| o= 12 TP UPRPTUPRROTIN 2-5

ol ol Y= PP 2-7

(ol ol o o RS SSR 2-8

(ol ulh oy o ST SPR TP PRSPPI 2-10
1100 K it Rl NPT PRSP 2-11
111G RO UP RPN 2-14
111 B R o ol O TR 2-16
111 B R ot o) F= PRSP 2-17
By 01 50 L SRS 2-20
na Yoo ks I = SRR 2-24
R Y o I o L o TR 2-26
na Y s 5 o PSPPSRSO 2-28
na Y] 1116 L oA TR 2-30
mal =Y oTe) 1) o JiT'a RSO RTRRPRIN 2-33
i % I o 1= SRR SPRTURRUPRPRPN 2-34
nal)« SRR RTRRTOPRION 2-37
TWS tuteeeureeesueeeeaseeeaaseeeaaseee e beeeabee e e ae e e e Re e e e R e e e aaRe e e e Re e e nane e e enreeennree e nnee e nreenas 2-38
ST o1= 11 s 15's L U RRRSR 2-40
S LB CE titti ittt nn e nnee s 2-41
SR TSP OPRPTR PR 2-44
KOVAD tervreeereressseesaiseesssseessseeesseesssessssseesassessassessassessnseeesaseeesnseessnssessnsesans 2-46
KOVAD LS wteeeiueieriureeeiteeeaiteeeateeesteeeasreeaaseeeaaseeeaaseeesneeeaseeeanseesanreesaneeesnneas 2-47
b e} Va 11 SN TRRTOPRPOPRRPPRN 2-48
KOV SIL 1ttt r e e ne e re e 2-49
KOV SITS ittt n e ear e e ne e eneeas 2-50
KOV SO tuveeeerneessueessaseesaaseesaseessseessasessasseesasseesasseesaseeesasseesseeesnseeesneessnseeans 2-51
KOV SIPLS tteeerrrererseeessseesssseesssessssesasssesasssesasseessnsesssnseessssesssssesssssessnsesssenes 2-52

Genetic Algorithm Toolbox User’s Guide

2 Reference

This Section contains detailed descriptions of all of the functions in the Genetic
Algorithm Toolbox. It begins with alist of functions grouped by subject area and
continues with Reference entries in alphabetical order. Information about
individual functionsis also available through the on-line He 1p facility.

Genetic Algorithm Toolbox User’s Guide 2-2

CREATING POPULATIONS

crtbase create a base vector
crtbp create arbitrary discrete random populations
crtrp create real-valued initial population
FITNESSASSIGNMENT
ranking generalised rank-based fitness assignment
scaling proportional fitness scaling
SELECTION FUNCTIONS
reins uniform random and fitness-based reinsertion
rws roulette wheel selection
select high-level selection routine
sus stochastic universal sampling
MUTATION OPERATORS
mut discrete mutation
mutate high-level mutation function
mutbga real-value mutation

Genetic Algorithm Toolbox User’s Guide

CROSSOVER OPERATORS
recdis discrete recombination
recint Intermediate recombination
reclin line recombination
recmut line recombination with mutation features
recombin high-level recombination operator
xovdp double-point crossover
xovdprs double-point reduced surrogate crossover
xovmp general multi-point crossover
xovsh shuffle crossover
xovshrs shuffle reduced surrogate crossover
XOovsp single-point crossover
XOVSprs single-point reduced surrogate crossover
SUBPOPULATION SUPPORT
migrate exchange individuals between subpopul ations
UTILITY FUNCTIONS
bs2rv binary string to real-value conversion
rep matrix replication

Genetic Algorithm Toolbox User’s Guide

2-4

bs2rv

Pur pose

binary string to real value conversion

Synopsis

Phen = bs2rv(Chrom, FieldD)

Description

Phen = bs2rv(Chrom, FieldD) decodes the binary representation of the
population, Chrom, into vectors of reals. The chromosomes are seen as
concatenated binary strings of given length, and decoded into real numbers over a
specified interval using either standard binary or Gray coding according to the
decoding matrix, FieldD. The resulting matrix, Phen, contains the
corresponding population phenotypes.

The use of Gray coding for binary chromosome representation is recommended as
the regular Hamming distance between quantization intervals reportedly makes the
genetic search less deceptive (see, for example, [1, 2]). An option to set the scaling
between quantization points can be used to select either linear or logarithmic
decoding to real values from binary strings. Logarithmic scaling is useful when the
range of decision variable is unknown at the outset as a wider range of parametric
values can be searched with fewer bits [3], thus reducing the memory and
computational requirements of the GA.

The matrix FieldD hasthe following structure:

len

1b

ub
code
scale
lbin
| ubin |

where the rows of the matrix are composed as follows:

len, arow vector containing the length of each substring in Chrom. Note that
sum (len) should equal length (Chrom).

1b and ub are row vectors containing the lower and upper bounds respectively for
each variable used.

code is a binary row vector indicating how each substring is decoded. Select
code (i) = o0 for standard binary and code (i) = 1 for Gray coding.

Genetic Algorithm Toolbox User’s Guide 2-5

scale is a hinary row vector indicating whether to use arithmetic and/or
logarithmic scaling for each substring. Select scale (i) = 0 for arithmetic
scaling and scale (i) = 1 for logarithmic scaling.

1bin and ubin are binary row vectors indicating whether or not to include each
bound in the representation range. Select {1|u}bin(i) = 0 to exclude
{1|u}b (i) from the representation rangeand {1 |u}bin (i) = 1 toinclude
{l]u}b (1) intherepresentation range.

Example

Consider the following binary population, created using the crtbp function,
representing a set of single decision variables in the range [-1, 10]. The code
extract shows how the function bs2rv may be used to convert the Gray code
binary representation to real-valued phenotypes using arithmetic scaling.

Chrom = crtbp(4,8) % create random chromosomes

Chrom =

R O O o
PR RP o
o O o -
P o orR
P oR R

FieldD = [8; -1; 10; 1; 0; 1; 11; % representation
Phen = bs2rv(Chrom,FieldD) % convert binary to real

Phen =
-0.7843
9.3961
1.0706
5.2980

Algorithm

bs2rv isimplemented as an m-file in the GA Toolbox. If logarithmic scaling is
used then the range must not include zero.

Reference
[1] R. B. Holstien, Artificial Genetic Adaptation in Computer Control Systems,

Ph.D. Thesis, Department of Computer and Communication Sciences, University
of Michigan, Ann Arbor, 1971.

[2] R. A. Caruana and J. D. Schaffer, “Representation and Hidden Bias: Gray vs.
Binary Coding”, Proc. 6! Int. Conf. Machine Learni ng, ppl53-161, 1988.

[3] W. E. Schmitendorgf, O. Shaw, R. Benson and S. Forrest, “Using Genetic
Algorithms for Controller Design: Simultaneous Stabilization and Eigenvalue
Placement in a Region”, Technical Report No. CS92-9, Dept. Computer Science,
College of Engineering, University of New Mexico, 1992.

Genetic Algorithm Toolbox User’s Guide 2-6

crtbase

Pur pose

Create a base vector.

Synopsis

BaseVec = crtbase (Lind, Base)

Description

crtbase produces a vector whose e ements correspond to the base of the loci of
a chromosome structure. This function can be used in conjunction with crtbp
when creating populations using representations in different bases.

BaseVec = crtbase(Lind, Base) createsavector of length Lind whose
individual elements are of base Base. If Lind is a vector, then
length (BaseVec) = sum(Lind). If Base is aso a vector of
length (Lind), then BaseVec is composed of groups of bases of length
determined by the elements of L.ind and base Base. This last option is useful
when describing populations with structure.

Example

To create a basevector for a population containing four elements in base 8 and five
elementsin base four:

BaseV = crtbase([4 5], [8 4])

BaseV =
8 8 8 8 4 4 4 4 4

See Also

crtbp, bs2rv

Genetic Algorithm Toolbox User’s Guide 2-7

crtbp

Pur pose
Create an initia population.

Synopsis

[Chrom, Lind, BaseV]

crtbp (Nind, Lind)

[Chrom, Lind, BaseV] crtbp (Nind, Lind, Base)

[Chrom, Lind, BaseV]

Description

The first step in a genetic algorithm is to create an initial population consisting of
random chromosomes. crtbp produces a matrix, Chrom, containing random
valuesin its elements.

crtbp (Nind, BaseV)

Chrom = crtbp(Nind, Lind) creates a random binary matrix of size
Nind X Lind, whereNind specifiesthe number of individualsin the population
and Lind the length of the individuals. Additionally, Chrom =
crtbp ([Nind, ©Lind]) can be used to specify the dimensions of the
chromosome matrix.

Chrom = crtbp(Nind, Lind, Base) producesachromosome matrix of
base Base. If Base isavector, then the value of the elements of Base specify the
base of the loci of the chromosomes. In this case, the second right hand side
argument may be omitted, Chrom = crtbp (Nind, BaseV).

[Chrom, Lind, BaseV] = crtbp(Nind, BaseV) aso returns the
length of the chromosome structure, 1.ind, and the base of the chromosomeloci in
the vector BaseV.

Example

To create arandom population of 6 individuals of length 8 where the first four loci
are base eight and the last five loci are base four:

BaseV = crtbase([4 5], [8 4])

Chrom = crtbp (6, BaseV)

or

Chrom = crtbp([6,8],[8 8 8 8 4 4 4 4 4])

Genetic Algorithm Toolbox User’s Guide 2-8

Chrom =

431120203

147521110

130100002

155720231

457701303

424033110
Algorithm

crtbp isan m-filein the GA Toolbox that usesthe MATLAB function rand.

See Also

crtbase, crtrp

Genetic Algorithm Toolbox User’s Guide

crtrp

Pur pose

Create areal-valued initial population

Synopsis

Chrom = crtrp(Nind, FieldDR)

Description

The first step in a genetic algorithm is to create an initial population consisting of
random individuals. crtrp produces a matrix, Chrom, containing uniformly
distributed random valuesin its el ements.

Chrom = crtrp(Nind, FiedDR) creates arandom rea-valued matrix of
Size Nind X Nvar, where Nind specifies the number of individuals in the
population and Nvar the number of variables of each individual. Nvar is derived
fromFieldDR withNvar = size (FieldDR, 2).

FieldDR (FieldDescriptionRealvalue) isamatrix of size 2 x Nvar and contains
the boundaries of each variable of an individual. The first row contains the lower
bounds, the second row the upper bounds.

FieldDR isused in other functions (mutation).

Example

To create arandom population of 6 individuals with 4 variables each:
Define boundaries on the variables,

FieldDR = [
-100 -50 -30 -20; % lower bound
100 50 30 20]; % upper bound

Create initial population
Chrom = crtrp(6, FieldDR)

Chrom =
40.23 -17.17 28.95 15.38
82.06 13.26 13.35 -9.09
52.43 25.64 15.20 -2.54
-47.50 49.10 9.09 10.65
-90.50 -13.46 -25.63 -0.89
47.21 -25.29 7.89 -10.48

See Also

mutbga, recdis, recint, reclin

Genetic Algorithm Toolbox User’s Guide 2-10

migrate

Pur pose
Migrate individuals between subpopulations

Synopsis

Chrom = migrate (Chrom, SUBPOP)

Chrom = migrate (Chrom, SUBPOP, MigOpt)

Chrom = migrate (Chrom, SUBPOP, MigOpt, ObjV)

[Chrom, ObjV] = migrate (Chrom, SUBPOP, MigOpt, Ob3jV)

Description

migrate performs migration of individuals between subpopulations in the
current population, Chrom, and returns the population after migration, Chrom.
Each row of Chrom corresponds to one individual. The number of subpopulations
is indicated by SUBPOP. The subpopulations in Chrom are ordered according to
the following scheme:

IndlsubPop1
IndzsubPopl

IndNSubPop1
IndlsubPop2

Ind2SubPop2
Chrom =

IndNSubPop2

IndlsubPopSUBPOP
Ind2subPOpSUBPOP

7IndN SubPop SUBPOP|

All subpopulations must have the same number of individuals.

MigOpt isan optional vector with a maximum of 3 parameters:

Genetic Algorithm Toolbox User’s Guide 2-11

MigOpt (1):
scalar containing the rate of migration of individuals between
subpopulationsin therange [0, 1]
If omitted or NaN, MigOpt (1) = 0.2 (20%) is assumed.
If the migration rate is greater than O at least one individual per
subpopulation will migrate.

MigOpt (2):
scalar specifying the migration selection method
0 - uniform migration
1 - fitness-based migration
If omitted or NaN, MigOpt (2) = 0 isassumed.

MigOpt (3):
scalar indicating the structure of the subpopulations for migration
0 - complete net structure
1 - neighbourhood structure
2 - ring structure
If omitted or NaN, MigOpt (3) = 0 isassumed

If MigOpt isomitted or NaN, then the default values are assumed.

ObjV isan optional column vector with as many rows as Chrom and contains the
corresponding objective values for all individuals in Chrom. For fitness-based
selection of individuals (MigOpt (2) = 1) ObjV is necessary. If ObjV isan
input and output parameter, the objective values are copied according to the
migration of the individuals. This saves the recomputation of the objective values
for the whole population.

Example

Chrom = migrate (Chrom, SUBPOP) chooses 20% of the individuals of
one subpopulation and replaces these individuals with uniformly chosen
individuals from all other subpopulations. This process is done for each
subpopulation. (Migopt = [0.2, 0, 01)

Chrom = migrate (Chrom, SUBPOP, [NaN 1 NaN], Ob3jV]) chooses
20% of the individuals of one subpopulation and replaces these individuals with a
selection of the fittest individuals (smaller ObjV) from all other subpopulations.
(net structure) This processis repeated for each subpopulation.

[Chrom,ObjV] = migrate (Chrom, SUBPOP, [0.3 1 2],0bjVv])
chooses 30% of the individuals of one subpopulation and replaces these
individuals with the fittest individuals (smaller ObjVv) from an adjacent
subpopulation in a unidirectional ring structure. This process is repeated for each
subpopulation. The first subpopulation receives its new individuals from the last
subpopulation (SUBPOP). ObjV is returned according to the migration of
individuals.

Genetic Algorithm Toolbox User’s Guide 2-12

The migration scheme employed:
subpopl-->subpop2-->subpop3-->...-->subpopSUBPOP--> subpopl

[Chrom,ObjV] = migrate (Chrom, SUBPOP, [NaN NaN 1],0bjVv])
chooses 20% of the individuals of one subpopulation and replaces these
individuals with uniformly chosen individuals from both adjacent subpopulations
in an one dimensional neighborhood structure. This process is repeated for each
subpopulation. The first subpopulation receives its new individuals from the last
(suBpOP) and second subpopulation the last subpopulation from the first and
SUBPOP-1 subpopulation. ObjV is returned according to the migration of
individuals.

The migration scheme employed:
SsubpopSUBPOP-->subpopl<-->subpop2<-->...<-->subpopSUBPOP<--subpopl

See Also

select, recombin, mutate, reins

Reference

[1] H. MUhlenbein, M. Schomisch and J. Born, “The Parallel Genetic Algorithm as
a Function Optimizer”, Parallel Computing, No. 17, pp.619-632, 1991.

[2] T. Starkweather, D. Whitley and K. Mathias, “Optimization using Distributed
Genetic Algorithms’, In Parallel Problems Solving from Nature, Lecture Notes in
Computer Science, Vol. 496, pp. 176-185, Springer, 1991.

[3] R. Tanese, “Distributed Genetic Algorithms’, Proc. ICGA 3, pp. 434-439,
Morgan Kaufmann Publishers, 1989.

[4] H.-M. Voigt, J. Born and |. Santibanez-Koref, “Modelling and Simulation of
Distributed Evolutionary Search Processes for Function Optimization”, Parallel
Problems Solving from Nature, Lecture Notes in Computer Science, Vol. 496, pp.
373-380, Springer Verlag, 1991.

Genetic Algorithm Toolbox User’s Guide 2-13

mut

Pur pose

Discrete mutation operator
Synopsis

NewChrom = mut (OldChrom, Pm, BaseV)
Description

mut takes the representation of the current population and mutates each element
with a given probability. To alow for varying bases in the chromosome and
structured populations, mut allows an additional argument BaseV that specifies
the base of the individual elements of a chromosome.

NewChrom = mut (OldChrom, Pm) takes the current population,
OldChrom, with each row corresponding to an individuals, and mutates each
element with probability Pm. If the mutation probability, Pm, isomitted, Pm=0.7/
Lind is assumed, where Lind is the length of the chromosome structure. This
value is selected as it implies that the probability of any one element of a
chromosome being mutated is approximately 0.5 (see [1]). Without a third input
argument, mut assumes that the population is binary coded.

NewChrom = (OldChrom, Pm, BaseV) usesathird argument to specify
the base of the mutation of the individual elements of the chromosomes. In this
case, length (BaseV) = Lind, whereLind isthelength of the chromosome
structure.

mut isalow-level mutation function normally called by mutate.

Example
Consider abinary population 01dChrom with 4 individual s each of length 8:
OldChrom =[
0000O0111;
1000100 1;
0010100 0;
1101101 1]

Mutate 01dChrom with default probability:
NewChrom = mut (OldChrom)

Thus, NewChrom can become:

Genetic Algorithm Toolbox User’s Guide 2-14

NewChrom =

001 00111
11000001
00001000
11011011

The complement of a binary string is obtained by applying mutation with
probability 1.

mut([1 01 0111 0], 1)

ans =
01 0100O01

See Also

mutate, mutbga

Reference

[1] Jurgen Hesser and Reinhard Manner, “Towards an Optimal Mutation Rate
Probability for Genetic Algorithms’, In Parallel Problem Solving from Nature,
L ecture Notes in Computer Science, Vol. 496, pp23-32, 1990.

Genetic Algorithm Toolbox User’s Guide 2-15

mutate

Pur pose
Mutation of individuals (high-level function).

Synopsis

NewChrom = mutate (MUT F, OldChrom, FieldDR)
NewChrom = mutate (MUT F, OldChrom, FieldDR, MutOpt)

NewChrom = mutate (MUT F, OldChrom, FieldDR, MutOpt,
SUBPOP)

Description
mutate performs mutation of individuals from a population, 01dChrom, and

returns the mutated individuals in a new population, NewChrom. Each row of
0ldChrom and NewChrom corresponds to one individual.

MUT F isastring that contains the name of the low-level mutation function, e.g.
mutbga Or mut.

FieldDR isamatrix of size 2x Nvar and contains the bounds of each variable
of an individual (rea-valued variables) or a matrix of size 1xNvar and
contains the base of each variable (discrete-valued variables). If FieldDR is
omitted, empty or NaN, a binary representation of the variablesis assumed.

MutOpt is an optional parameter containing the mutation rate, the probability of
mutating a variable of an individual. If MutOpt is omitted, a default mutation
rate is assumed. For real-value mutation MutOpt can contain a second parameter
specifying ascalar for shrinking the mutation range (see mutbga).

SUBPOP isan optiona parameter and determines the number of subpopulationsin
OldChrom. If SUBPOP is omitted or NaN, SUBPOP = 1 is assumed. All
subpopulationsin 01dChrom must have the same size.

Example

For examples, see mutbga (real-value mutation) and mut (discrete-value
mutation).

Algorithm

mutate checks the consistency of the input parameters and calls the low-level
mutation function. If mutate is called with more than one subpopulation then the
low-level mutation function is called separately for each subpopulation.

See Also

mutbga, mut, recombin, select

Genetic Algorithm Toolbox User’s Guide 2-16

mutbga

Pur pose

Mutation of real-valued population (mutation operator of the breeder genetic
algorithm).

Synopsis

NewChrom = mutbga (0ldChrom, FieldDR)
NewChrom = mutbga (0ldChrom, FieldDR, MutOpt)

Description

mutbga takes the real-valued population, 01dChrom, mutates each variable with
given probability and returns the popul ation after mutation, NewChrom.

NewChrom = mutbga (0ldChrom, FieldDR, MutOpt) takesthe current
population, stored in the matrix 01dChrom and mutates each variable with
probability MutOpt (1) by addition of small random values (size of the mutation
step). The mutation step can be shrunk with MutOpt (2).

FieldDR isa matrix containing the boundaries of each variable of an individual
(see crtrp).

MutOpt isan optional vector with a maximum of two parameters:

MutOpt (1):
scalar containing the mutation ratein therange [0, 1] .
If omitted or NaN, MutOpt (1) = 1/Nvar isassumed, where Nvar is

the number of variables per individual defined by size (FieldDR, 2) .
This value is selected as it implies that the number of variables per
individual mutated is approximately 1.

MutOpt (2):
scalar containing a value in the range [0, 1] for shrinking the mutation
range.
If omitted or NaN, MutOpt (2) = 1 isassumed (no shrinking).

mutbga isalow-level mutation function normally called by mutate.

Example

Consider the following population with three real-valued individuals:

OldChrom = [
40.2381 -17.1766 28.9530 15.3883;
82.0642 13.2639 13.3596 -9.0916;
52.4396 25.6410 15.2014 -2.5435]

The bounds are defined as:

Genetic Algorithm Toolbox User’s Guide 2-17

FieldDR = [
-100 -50 -30 -20;
100 50 30 20]

To mutate 01dChrom with mutation probability 1/4 and no shrinking of the
mutation range:

NewChrom = mutbga (0ldChrom, FieldDR, [1/4 1.0])

mutbga produces an internal mask table, MutMx, determining which variable to
mutate and the sign for adding delta (see Algorithm), e.g.

MutMx = [
0 0 0O 1;
0 0 -1 O0;

0 0 -1 -1]
An second internal table, delta, specifies the normalized mutation step size, e.g.

delta = [
0.2500 0.2500 0.2500 0.2500;
0.0001 0.0001 0.0001 0.0001;
0.2505 0.2505 0.2505 0.2505]

Thus, after mutation NewChrom becomes:

NewChrom =
40.2381 -17.1766 28.9530 20.0000
82.0642 13.2638 13.3559 -9.0916
52.4396 25.6410 -7.6858 -7.5539

NewChrom - 0OldChrom shows the mutation steps
NewChrom - OldChrom =

0 0 0 4.6117
0 0 -0.0037 0
0 0 -7.5156 -5.0104

Algorithm

The mutation of avariable is computed as follows:

mutated variable = variable + Mut Mx X range X MutOpt (2) Xdelta

MutMx =1 with probability MutOpt (1), (+ or - with equal probability)
else0

range = 05X domain of variable (search interval defined by FieldDR).

m-1
delta = Y 0,27, o = 1 with probability 1/m, else 0, m = 20.
i=0

With m = 20, the mutation operator is able to locate the optimum up to aprecision
OfrangexMutOpt(Z)xzﬂq

Genetic Algorithm Toolbox User’s Guide 2-18

The mutation operator mutbga is able to generate most points in the hypercube
defined by the variables of the individual and the range of the mutation. However,
it tests more often near the variable, that is, the probability of small step sizesis
greater than that of larger step sizes.

See Also

mutate, recdis, recint, reclin

Reference

[1] H. Mihlenbein and D. Schlierkamp-Voosen, “Predictive Models for the
Breeder Genetic Algorithm: 1. Continuous Parameter Optimization”, Evolutionary
Computation, Vol. 1, No. 1, pp.25-49, 1993.

Genetic Algorithm Toolbox User’s Guide 2-19

ranking

Pur pose

Rank-based fitness assignment

Synopsis

FitnV = ranking (ObjV)
FitnV = ranking(ObjV, RFun)
FitnV = ranking(ObjV, RFun, SUBPOP)

Description

ranking ranksindividuals according to their objective values, Ob3jV, and returns
a column vector containing the corresponding individual fitness values, FitnV.
This function ranks individuals for minimisation.

RFun isan optional vector with 1, 2 or Llength (ObjV) parameters.

If RFunisascalarin [1, 2], linear ranking is assumed and the scalar indicates
the selective pressure.

If RFun isavector with 2 parameters:

RFun (1):
scalar indicating the selective pressure
for linear ranking RFun (1) must bein [1, 2]
for non-linear ranking RFun (1) mustbein [1, length (0bjV)-2]
If NaN, RFun (1) = 2 isassumed.

RFun(2):
ranking method
0 - linear ranking
1 - non-linear ranking

If RFun isavector of 1ength (0bjV), it should contain the fitness values to be
assigned to each rank.

If RFun is omitted or NaN, linear ranking and a selective pressure of 2 are
assumed.

SUBPOP is an optional parameter and indicates the number of subpopulations in
ObjV. If SUBPOP is omitted or NaN, SUBPOP = 1 is assumed. All
subpopulations in 0bj VvV must have the same size.

If ranking is called with more than one subpopulation then the ranking is
performed separately for each subpopulation.

Genetic Algorithm Toolbox User’s Guide 2-20

Example
Consider a population with 10 individuals. The current objective values are:

ObjVv = [1; 2; 3; 4; 5; 10; 9; 8; 7; 6]
Evaluate the fithess with linear ranking and selective pressure 2:
FitnV = ranking (ObjV)

FitnVv =
.00
.77
.55
.33
.11

.22
.44
.66
.88

OO oo oOkrHrRHrREPENDN

Evaluate the fitness with non-linear ranking and selective pressure 2:
FitnV = ranking(ObjVv, [2 1])

FitnVv =
.00
.66
.38
.15
.95
.38
.45
.55
.66
.79

[eleol ool ool S S Y

Evaluate the fitness with the values in RFun:
RFun = [3; 5; 7; 10; 14; 18; 25; 30; 40; 50]
FitnV = ranking(ObjV, RFun)

Genetic Algorithm Toolbox User’s Guide 2-21

Fitnv =
50
40
30
25
18

3
5
7
10
14

Evaluate the fitness with non-linear ranking and selective pressure 2 for 2
subpopulations in Ob5j V:

FitnV = ranking(ObjVv, [2 1], 2)

Fitnv =
.00
.28
.83
.53
.34
.34
.53
.83
.28
.00

Algorithm

The agorithms for both linear and non-linear ranking first sorts the objective
function values into descending order. The least fit individual is placed in position
1 in the sorted list of objective values and the most fit individual position Nind
where Nind isthe number of individualsin the population. A fitness value is then
assigned to each individual depending on its position, Pos, in the sorted
population.

R O O OO0OO0OOoORrDN

N

For linear ranking individuals are assigned fitness values according to:

FitnV(Pos) =2-SP+2X (SP—-1) X (Pos—-1)/(Nind-1),and

for non-linear ranking according to:

B Nind x XPs71
Nind '

Y X(4)
i=1

FitnV (Pos)

where X is computed as the root of the polynomial:

Genetic Algorithm Toolbox User’s Guide 2-22

Nind-1 Nind—2+

0= (SP-1) xX +SP XX ...+SPXX+SP.

The vector FitnV isthen unsorted to reflect the order of the original input vector,
ObjV.

See Also

select, rws, sus

Reference

[1] D. Whitley, “The GENITOR Algorithm and Selection Pressure: Why Rank-
Based Allocation of Reproductive Trias is Best”, Proc. ICGA 3, pp. 116-121,
Morgan Kaufmann Publishers, 1989.

Genetic Algorithm Toolbox User’s Guide 2-23

recdis

Pur pose

Discrete recombination
Synopsis

NewChrom = recdis (0OldChrom)
Description

recdis performs discrete recombination between pairs of individuas in the
current population, 01dChrom, and returns a new population after mating,
NewChrom. Each row of 01dChrom corresponds to one individual.

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrix 01dChrom is odd then the last row is not mated and added at
the end of NewChrom. The population should therefore be organised into
contiguous pairs that require mating. This can be achieved by using the function
ranking to assign afitnesslevel to each individual and a selection function (e.g.
select) to select individuals with a probability related to their fitness in the
current population.

recdis isalow-level recombination function normally called by recombin.

Example
Consider the following population with five real-value individuals:
OldChrom = [

40.23 -17.17 28.95 15.38; % parentl
82.06 13.26 13.35 -9.09; % parent2
52.43 25.64 15.20 -2.54; % parents
-47.50 49.10 9.09 10.65; % parent4d
-90.50 -13.46 -25.63 -0.89] % parenths

To perform discrete recombination:
NewChrom = recdis (0OldChrom)

recdis produces an internal mask table determining which parents contribute
which variables to the offspring, e.g.

Mask [

for producing offspringl
for producing offspring2
for producing offspring3

for producing offspring4

N R
RN
o\° o\

'_l
o\°

2
2
1
1

R NN R
[\
[\
o\

Thus, after recombination NewChrom would become:

Genetic Algorithm Toolbox User’s Guide 2-24

NewChrom = [

40.23 13.26 28.95 -9.09; % Mask(1l,:) parentl&2
82.06 13.26 28.95 15.38; % Mask(2,:) parentlé&2
-47.50 25.64 9.09 -2.54; % Mask(3,:) parent3&4
52.43 25.64 9.09 10.65] % Mask(4,:) parentl3&4

As the number of individuals in the parent population, 01dChrom, was odd, the
last individual is appended without recombination to NewChrom and the offspring
returned to the users workspace, thus

NewChrom =
40.23 13.26 28.95 -9.09
82.06 13.26 28.95 15.38
-47.50 25.64 9.09 -2.54
52.43 25.64 9.09 10.65
-90.50 -13.46 -25.63 -0.89

Algorithm

Discrete recombination exchanges variable values between the individuals. For
each variable the parent who contributes its variable value to the offspring is
chosen randomly with equal probability.

Discrete recombination can generate the corners of the hypercube defined by the
parents.

See Also

recombin, recint, reclin, ranking, sus, rws

Reference

[1] H. Muhlenbein and D. Schlierkamp-Voosen, “Predictive Models for the
Breeder Genetic Algorithm: |. Continuous Parameter Optimization”, Evolutionary
Computation, Vol. 1, No. 1, pp.25-49, 1993.

Genetic Algorithm Toolbox User’s Guide 2-25

recint

Pur pose

I ntermediate recombination
Synopsis

NewChrom = recint (0OldChrom)
Description

recint performs intermediate recombination between pairs of individualsin the
current population, 01dChrom, and returns a new population after mating,
NewChrom. Each row of 01dChrom corresponds to one individual.

recint isafunction only applicable to populations of real-value variables (and
not binary or integer).

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrix 01dChrom is odd then the last row is not mated and added at
the end of NewChrom. The population should therefore be organised into
contiguous pairs that require mating. This can be achieved by using the function
ranking to assign afitness level to each individual and a selection function (e.g.
select) to select individuals with a probability related to their fithess in the
current population.

recint isalow-level recombination function normally called by recombin.

Example
Consider the following population with three real-value individuals:
OldChrom = [

40.23 -17.17 28.95 15.38; % parentl
82.06 13.26 13.35 -9.09; % parent2
52.43 25.64 15.20 -2.54] % parent3

To perform intermediate recombination:
NewChrom = recint (0ldChrom)

New values are produced by adding the scaled difference between the parent
values to the first parent (see Algorithm subsection). An internal table of scaling
factors, Alpha, is produced, e.g.
Alpha = [
-0.13 0.50 0.32 0.16; for offspringl
1.12 0.54 0.44 1.16] % for offspring2

Thus, after recombination NewChrom would become:

o\°

Genetic Algorithm Toolbox User’s Guide 2-26

NewChrom = [
34 .40 -1.92 23.86 11.33; % Alpha(l,:) parentlé&2
87.11 -0.59 21.98 -13.04] % Alpha(2,:) parentlé&2

As the number of individuals in the parent population, 01dChrom, was odd, the
last individual is appended without recombination to NewChrom and the offspring
returned to the users workspace, thus:

NewChrom =
34.40 -1.92 23.86 11.33
87.11 -0.59 21.98 -13.04
52.43 25.64 15.20 -2.54
Algorithm

Intermedi ate recombination combines parent values using the following rule:
offspring = parentl + AlphaX (parent2 —-parentl)

where Alpha isascaling factor chosen uniformly at random in the interval
[-0.25, 1.25].recint producesanew Alphafor each pair of values to be
combined.

Intermediate recombination can generate any point within a hypercube dlightly
larger than that defined by the parents.

Intermediate recombination is similar to line recombination reclin. Whereas
recint uses a new Alpha factor for each pair of values combined together,
reclin usesone Alpha factor for each pair of parents.

See Also

recombin, recdis, reclin, ranking, sus, rws

Reference

[1] H. Mihlenbein and D. Schlierkamp-Voosen, “Predictive Models for the
Breeder Genetic Algorithm: |. Continuous Parameter Optimization”, Evolutionary
Computation, Vol. 1, No. 1, pp.25-49, 1993.

Genetic Algorithm Toolbox User’s Guide 2-27

reclin

Pur pose

Line recombination
Synopsis

NewChrom = reclin (OldChrom)
Description

reclin performs line recombination between pairs of individuals in the current
population, 01dChrom, and returns a new population after mating, NewChrom.
Each row of 01dChrom corresponds to one individual.

reclin isafunction only applicable to populations of real-value variables (not
binary or integer).

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrix 01dChrom is odd then the last row is not mated and added at
the end of NewChrom. The population should therefore be organised into
contiguous pairs that require mating. This can be achieved by using the function
ranking to assign afitness level to each individual and a selection function (e.g.
select) to select individuals with a probability related to their fithess in the
current population.

reclin isalow-level recombination function normaly called by recombin.

Example
Consider the following population with three real-value individuals:
OldChrom = [

40.23 -17.17 28.95 15.38; % parentl
82.06 13.26 13.35 -9.09; % parent2
52.43 25.64 15.20 -2.54] % parent3

To perform line recombination:
NewChrom = reclin (OldChrom)

New values are produced by adding the scaled difference between the parent
values to the first parent (see Algorithm). An internal table of scaling factors,
Alpha, isproduced, e.g.
Alpha = [

0.78; % for producing offspringl

1.05] % for producing offspring2

Thus, after recombination NewChrom would become:

Genetic Algorithm Toolbox User’s Guide 2-28

NewChrom = [
72.97 6.64 16.74 -3.77; % Alpha(l) parentlé&2
84.25 14.85 12.54 -10.37] % Alpha(2) parentlé&2

As the number of individuals in the parent population, 01dChrom, was odd, the
last individual is appended without recombination to NewChrom and the offspring
returned to the users workspace, thus:

NewChrom =
72.97 6.64 16.74 -3.77
84.25 14.85 12.54 -10.37
52.43 25.64 15.20 -2.54

Algorithm

Line recombination combines parent values using the following rule:
offspring = parentl + AlphaX (parent2 —-parentl)

where Alpha isascaling factor chosen uniformly at random in the interval
[-0.25, 1.25].reclin producesanew Alphafor each pair of parentsto be
combined.

Line recombination can generate any point on a dlightly longer line than that
defined by the parents.

Line recombination is similar to intermediate recombination recint. Whereas
reclin uses one Alpha factor for each pair of parents combined together,
recint usesanew Alpha factor for each pair of values.

See Also

recombin, recdis, recint, ranking, sus, rws

Reference

[1] H. Mihlenbein and D. Schlierkamp-Voosen, “Predictive Models for the
Breeder Genetic Algorithm: |. Continuous Parameter Optimization”, Evolutionary
Computation, Vol. 1, No. 1, pp.25-49, 1993.

Genetic Algorithm Toolbox User’s Guide 2-29

recmut

Pur pose
Line recombination with mutation features
Synopsis
NewChrom = recmut (0OldChrom, FieldDR)
NewChrom = recmut (OldChrom, FieldDR, MutOpt)
Description

recmut performs line recombination with mutation features between pairs of
individuals in the current population, 01dChrom, and returns a new population
after mating, NewChrom. Each row of 01dChrom corresponds to one individual.

FieldDR is amatrix containing the boundaries of each variable of an individual
(see crtrp).

MutOpt isan optional vector with a maximum of 2 parameters:

MutOpt (1):
scalar containing the recombination ratein therange [0, 1] .
If omitted or NaN, MutOpt (1) = 1 isassumed.

MutOpt (2):
scalar containing avalue in the range [0, 1] for shrinking the recombination
range.
If omitted or NaN, MutOpt (2) = 1 isassumed (no shrinking).

recmut isafunction only applicable to populations of real-value variables (and
not binary or integer).

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrix 01dChrom is odd then the last row is not mated and added at
the end of NewChrom. The population should therefore be organised into
contiguous pairs that require mating. This can be achieved by using the function
ranking to assign afitnesslevel to each individual and a selection function (sus
or rws) to select individuals with a probability related to their fitnessin the current
population.

recmut uses features of the mutation operator of the Breeder Genetic Algorithm
(see mutbga). Therefore, the calling syntax of this recombination function is
identical to this of the mutation function mutbga.

recmut isalow-level recombination function normally called by mutate.

Genetic Algorithm Toolbox User’s Guide 2-30

Example
Consider the following population with four real-valued individuals:

OldChrom = [

40.2381 -17.1766 28.9530 15.3883; % parentl
82.0642 13.2639 13.3596 -9.0916; % parent2
52.4396 25.6410 15.2014 -2.5435; % parent3
-47.5381 49.1963 9.0954 10.6521] % parent4

The boundaries are defined as:

FieldDR = [
-100 -50 -30 -20;
100 50 30 20]

To perform line recombination with mutation features:
NewChrom = recmut (0OldChrom, FieldDR)

recmut produces an interna mask table, RecMx, determining which pairs of
parents to recombine (here recombine all pairs) and the sign for adding the
recombination step (see Algorithm), e.g.

RecMx = [
1 -1 -1 -1; % for producing offspringl & 2
-1 -1 -1 -1] % for producing offspring3 & 4

Two further internal tables, delta and Diff, specify the normalized
recombination step size, e.g.

delta = [
0.1250 0.1250 0.1250 0.1250; % for offspringl & 2
0.0005 0.0005 0.0005 0.0005] % for offspring3 & 4

Diff = [

1.3937 1.0143 -0.5196 -0.8157; % for offspringl & 2
-10.5712 2.4906 -0.6456 1.3952] for offspring3 & 4

o\°

Thus, after recombination NewChrom becomes:

NewChrom =
57.6637 -23.5177 30.0000 17.4281
64.6386 19.6050 11.4106 -11.1314
52.9719 25.5783 15.2112 -2.5576
-48.0704 49.2590 9.0856 10.6662

Algorithm
The offsprings of a pair of two parents are computed as follows:
offspringl=parentl + RecMx X range X MutOpt (2) XxdeltaxDiff
offspring2=parent2 + RecMx X range X MutOpt (2) xdelta X (-Diff)

Genetic Algorithm Toolbox User’s Guide 2-31

RecMx ==1 with probability MutOpt (1), (- with probability 0.9)
else0

range = 05X domain of variable (search interval defined by FieldDR).
m-1)

delta = Y 0,27, o = 1 with probability 1/m, else 0, m = 20.
i=0

parent2 —parentl

Diff =
lparentl —parent?2|

The recombination operator recmut generates offspring in a direction defined by
the parents (line recombination). It tests more often outside the area defined by the
parents and in the direction of parentl. The point for the offspring is defined by
features of the mutation operator. The probability of small step sizesis greater than
that of bigger steps (see mutbga).

See Also

mutate, mutbga, reclin

Reference

[1] H. MUhlenbein, “The Breeder Genetic Algorithm - a provable optimal search
agorithm and its application”, IEE Colloquium, Applications of Genetic
Algorithms, Digest No. 94/067, London, 15 March 1994.

[2] H. Mihlenbein and D. Schlierkamp-Voosen, “Predictive Models for the
Breeder Genetic Algorithm: I. Continuous Parameter Optimization”, Evolutionary
Computation, Vol. 1, No. 1, pp.25-49, 1993.

Genetic Algorithm Toolbox User’s Guide 2-32

recombin

Pur pose
Recombination of individuals (high-level function).
Synopsis
NewChrom = recombin (REC_F, Chrom)
NewChrom = recombin (REC_F, Chrom, RecOpt)
NewChrom = recombin (REC_F, Chrom, RecOpt, SUBPOP)
Description

recombin performs recombination of individuals from a population, Chrom,
and returns the recombined individuals in a new population, NewChrom. Each
row of Chrom and NewChrom corresponds to one individual.

REC_F isastring that contains the name of the low-level recombination function,
€.g. recdis Or xovsp.

RecOpt is an optional parameter specifying the crossover rate. If RecOpt is
omitted or NaN, adefault valueis assumed.

SUBPOP isan optional parameter and determines the number of subpopulationsin
Chrom. If SUBPOP is omitted or NaN, SUBPOP = 1 is assumed. All
subpopulationsin Chrom must have the same size.

Example
For examples see recdis, recint, reclin, xovsp, xovdp and xovmp.

Algorithm

recombin checks the consistency of the input parameters and calls the low-level
recombination function. If recombin is called with more than one subpopul ation
then the low-level recombination function is called separately for each
subpopul ation.

See Also

recdis, recint, reclin, xovsp, xovdp, xovsh, mutate, select

Genetic Algorithm Toolbox User’s Guide 2-33

reins

Pur pose
Reinsertion of offspring in the population.

Synopsis

Chrom = reins (Chrom, SelCh)
Chrom = reins (Chrom, SelCh, SUBPOP)
Chrom = reins (Chrom, SelCh, SUBPOP, InsOpt, ObjVCh)

[Chrom, ObjVCh]= reins (Chrom, SelCh, SUBPOP, InsOpt,
ObjVCh, ObjVvSel)

Description
reins performs insertion of offspring into the current population, replacing
parents with offspring and returning the resulting population. The offspring are
contained in the matrix Se1Ch and the parents in the matrix Chrom. Each row in
Chrom and Selch corresponds to one individual.

SUBPOP is an optional parameter and indicates the number of subpopulations in
Chrom and SelcCh. If SUBPOP isomitted or NaN, SUBPOP = 1 isassumed. All
subpopulationsin Chrom and SelCh each must have the same size.

InsOpt isan optional vector with a maximum of 2 parameters:

InsOpt (1):
scalar indicating the selection method for replacing parents with offspring:
0 - uniform selection, offspring replace parents uniformly at random
1 - fitness-based selection, offspring replace least fit parents
If omitted or NaN, InsOpt (1) = 0 isassumed

InsOpt (2):
scalar containing the rate of reinsertion of offspring per subpopulation as a
fraction of subpopulation sizeintherange [0, 11].
If omitted or NaN, InsOpt (2) = 1.0 isassumed.
If INSR = 0 noinsertion takes place.
If INSR isnot 1.0 0bjVSel isneeded for selecting the best offspring for
Insertion (truncation selection between offspring).

If InsOpt isomitted or NaN, then the default values are assumed.

ObjVCh is an optional column vector containing the objective values of the
individualsin Chrom. ObjVCh is needed for fitness-based reinsertion.

ObjVsel is an optional column vector containing the objective values of the
individualsin selCh. ObjVvsel isrequired if the number of offspring is greater

Genetic Algorithm Toolbox User’s Guide 2-34

than the number of offspring to be reinserted into the population. In this case,
offspring are selected for reinsertion according to their fitness.

If ObjVCh is output parameter, ObjVCh and ObjVvSel are needed as input
parameters. The objective values are then copied, according to the insertion of the
offspring, saving the recomputation of the objective values for the whole

population.
Example
Consider a population of 8 parents, Chrom, and a population of 6 offspring,
SelCh:
Chrom = [1; 2; 3; 4; 5; 6; 7; 8]

SelCh = [11; 12; 13; 14; 15; 16]
Insert all offspring in the population:

Chrom = reins (Chrom, SelCh)

Thus, a new population Chrom is produced, e.g.:

Chrom =
12
11
15
16

5
13
14

8

Consider the following ObjVvCh vector for the parent population Chrom and
ObjVvsel for the offspring, SelcCh:

ObjVvCh = [21; 22; 23; 24; 25; 26; 27; 28];
ObjVvSel= [31; 32; 33; 34; 35; 36]

Insert all offspring fitness-based, i.e. replace least fit parents:
Chrom = reins (Chrom, SelCh, 1, 1, ObjVCh)

Chrom =
1
2
16
15
14
13
12
11

Genetic Algorithm Toolbox User’s Guide 2-35

Insert 50% of the offspring fithess-based and copy the objective values according
the insertion of offspring:

[Chrom, ObjVvCh] = reins(Chrom, SelCh, 1, [1 0.5],...
ObjVCh, Objvsel)

Chrom =

ObjVCh =
21
22
23
24
25
33
32
31

Consider Chrom and SelCh consist of 2 subpopulations. Insert all offspring in the
appropriate subpopulations:

Chrom reins (Chrom, SelCh, 2)

Chrom

12

2
13
11
14

6
15
16

See Also

select

Genetic Algorithm Toolbox User’s Guide 2-36

rep

Pur pose
Matrix replication.

Synopsis
MatOut = rep(MatIn, REPN)

Description
rep isalow-leve replication function. Not normally used directly, rep is caled
by a number of functions in the GA-Toolbox.

rep performs replication of a matrix, Mat In, specified by the numbers in REPN
and returns the replicated matrix, MatOut.

REPN contains the number of replications in every direction. REPN (1) specifies
the number of vertical replications, REPN (2) the number of horizontal
replications.

Example
Consider the following matrix Mat In:

MatIn = [
1 2 3 4;
5 6 7 8]

To perform matrix replication:
MatOut = rep(MatIn, [1 2])

MatOut
1 23412 3 4
56 7856 78

MatOut = rep(MatIn, [2 1])
MatOut =

1 2 3 4

56 7 8

1 2 3 4

56 7 8

MatOut = rep(MatIn, [2 3])

MatOut =
123412341234
56 7856 785%6 738
123412341234
56 7856 785%6 738

Genetic Algorithm Toolbox User’s Guide 2-37

r'ws

Pur pose

Roulette wheel selection

Synopsis

NewChrIx = rws (FitnV, Nsel)

Description

rws probabilistically selects Nsel individuas for reproduction according to their
fitness, Fitnv, in the current population.

NewChrIx = rws(FitnV, Nsel) sdects Nsel individuals from a
population using roulette wheel selection. FitnV isacolumn vector containing a
performance measure for each individual in the population. This can be achieved
by using the function ranking or scaling to assign a fitness level to each
individual. The return value, NewChrIx, isthe index of the individuals selected
for breeding, in the order that they were selected. The selected individuals can be
recovered by evaluating Chrom (NewChrIx, :).

rws isalow-level selection function normally called by select.

Example

Consider a population of 8 individuals with the assigned fithess values, FitnV:
Fitnv = [1.50; 1.35; 1.21; 1.07; 0.92; 0.78; 0.64; 0.5]
Select the indices of 6 individuals:

NewChrIx = rws (FitnV, 6)

Thus, NewChrIx can become:

NewChrlIx =

WE R ODN

7

Algorithm

A form of roulette wheel selection is implemented by obtaining a cumulative sum
of the fitness vector, FitnVv, and generating Nsel uniformly a random
distributed numbers between 0 and sum (FitnV). The index of the individuals
selected is determined by comparing the generated numbers with the cumulative
sum vector. The probability of an individual being selected is then given by:

Genetic Algorithm Toolbox User’s Guide 2-38

f(x)

Nind '

.Zf(xi)

i=1

F(x) =

where f(x) is the fitness of individual x; and F(x) is the probability of that
individual being selected.

See Also

select, sus, reins, ranking, scaling

Reference

[1] J. E. Baker, “Reducing bias and inefficiency in the selection algorithm”, Proc
ICGA 2, pp. 14-21, Lawrence Erlbaum Associates, Publishers, 1987.

[2] David E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning, Addison Wesley, 1989.

Genetic Algorithm Toolbox User’s Guide 2-39

scaling

Pur pose

Linear fitness scaling

Synopsis

FitnV = scaling(ObjVv, Smul)

Description

scaling converts the objective values, ObjV, of a population into a fitness
measure with a known upper bound, determined by the value of Smu1l, such that,

F(x) = af(x) +b,

where f(x;) is the objective value of individual x;, a is a scaling coefficient, b is an
offset and F(X;) is the resulting fitness value of individual x;. If f4 e is the average
objective value in the current generation, then the maximum fitness of the scaled
population is upper bounded at f,,e X Smul. If Smul is omitted then the default
vaueof sSmult = 2 isassumed. The average fitness of the scaled population is
also set to e

In the case of some of the objective values being negative, scaling attempts to
provide an offset, b, such that the scaled fitness values are greater than zero.

Algorithm

scaling usesthelinear scaling method described by Goldberg [1].

Note: linear scaling is not suitable for use with objective functions that return
negative fitness values and is included here only for completeness.

See Also

ranking, reins, rws, select, sus

Reference

[1] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning, Addison Wesley Publishing Company, January 1989.

Genetic Algorithm Toolbox User’s Guide 2-40

select

Pur pose

Selection of individuals from population (high-level function).

Synopsis

SelCh = select (SEL_F, Chrom, FitnV)
SelCh = select (SEL_F, Chrom, FitnV, GGAP)
SelCh = select (SEL_F, Chrom, FitnV, GGAP, SUBPOP)

Description

select performs selection of individuals from a population, Chrom, and returns
the selected individuals in a new population, Selch. Each row of Chrom and
SelCh corresponds to one individual.

SEL_F is astring and contains the name of the low-level selection function, for
example rws oOr sus.

FitnV is a column vector containing the fitness values of the individuals in
Chrom. The fitness value indicates the expected probability of selection of each
individual.

GGAP is an optional parameter specifying the generation gap, the fraction of the
population to be reproduced. If GGAP isomitted or NaN, GGAP = 1.0 (100%) is
assumed. GGAP may also be greater than 1, alowing more offspring to be
produced then the number of parents. If Chrom consists of more than one
subpopulation, GGAP specifies the number of individuals to be selected per
subpopulation relative to the size of the subpopul ation.

SUBPOP isan optiona parameter and determines the number of subpopulationsin
Chrom. If SUBPOP is omitted or NaN, SUBPOP = 1 is assumed. All
subpopulations in Chrom must have the same size.

Example

Consider a population of 8 individuals, Chrom, with the assigned fitness values,
FitnV:

Genetic Algorithm Toolbox User’s Guide 2-41

Chrom = [

11 21;
12 22;
13 23;
14 24;
15 25;
16 26;
17 27;
18 28]

0 JOo0 U A WN R

FitnVv = [1.50; 1.35; 1.21; 1.07; 0.92; 0.78; 0.64; 0.5]
Select 8 individuals by stochastic universal sampling, sus:

SelCh = select(‘sus’, Chrom, FitnV)

Thus, SelCh can become:

SelCh =

17 27
11 21
16 26
11 21
15 25
12 22
13 23
4 14 24

WNOUTE O

Consider Chrom consists of 2 subpopulations. Select 150% individuals per
subpopulation by roulette wheel selection, rws:

FitnVv = [1.50; 1.16; 0.83; 0.50; 1.50; 1.16; 0.83; 0.5]
SelCh = select(‘sus’, Chrom, FitnVv, 1.5, 2)
Thus, SelCh can become:

SelCh =

13 23
12 22
11 21
12 22
12 22
11 21
16 26
17 27
17 27
16 26
17 27
15 25

OO JdoaoJdJdJoaokFrRrDNMNMDREPEDNDW

Genetic Algorithm Toolbox User’s Guide 2-42

Algorithm

select checks the consistency of the input parameter and calls the low-level
selection function. If select is called with more than one subpopulation then the
low-level selection function is called separately for each subpopulation.

See Also

rws, sus, ranking, scaling, recombin, mutate

Genetic Algorithm Toolbox User’s Guide 2-43

SUusS

Pur pose

Stochastic universal sampling

Synopsis

NewChrIx = sus(FitnV, Nsel)

Description

sus probabilistically selects Nsel individuals for reproduction according to their
fitness, Fitnv, in the current population.

NewChrIx = rws(FitnV, Nsel) sdects Nsel individuals from a
population using stochastic universal sampling [1]. FitnV is a column vector
containing a performance measure for each individual in the population. This can
be achieved by using the function ranking or scaling to assign afitness |level
to each individual. The return value, NewChrIx, is the index of the individuas
selected for breeding, in the order that they were selected. The selected individuals
can be recovered by evaluating Chrom (NewChrIx, :).

sus isalow-level selection function normally called by select.

Example

Consider a population of 8 individuals with the assigned fithess values, FitnV:
Fitnv = [1.50; 1.35; 1.21; 1.07; 0.92; 0.78; 0.64; 0.5]
Select the indices of 6 individuals:

NewChrIx = sus (FitnV, 6)

Thus, NewChrIx can become:

NewChrlIx =

R PR WO ul

2

Algorithm

A form of stochastic universal sampling isimplemented by obtaining a cumulative
sum of the fitness vector, FitnV, and generating Nsel equally spaced numbers
between 0 and sum (FitnV) . Thus, only one random number is generated, all the
others used being equally spaced from that point. The index of the individuals

Genetic Algorithm Toolbox User’s Guide 2-44

selected is determined by comparing the generated numbers with the cumulative
sum vector. The probability of an individual being selected is then given by

f(x;)
F(x) = Ni

Zf(xi)

i=1

where f(x) is the fitness of individual x; and F(x) is the probability of that
individual being selected.

See Also

select, rws, reins, ranking, scaling

Reference

[1] J. E. Baker, “Reducing bias and inefficiency in the selection algorithm”, Proc.
ICGA 2, pp. 14-21, Lawrence Erlbaum Associates, Publishers, 1987.

Genetic Algorithm Toolbox User’s Guide 2-45

xovdp

Pur pose

Double-point crossover
Synopsis

NewChrom = xovdp (0ldChrom, XOVR)
Description

xovdp performs double-point crossover between pairs of individuals contained in
the current population, 01dChrom, according to the crossover probability, XOVR,
and returns a new population after mating, NewChrom. Each row of 01dChrom
and NewChrom corresponds to one individua. For the chromosomes any
representation can be used.

XOVR is an optiona parameter specifying the crossover rate. If XOVR is omitted,
empty or NaN, XOVR = 0.7 isassumed.

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrix 01dChrom is odd then the last row is not mated. The
population should therefore be organised into contiguous pairs that require mating.
This can be achieved by using the function ranking to assign a fitness level to
each chromosome and a selection function (select, sus or rws) to select
individuals with a probability related to their fitness in the current population.

xovdp isalow-level crossover function normally called by recombin.

Algorithm

Consider the following two binary strings of the same length:

Al = [1 1010 1]
A2 = [1 0101 0]

Double point crossover involves selecting uniformly at random two integer
positions, k1 and k2, between 1 and 1ength (A1), and swapping the variables in
positions k1+1 to k2 between A1 and A2. Thus if the crossover positions k1l = 3
and k2 =5, then A1 and A2 would become:

Al = [1 100 1 1]
A2’ = [1 011 0 0]

xovdp cals xovmp with the appropriate parameters.

See Also

xovdprs, xovsp, xovsh, xovmp, recombin, select

Genetic Algorithm Toolbox User’s Guide 2-46

xovdprs

Pur pose

Double-point reduced surrogate crossover
Synopsis

NewChrom = xovdprs (0OldChrom, XOVR)
Description

xovdprs performs double-point reduced surrogate crossover between pairs of
individuals contained in the current population, 01dChrom, according to the
crossover probability, XOVR, and returns a new population after mating,
NewChrom. Each row of O0ldChrom and NewChrom corresponds to one
individual. For the chromosomes any representation can be used.

XOVR is an optiona parameter specifying the crossover rate. If XOVR is omitted,
empty or NaN, XOVR = 0.7 isassumed.

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrix 01dChrom is odd then the last row is not mated. The
population should therefore be organised into contiguous pairs that require mating.
This can be achieved by using the function ranking to assign a fitness level to
each chromosome and a selection function (select, sus or rws) to select
individuals with a probability related to their fitness in the current population.

xovdprsisalow-level crossover function normally caled by recombin.

Algorithm

For double point crossover see xovdp.

The reduced surrogate operator constrains crossover to always produce new
individuals wherever possible. This is implemented by restricting the location of
crossover points such that crossover points only occur where gene values differ

[1].
xovdprs calsxovmp with the appropriate parameters.

See Also

xovdp, Xovsprs, xovshrs, xovmp, recombin, select

Reference

[1] L. Booker, “Improving search in genetic algorithms,” In Genetic Algorithms
and Smulated Annealing, L. Davis (Ed.), pp. 61-73, Morgan Kaufmann
Publishers, 1987 .

Genetic Algorithm Toolbox User’s Guide 2-47

Xxovmp

Pur pose

Multi-point crossover
Synopsis

NewChrom = xovmp (OldChrom, XOVR, Npt, Rs)
Description

xovmp performs multi-point crossover between pairs of individuals contained in
the current population, 01dChrom, and returns a new population after mating,
NewChrom. Each row of 0l1dChrom and NewChrom corresponds to one
individual. For the chromosomes any representation can be used.

XOVR is an optional parameter specifying the crossover rate. If XOVR is omitted,
empty or NaN, XOVR = 0.7 isassumed.

Npt isan optiona parameter specifying the number of crosspoints:
0 - shuffle crossover.
1 - single point crossove.
2 - double point crossover.
If Npt isomitted, empty or NaN, Npt = 0 isassumed.

Rs isan optional parameter specifying the use of reduced surrogate:
0 - no reduced surrogate.
1 - use reduced surrogate.
If Rs isomitted, empty or NaN, Rs = 0 isassumed.

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrix 0l1dChrom is odd then the last row is not mated. The
population should therefore be organised into contiguous pairs that require mating.
This can be achieved by using the function ranking to assign afitness level to
each chromosome and a selection function (select, sus or rws) to select
individuals with a probability related to their fitness in the current population.

xovmp isalow-level crossover function called by all other crossover functions. If
called by recombine xovmp performs shuffle crossover without reduced
surrogate identical to xovsh.

Algorithm

The agorithms used in single-point, double-point and shuffle crossover are
described in the xovsp, xovdp and xovsh Reference entries respectively.
The algorithms used in single-point, double-point and shuffle crossover with
reduced surrogates are described in the xovsprs, xovdprs and =xovshrs
Reference entries respectively.

See Also

xovsp, xovdp, xovsh, xovsprs, xovdprs, xovshrs, recombin

Genetic Algorithm Toolbox User’s Guide 2-48

Xovsh

Pur pose

Shuffle crossover

Synopsis

NewChrom = xovsh (0ldChrom, XOVR)

Description

xovsh performs shuffle crossover between pairs of individuals contained in the
current population, 01dChrom, according to the crossover probability, XOVR, and
returns a new population after mating, NewChrom. Each row of 01dChrom and
NewChrom corresponds to one individual. For the chromosomes any
representation can be used.

XOVR is an optiona parameter specifying the crossover rate. If XOVR is omitted,
empty or NaN, XOVR = 0.7 isassumed.

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrix 01dChrom is odd then the last row is not mated. The
population should therefore be organised into contiguous pairs that require mating.
This can be achieved by using the function ranking to assign a fitness level to
each chromosome and a selection function (select, sus or rws) to select
individuals with a probability related to their fitness in the current population.

xovsh isalow-level crossover function normally called by recombin.

Algorithm

Shuffle crossover is single-point crossover (see xovsp), but before the bits are
exchanged, they are randomly shuffled in both parents. After recombination, the
bits in the offspring are unshuffled. This removes positional bias as the bits are
randomly reassigned each time crossover is performed [1].

xovsh calls xovmp with the appropriate parameters.

See Also

xovshrs, xovsp, xovdp, xovmp, recombin, select

Reference

[1] R. A. Caruana, L. A. Eshelman, J. D. Schaffer, “ Representation and hidden bias
[1: Eliminating defining length bias in genetic search via shuffle crossover”, In
Eleventh International Joint Conference on Artificial Intelligence, N. S. Sridharan
(Ed.), Val. 1, pp. 750-755, Morgan Kaufmann Publishers, 1989.

Genetic Algorithm Toolbox User’s Guide 2-49

xovshrs

Pur pose

Shuffle crossover with reduced surrogate
Synopsis

NewChrom = xovshrs (0ldChrom, XOVR)
Description

xovshrs performs shuffle crossover with reduced surrogates between pairs of
individuals contained in the current population, 01dChrom, according to the
crossover probability, XOVR, and returns a new population after mating,
NewChrom. Each row of O0ldChrom and NewChrom corresponds to one
individual. For the chromosomes any representation can be used.

XOVR is an optiona parameter specifying the crossover rate. If XOVR is omitted,
empty or NaN, XOVR = 0.7 isassumed.

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrix 01dChrom is odd then the last row is not mated. The
population should therefore be organised into contiguous pairs that require mating.
This can be achieved by using the function ranking to assign a fitness level to
each chromosome and a selection function (select, sus or rws) to select
individuals with a probability related to their fitness in the current population.

xovshrsisalow-level crossover function normally called by recombin.

Algorithm

For shuffle crossover algorithm see xovsh.

The reduced surrogate operator constrains crossover to always produce new
individuals wherever possible. This is implemented by restricting the location of
crossover points such that crossover points only occur where gene values differ

[1].
xovshrs calsxovmp with the appropriate parameters.

See Also

xovsh, xovsprs, xovdprs, Xxovmp, recombin, select

Reference

[1] L. Booker, “Improving search in genetic algorithms,” In Genetic Algorithms
and Smulated Annealing, L. Davis (Ed.), pp. 61-73, Morgan Kaufmann
Publishers, 1987.

Genetic Algorithm Toolbox User’s Guide 2-50

XOVSP

Pur pose

Single-point crossover
Synopsis

NewChrom = xovsp (0ldChrom, XOVR)
Description

xovsp performs single-point crossover between pairs of individuals contained in
the current population, 01dChrom, according to the crossover probability, XOVR,
and returns a new population after mating, NewChrom. 01dChrom contains the
chromosomes of the current population, each row corresponds to one individual.
For the chromosomes any representation can be used.

XOVR is an optional parameter specifying the crossover rate. If XOVR is omitted,
empty or NaN, XOVR = 0.7 isassumed.

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrix 01dChrom is odd then the last row is not mated. The
population should therefore be organised into contiguous pairs that require mating.
This can be achieved by using the function ranking to assign a fitness level to
each chromosome and a selection function (select, sus or rws) to select
individuals with a probability related to their fitness in the current population.

xovsp isalow-level crossover function normally called by recombin.

Algorithm

Consider the following two binary strings of the same length:

Al = [1 1010 1]
A2 = [1 0101 0]

Single-point crossover involves selecting uniformly at random an integer position,
k, between 1 and (length (A1) -1), and swapping the variables in positions
k+1to length (A1) between A1 and A2. Thus if the crossover position k = 3,
then A1 and 22 would become:

Al = [1 100 1 0]
A2’ = [1 0110 1]

xovsp cals xovmp with the appropriate parameters.

See Also

xovsprs, xovdp, xovsh, xovmp, recombin, select

Genetic Algorithm Toolbox User’s Guide 2-51

XOVSPrs

Pur pose

Single-point reduced surrogate crossover
Synopsis

NewChrom = xovsprs (OldChrom, XOVR)
Description

xovsprs performs single-point reduced surrogate crossover between pairs of
individuals contained in the current population, 01dChrom, according to the
crossover probability, XOVR, and returns a new population after mating,
NewChrom. O1dChrom contains the chromosomes of the current population,
each row corresponds to one individual. For the chromosomes any representation
can be used.

XOVR is an optional parameter specifying the crossover rate. If XOVR is omitted,
empty or NaN, XOVR = 0.7 isassumed.

The pairs are mated in order, odd row with the next even row. If the number of
rows in the matrix 01dChrom is odd then the last row is not mated. The
population should therefore be organised into contiguous pairs that require mating.
This can be achieved by using the function ranking to assign a fitness level to
each chromosome and a selection function (select, sus or rws) to select
individuals with a probability related to their fitness in the current population.

xovsprsisalow-level crossover function normally caled by recombin.

Algorithm

For single-point crossover see xovsp.

The reduced surrogate operator constrains crossover to aways produce new
individuals wherever possible. This is implemented by restricting the location of
crossover points such that crossover points only occur where gene values differ

[1].

xovsprs cals xovmp with the appropriate parameters.

See Also

xovsp, xovdp, xovdprs, xovsh, xovshrs, xovmp, recombin, select

Reference

[1] L. Booker, “Improving search in genetic algorithms,” In Genetic Algorithms
and Smulated Annealing, L. Davis (Ed.), pp. 61-73, Morgan Kaufmann
Publishers, 1987 .

Genetic Algorithm Toolbox User’s Guide 2-52

