in each iteration of the Monte Carlo simulation.
The selection of these profiles is based on their cumulative probabilities, as depicted on
the right Y-axes of Figure 3b, 4Figures 4b and 5b. Considering that each representative
daily load profile is presented in terms of the hourly kW demand as a percentage, a scaling
process is applied using the substation peak demand. This scaling operation involves
multiplying the percentage hourly kW values of the representative profile by the substation
peak load. Subsequently, the scaled profiles are assigned to their corresponding PQ loads,
as shown in Figure 6. In contrast, PV irradiance and temperature are expressed using their
actual values, as emphasized in Figure 6.
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7. Results and Discussion

This study examines the real Aljouf region grid’s RTH-based approach for installing
FCSs; in this network, two synchronous generators, Hail and Arar, are located at buses
1 and 14, respectively, while a standby generator is located at bus 16. The network has
twenty-two branches, four transformers, and eight constant PQ loads and nominal base
values of 132 kV for voltage and 100 MVA for the apparent power. In the base case, there is a
total load of 149.34 MVAR and 571.2 MW. The structure of the Aljouf Transmission Network
is shown in Figure 7. Three fast charging stations with a power factor of 0.9 are integrated
using the suggested RTH, and the obtained results are contrasted with those of alternative
approaches such as the Kepler optimization algorithm (KOA) [53], gold rush optimizer
(GRO) [54], grey wolf optimizer (GWO) [55], and spider wasp optimizer (SWO) [56]. For
every approach under consideration, the population size, maximum number of iterations,
and number of runs are denoted as 20, 100, and 30, respectively. The authors selected these
optimizers as they are nature-inspired approaches like the suggested RTH.

The daily active and reactive generated powers from the PV Sakaka plant are shown
in Figure 8. The generation occurred from 7:00 AM to 8:30 PM. Also, the daily profile of the
considered demand on the grid is shown in Figure 9, while the daily profiles of active and
reactive power generated from the grid are shown in Figure 10.
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In order to minimize grid voltage violations, the Aljouf region grid integrates FCSs
through the RTH and other methods. Table 1 tabulates the optimal locations and sizes de-
termined for the FCSs that are being considered. The daily voltage deviation of the original
network 0.4510 pu. The results contain a fitness function known as the voltage deviation,
and it is calculated using Equation (11); moreover, the bus with the maximum voltage and
the other with the minimum voltage are tabulated in Table 1 as Max. voltage and Min.
voltage, respectively. In the analysis, three FCSs are considered; the maximum power of
each one is 25 MW, and it is possible to locate them in all buses except for the slack one (the
Hail plant). These limits are identified, and the proposed RTH is responsible for obtaining
the optimal active powers, power factors, and reactive powers of the installed FCSs.

Installing three FCSs with capacities of 25 MW, 19.1039 MW, and 10.0272 MW on buses
15, 2, and 13 was advised by the suggested RTH approach. The corresponding reactive
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power values of the installed FCSs are 12.1081 Mvar, 9.25242 Mvar, and 4.85639 Mvar,
respectively. In this case, buses 10 and 6 have the minimum and maximum voltages with
values of 0.9902 pu and 1.0674 pu, respectively. This integration yields the lowest network
voltage deviation, measuring 0.134346 pu. It is clear that the suggested RTH recommended
FCSs with fractional powers; in practice, these values can be rounded to the nearest integer
values. By installing 10.3856 MW, 0.4827 MW, and 5.4749 MW on buses 2, 2, and 12,
respectively, the GRO comes next and achieves a fitness value of 0.135646 pu. Between
bus 13 and bus 7, the minimum and maximum voltages obtained from this integration are
1.017 pu and 1.0466 pu, respectively. Conversely, the KOA is the worst method since it
installed 20.5428 MW, 6.71063 MW, and 5.4749 MW FCSs at buses 10, 15, and 15, respectively,
to achieve a voltage deviation of 0.148358 pu. In this instance, the minimum and maximum
voltages for buses 5 and 14 are 0.9706 pu and 1.0380 pu, respectively. Moreover, the GWO
and SWO achieved network voltage deviations of 0.13725 pu and 0.147754 pu, respectively.

In comparison with the others, the suggested RTH demonstrated its effectiveness in
obtaining the minimum network voltage deviation of the network by providing the accurate
locations and capacities of the integrated FCSs. Additionally, the performance of the
suggested RTH is evaluated using a few computed statistical parameters shown in Table 2.

Table 1. Optimal FCS locations and sizes under consideration for integration into the Aljouf Trans-
mission Network.

RTH KOA GRO GWO SWO

First fast
charging
station

P (MW) 25 20.5428 10.3856 16.2059 3.4559

Q (Mvar) 12.1081 9.94933 5.03 7.8489 1.67377

Place 15 10 2 15 15

Second fast
charging
station

P (MW) 19.1039 6.71063 0.4827 3.06014 14.7409

Q (Mvar) 9.25242 3.25011 0.2338 1.4821 7.13935

Place 2 15 2 15 10

Third fast
charging
station

P (MW) 10.0272 25 5.4749 10.7758 21.2383

Q (Mvar) 4.85639 12.1081 2.6516 5.219 10.2862

Place 13 15 12 2 12

Voltage deviation (pu) 0.134346 0.148358 0.135646 0.13725 0.147754

Max. voltage (pu)/place 1.0674/(6) 1.0380/(14) 1.0466/(7) 1.0380/(14) 1.0380/(14)

Min. voltage (pu)/place 0.9902/(10) 0.9706/(5) 1.0170/(13) 1.0106/(9) 1.0123/(10)

It is evident that the RTH performed better than any of the others, particularly with
respect to variance and standard deviation (Std). This supports the suggested approach’s
level of performance, which is preferred over the alternatives. Figure 11 shows the voltage
violation in relation to the number of iterations for each considered algorithm.

Table 2. Statistical parameters of all approaches under consideration.

Best Worst Average Variance Std

RTH 0.1322 0.1616 0.1396 0.0006 0.0049
KOA 0.1484 0.2961 0.1934 0.0325 0.0368
GRO 0.1356 0.1551 0.1449 0.0006 0.0050
GWO 0.1373 0.1846 0.1455 0.0018 0.0086
SWO 0.1478 0.3546 0.2405 0.0912 0.0616
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Given that the RTH reached the optimal solution after 50 iterations and the GRO
reached the optimal solution after roughly 68 iterations; it is evident that the RTH has a
high convergence speed. Conversely, SWO arrived at local solution early on, following
ten iterations. Figure 12 displays the network’s daily mean voltage profile both before
and after the FCSs were integrated using various techniques. The allowable voltage limits
for breaches are within +/− 5 to 10% of the rated value (1 pu), according to IEEE Std
1250–2018 [57]. As a result, the values of the maximum and lowest permitted voltages are
1.1 pu and 0.9 pu, respectively. The voltage pattern of the grid with FCSs whose sizes and
locations were assessed using the suggested RTH is within the acceptable limits, as seen
in the curves. The curves are the same at buses 1–3 as they are in the same region with a
voltage of 380 kV; the plots on tires 13–14 are the also same as they have generators that
may have a greater effect than the installed FCSs.
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8. Conclusions

This study suggests a novel approach to address the issue of integrating fast charging
stations (FCSs) into the Aljouf Transmission Grid. The approach incorporates a recent meta-
heuristic approach: the Red-Tailed Hawk Algorithm (RTH). The recommended method
found the ideal FCS locations and capacities to reduce network voltage violation over a 24 h
period. The RTH’s advantages that allow it to solve the problem under study are its high
rate of convergence and ability to forego local solutions. In addition to two conventional
generating plants and a standby generator, the Aljouf region’ grid is analyzed taking into
consideration the 300 MW Sakaka PV plant. Other algorithms, the Kepler optimization
algorithm (KOA), gold rush optimizer (GRO), grey wolf optimizer (GWO), and spider
wasp optimizer (SWO), are compared with the proposed method. The k-means approach is
utilized to prepare each dataset by reducing its complexity through the application of a
PCA. Using the k-means clustering algorithm, each dataset is divided into k unique clusters
which are then assessed using both internal and external validity indices. To choose the
ideal number of clusters, the values of these indices are weighted. Additionally, each data
set’s daily profile is determined in a probabilistic manner by the application of a Monte
Carlo simulation (MCS).

The following findings are obtained:

• By attaining the lowest fitness value of 0.134346, the RTH was able to reduce the
network voltage deviation by 29.79% from its initial value.

• With a 29.66% reduction in network voltage violation compared to the original network,
the GRO ranked second in terms of mitigation.

• With a 0.148358 pu and a 28.38% reduction in the new fitness value over the initial one,
the KOA achieved the lowest rank.

The results validated the competency of the proposed approach in integrating FCSs
into an actual transmission grid by determining the optimal locations and sizes for them
while minimizing voltage variations.
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