
Chapter 1

General Introduction

Sooner or later, every scientist or engineer runs into the problem of having to
find the “best” solution some set of decisions can give. Usually, the variables
governing such problems are related to one another in a rather complicated way,
and finding the “best” combination of them can seem intractable. Normally, the
relations between these decision variables can be translated into so-called ob-
jective functions, and the value of each of these functions can be interpreted as
a measure of the quality that particular combination of the decision variables
give to a particular aspect of the solution.

As such, N -dimensional optimization problems with m individual objective
functions can be stated generally as

find ” min ”F (x) =




f1(x)
f2(x)

...
fm(x)




subject to

G(x) < 0
H(x) = 0
lb ≤ x ≤ ub,

where

x = [x1, x2, . . . , xN] ,

and f1(x) through fm(x) indicate the individual objective functions. In al-
most all practical cases, finding good solutions is not a problem, but finding the
best solution is much more difficult. Moreover, for most problems encountered
in practice, the objective functions f1(x) through fm(x) are highly nonlinear,

1

non-smooth, non-differentiable, or have no way of determining initial estimates
close to the global optimum, or a combination of all of these factors.

The only practical solution to tackle such problems is to use a so-called meta-
heuristic optimizer, which uses a “population” of trial solutions, and applies
certain probabilistic rules to generate a new population which converges to the
global minimum of the objective function with high probability. Over the years,
many such algorithms have been developed, of which the Genetic Algorithm
(GA), Differential Evolution (DE), Particle Swarm Optimization (PSO) and
Adaptive Simulated Annealing (ASA) received more attention.

Although meta-heuristic optimization algorithms usually require quite many
function evaluations, their popularity grew enormously due to their ability to
find global optima even in extremely difficult problems and with relatively low
population sizes. Moreover, their elegance and simplicity appealed to many peo-
ple – a thorough understanding of other optimization algorithms that existed
at the time (which were much harder to implement, and did not always find
the global optimum), was no longer required, and problems could be optimized
much faster (and usually much better) than was previously possible.

2

Chapter 2

Single-objective
Optimization

Originally, the aforementioned meta-heuristic algorithms were intended for prob-
lems with m = 1 (referred to as single-objective optimization); their aim is to
find the global minimum of a single objective function. Many problems can
indeed be stated as a single objective problem:

find min F (x)

subject to

G(x) < 0
H(x) = 0
lb < x < ub

and x = [x1, x2, . . . , xN] as before. Meta-heuristic algorithms first create a
population of randomly generated solutions,

pop =




x11 x21 x31 . . . xN1

x12 x22 x32 . . . xN2

...
x1P x2P x3P . . . xNP




where each xij is taken within the preset boundaries [lb] and [ub] (the con-
straints G(x) < 0 and H(x) = 0 are then usually added to F (x) in the form
of penalty functions). The objective function F (x) is evaluated for each mem-
ber in this population, and a new population is created based on the function
values of the initial population, and a certain degree of randomness. The four
aforementioned algorithms do this as follows:

3

2.1 GA (based on natural evolution)

1. Select two individuals that function as parents, say individuals 2 and 8.

2. split the parents in two, at some random location CR:

parent1 = [x18, x28, . . . , xCR8, . . . , xN8]
parent2 = [x12, x22, . . . , xCR2, . . . , xN2]

3. Let the parents crossover at the point R (with a certain probability pcross)
to create two children:

child1 = [x18, x28, . . . , xCR2, . . . , xN2]
child2 = [x12, x22, . . . , xCR8, . . . , xN8]

4. Do this until P children have been created.

5. Mutate the children, with a certain (small) probability pmutate. This se-
lects a few random indices (M) in ALL children, and replaces the associ-
ated values with random other values (randomly selected from the interval
[lb, ub]):

child1 = [x18, x28, . . . , xCR2, . . . , xM2, . . . xN2]
child2 = [x12, x22, . . . , xCR8, . . . , xN8]

6. Evaluate the objective function for all the children. If a child is found to
have a “better” function value than either of its parents, it will become
part of the new population. Otherwise, the better of the two parents is
inserted into the new population.

Steps 1-6 are repeated until “convergence”.

The original GA used a binary representation of the population, i.e., each indi-
vidual is represented by bits in stead of real numbers. Crossover and mutation
are also carried out bit wise, that is

4

parent1 = [10110011010010 . . . 00110110001001]
parent2 = [11001110110011 . . . 00110011111001]

crossover →
child1 = [10110011010010 . . . 00110011111001]
child2 = [11001110110011 . . . 00110110001001]

mutation →
child1 = [10110011010010 . . . 00100011111001]
child2 = [11011110110011 . . . 00110110001000]

Whether to use binary representation or real numbers usually depends on
the problem. For lower dimensionality (N is small) it is usually more efficient
to use binary representation, and when the population size is enormous it is
more efficient to use real numbers to avoid the costly conversion to binary and
back, etc. But these “rules-of-thumb” usually need to be tested for each new
problem.

2.2 DE (based on globalized pseudo-derivatives)

1. Randomly select three individuals from the population, say 3, 7 and 15.
These individuals will function as the base vector and differentiation vec-
tors, respectively.

2. The ith individual is created according to the rule

if rnd < Cr
ind = pop(3, :) + F (pop(7, :)− pop(15, :))

else
ind = pop(i, :)

end

where rnd is a random number, Cr is the crossover probability, and F the
constant of differentiation, usually a random number in [−1, 1].

3. Do this until P new individuals have been created.

4. Evaluate the objective function for all these new individuals. If a new
individuals is found to have a “better” function value than its spawning
solution, it will become part of the new population. Otherwise, the original
vector is inserted.

Taking the difference between the two differentiation vectors is very much
like taking the derivative. But as the two differentiation vectors are usually
quite far apart (certainly not infinitesimally far), this “derivative” is more a

5

global measure of how much the objective function changes on average over
that interval. The derivative is computed at each iteration between two new,
randomly selected vectors, so on average, the solutions will tend to go to where
the average slope is zero, and the function globally minimal. Sometimes this
operation is called the global pseudo-derivative, and it is the key to the power
of the DE algorithm.

Numerous variations on this basic algorithm exist. However, they normally
improve DE’s performance only marginally, and as such, they will not be men-
tioned here.

2.3 ASA (based on the laws of thermodynamics)

1. Randomly perturb every individual in the population. The so-called Bolz-
mann generating scheme accomplishes this:

ind = ind + sqrt(T) ∗ randn(1, dimensions),

with randn() random numbers from the standard normal distribution,
and T the current temperature.

2. Evaluate the objective function for all new individuals.

3. Accept or reject new individuals into the next population. If the value of
the objective function is lower than before the perturbation, always accept
it. If it is higher, accept it according to the probabilistic rule

accept if rnd < exp
E0 − Ep

T
,

where E0 − Ep is the difference in objective function values before (E0)
and after (Ep) the perturbation, and T is the current temperature.

4. At every new iteration, the temperature is first decreased according to a
cooling schedule. Usually, this cooling schedule has the form

Tnew = c · Told,

where 0 < c < 1 is a constant. This form will decrease the temperature
logarithmically, just as it would in physical system undergoing cooling1.

1The algorithm described above is how it is implemented in GODLIKE. Do note that the
algorithm described above is by no means adaptive – I just gave it that title as a placeholder for
future work to be carried out. Adaptive SA means that the algorithm automatically adjusts
the cooling schedule and the Boltzmann constant to optimize the quality of the converged
solution. But as of yet, that is not yet implemented.

6

Traditionally, for this method, individual trial solutions are called “atoms”
or “particles”, to reflect the method’s underlying philosophy – as the temper-
ature drops, the atoms literally “freeze” into low-energy states (low function
values). But before they freeze, they have the ability to move to higher energy
states, with a certain probability (step 3). This is what makes ASA also a global
optimizer, in the sense that it is not “greedy” as to only accept lower function
values, but also explores regions behind high-energy barriers.

Originally, Simulated Annealing was built around a single solution (the initial
condition). However, this method is easily rewritten into a population-based
method (just use N randomly generated initial conditions).

2.4 PSO (based on swarm intelligence)

1. Aside from a population of randomly generated initial trial solutions, also
initialize for every individual a velocity V in an arbitrary direction of the
same dimensionality as the problem. Also create a small social network
for every individual, by assigning a number of “neighbors” or “friends” to
each individual. These are just a number of other individuals associated
to one individual, that influence the individual.

2. New individuals are generated every iteration simply by adding the step
associated with the current velocities for each individual, e.g.,

popi+1 = popi + Vi

3. Evaluate the objective function for all new individuals thus created.

4. Keep track of three values per individual: lbest, nbest and gbest. The
value lbest is the local best function value, that is, the best function value
ever encountered by each individual, and the associated location where it
encountered it. The value nbest is the neighbor best, or the best function
value (and its location) encountered by each of an individual’s neighbors.
Finally, gbest is the global best, that is, the best function value (and loca-
tion) ever encountered by all individuals.

5. update the velocity according to the rule

Vi+1 = ωVi +
+ rnd1 · η1 · (indi − nbest)
+ rnd2 · η2 · (indi − gbest)
+ rnd3 · η3 · (indi − lbest) ,

where ω is the inertia constant, η1 is the social learning factor, η2 is the
cooperative factor, η3 is the cognitive learning factor, and rnd1−3 are three
random numbers from [0, 1].

7

The last step is the crux of the algorithm. Updating velocities in this fashion
will steer every particle into a direction that was found to be good by its neigh-
bors (social learning), a direction found to be good by all individuals combined
(cooperative), and a direction that each individual found to be good in the past
(nostalgia). This gives the particles (the traditional name for individuals) a type
of behavior reminiscent of a swarm of insects around a good food reserve – most
swarm around it, having a feeding frenzy (local optimization), while others re-
main swarming in a relatively large area around it (localized global search), and
sometimes there are the true explorers going to completely new areas (global
search).

8

Chapter 3

Multi-objective
Optimization

The power and popularity of these single-objective optimization algorithms en-
couraged many to re-state their optimization problems with multiple objectives,
to have only one objective function, usually something like

K(x) = f1(x) + af2(x) + bf3(x) + . . . + ZfM (x)

or

K(x) = f2
1 (x) + f2

2 (x) + f2
3 (x) + . . . + f2

M (x)

or something similar. However, when two different such rules are used to
convert the multi-objective problem into a single-objective one, they usually
also give different solutions. Creating a single-objective problem in the way de-
scribed above needlessly introduces extreme sensitivity to the problem specifics,
which is far from desirable. More importantly, the “optimum” this process gen-
erates may not be desirable at all. This is best illustrated by an example.

Consider the optimization of the trajectory of a spacecraft to the planet Mars.
Usually, for scientific missions, the main goal is to get the largest amount of
mass on Mars (equal to minimizing −fmass(x)). But when considering manned
missions, the time the spacecraft takes to get there is also very important, as
essential consumable resources (oxygen, food, water, ...) are limited, and long
exposures to space far from Earth’s protective magnetosphere will cause all sorts
of illnesses in the crew. Thus, finding the minimum time is also highly desirable
(equal to minimizing ftime(x)).

In theory it is quite possible to go to Mars in only one week – just bring an
enormous rocket (large accelerations aside). However, to go there in only one
week requires vast amounts of propellant, so that almost nothing will be left

9

in Mars orbit, let alone for the return trip. On the other hand, going to Mars
without using any propellant is also possible ((re)entry and launch aside); just
use the “interplanetary super highway”, made possible by the combined gravi-
tational effects of all the planets, and you have a free ride to Mars. However,
even well-selected trajectories along this superhighway take longer than 5 years
to get to Mars, which makes it near-impossible with today’s engineering to have
any survivors (let alone volunteers for such a mission).

Optimizing the sum of both these objectives will nearly always benefit the short-
time criterion more than the high-end-mass criterion, or vice versa, in other
words, introduce a bias towards one of the objectives. Therefore, the particular
choice of summation is highly problem dependent, and it should exhaustively
be experimented with before any valuable results can be obtained. This process
is extremely tedious, and should be re-done for every new optimization problem.

For such problems, it is actually most desirable to get the best compromise
between the two objectives, in stead of the optimum of the most un-biased sum
of both. Moreover, as optimization goes in large-scale projects, it is also de-
sirable to have a set of different good compromises, so that these costly and
lengthy optimizations do not have to be done all over again in case something
in the project changes.

The set of best compromises are usually given in the form of the associated
Pareto front. An easy example is the best compromise between the functions
sin(x) and cos(x). The associated Pareto front is shown in Figure 3.1, and
the (rather obvious) location of the very best compromise is shown in Figure 3.2
(Note that the Pareto front is in function value space (function values are plotted
against each other)).

There are several algorithms that find the complete Pareto front in multi-
objective optimization problems. The most popular, easiest to implement and
most efficient one known, still is the Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II). This algorithm sorts the current population according to
the amount of solutions that dominate each other individual, Dominance of one
individual xi over another yi, denoted as xi ≺ yi, is defined as

xi ≺ yi if fj(xi) ≤ fj(yi) for all functions j,

and fj(xi) < fj(yi) for at least one function j.

The NSGA-II algorithm iterates the following steps until all solutions are
non-dominated:

1. Create an offspring population Q from the parent population P with the
usual crossover and mutation operators from a GA.

2. Count the number of solutions yi that dominate the current solution xi.

10

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

cos(x)

si
n(

x)

Pareto front for the sin and cos functions
Green dot indicated the best compromise

Figure 3.1: All good compromises for the minimum of the two objective func-
tions sin(x) and cos(x), in function value space. Note that the green dot is
closest to the origin, and thus indicates the “most efficient” compromise.

Do this for all individuals from both the parent population P and the
offspring population Q.

3. Some solutions will be found to have zero other solutions dominate them.
They are non-dominated, and thus part of the Pareto front of the current
populations. The solutions that have only one other solution dominate
them, would have been part of the Pareto front if the members forming
the true Pareto front would not have been present. Those that have two
solutions dominate them would have formed the Pareto front if those so-
lutions would also not be present, etc. Thus, the level of domination is
indicative of the quality of that solution.

4. Next, the crowding distances are computed. These are the average dis-
tances between one solution and its surrounding solutions in the function-
value space.

5. Create a new population R, which contains individuals from the previous
two populations P and Q, sorted by their level of dominance. That is, first
insert all Pareto members in R, then those that have only one dominating
solution, etc. Keep inserting individuals until R is the same size as P and
Q.

6. Create a subset Pi+1 from R by a binary tournament selection. This se-

11

0 1 2 3 4 5 6

−1

−0.5

0

0.5

1

x

Best compromise for the
minimum of sin(x) and cos(x)

y = sin(x)

y = cos(x)

y

best compromise

Figure 3.2: Best compromise for the minimum of the two objective functions
sin(x) and cos(x), in decision variable space.

lection takes two random individuals from R, aR and bR, and lets them
compete using their domination level and crowding distances as competi-
tive factors. The “winning” individual is the one that satisfies aR ≺d bR,
defined as

aR ≺d bR if rank(a) < rank(b)
or (rank(a) = rank(b)

and crowding distance(a) > crowding distance(b))

where rank(`) indicates the rank, or domination level, of the individual
`. This process is repeated until the subset S is full. Usually, the size of
Pi+1 is taken to be half that Q and R.

7. Create a new offspring population Qi+1, equal in size as the original P ,
Q and R, using crossover and mutation from a GA, using members from
the subset Pi+1 as parents.

After the initialization step 1, steps 2 through 7 are repeated until all indi-
viduals are non-dominated. The crowding distances in steps 4 and 6 are used
to keep the spread in the solutions along the true Pareto front more or less
homogeneous – when these steps are not included, the solutions tend to cluster
together to the easiest-to-find compromise between the objective functions.

12

The greatest advantage of NSGA-II is that the entire population will simply
converge to the true Pareto front, so that the number of desired solutions can
easily be controlled by choosing a different population size. A slight drawback it
has compared to other algorithms of this sort is the computational complexity of
the computation of the number of non-dominated solutions; it is of O(M(2N)2),
where M is the number of objectives and N is the population size. With careful
bookkeeping, this can be reduced to O(MN2), but still it tends to be a problem
for very large population sizes. However, with today’s standards in computation
power this really poses only minor problems.

Note that the genetic operators used to create Q or Qi+1 are completely sep-
arate from the other parts of the algorithm, so Q and Qi+1 can essentially be
generated with any of the aforementioned meta-heuristic optimizers. This fact
will be used later on.

13

Chapter 4

Problems with
Meta-heuristic Algorithms

Despite their popularity and general applicability, there are many problems as-
sociated with meta-heuristic optimizers. One very serious problem is premature
convergence – the population converges to a point that is only a local minimizer
of the function. Also, the NSGA-II algorithm used for multi-objective problems
might return fully non-dominated solutions, but completely miss the problem’s
Pareto front; non-dominance is not a guarantee for convergence to the Pareto
front. This is particularly true for small population sizes. For small popula-
tions, the probability that no solution is dominated by another, while still not
being even close to the Pareto front, is quite large. This necessitates using large
population sizes, thus requiring many function evaluations.

The GA, DE, PSO and ASA algorithm have various operators that try to pre-
vent this problem. In GA, it is the mutation operator that sometimes generates
a solution very far from the other population members, increasing its robustness.
In PSO, it is the fact that sometimes solutions get assigned very large changes
in their velocities, especially when being very far removed from the attractors.
However, as found in the literature, premature convergence still frequently oc-
curs and necessitates several re-runs to make sure the global optimum is found.

A fact that can also not be ignored is that people tend to “get used” to the
simplicity of such algorithms. It often becomes their algorithm of choice for
all optimization problems they encounter. Quite often, obvious caveats, simpli-
fications and weaknesses in the problem that can be exploited by much more
powerful and accurate algorithms, are then “overlooked” or sometimes even ig-
nored.

It should be stressed that meta-heuristic algorithms do not aim to find the global
minimum very accurately, nor do they aim to be efficient in terms of function

14

evaluations; they only aim to find a good approximation to the problem’s global
minimum or Pareto front, with high probability. For many problems, function
evaluations are very expensive; personally I frequently encounter functions that
take several minutes to evaluate per trial, even on a 32-node quadcore cluster
(128 processing units). In such cases it is much more fruitful (and efficient)
to analyze that problem to bits, and make some reasonable assumptions that
simplify the problem significantly, rather than go at it “blindly” and just use a
GA to solve it.

Despite these problems, they are still very useful, if only to get a good ini-
tial approximation to the minimum, or a first idea about the general shape of
the Pareto front. They can also indicate other promising regions in the search
space, or function as a simple test algorithm to find potential problems with the
objective functions.

15

Chapter 5

GODLIKE Algorithm

The GODLIKE algorithm was written as an attempt to improve the robustness
of the meta-heuristic algorithms, and to do away with the need to fine-tune the
algorithm of your choice for each optimization problem. It was also written
to serve as a general “umbrella” function; to be able to tackle both single and
multi objective problems with a single function and in a uniform fashion, and
easily include more and different population based methods.

GODLIKE stands for Global Optimum Determination by Linking and Interchanging
Kindred Evaluators, and this is exactly what it does. It uses all four aforemen-
tioned algorithms simultaneously (Linking), and after convergence of either of
them, or exceeding certain predefined limits, it takes random members from
each population and inserts then into random other populations (Interchang-
ing) before continuing the optimization.

By using multiple optimizers simultaneously, it is essentially equal to perform-
ing four (or more) consecutive optimizations all at once, which already improves
the chances of finding the global optimum; The weaknesses associated with each
algorithm are negated by the strengths of another, while the strengths of all al-
gorithms simply add up.

The interchange-operator indeed destroys part of the convergence properties
of either of the algorithms it uses, but that is exactly the intention – the con-
vergence one of the algorithms is experiencing might be to a local optimum,
while the others might be converging to the global solution, or other local min-
ima. By interchanging individuals between populations, GODLIKE introduces
immigrants into the populations that can provide alternative good solutions to
the ones already being explored by one of the algorithms. These immigrants can
steer the population into other, unexplored areas of the search space, increasing
the chances of locating the global minimum. By keeping the populations sepa-
rate, also the principle of isolation is exploited automatically – portions of the
search space will be thoroughly explored by one of the populations, while not

16

affecting the other populations.

The interchange operator is extremely useful for multi-objective problems; when
one population is completely non-dominated, interchanging individuals between
populations will usually result in a dominated population, which continues the
search for the Pareto front, in stead of reporting convergence.

In conclusion, GODLIKE does not aim to make either of the algorithms more
efficient in terms of function evaluations, (rather, it tends to require more func-
tion evaluations). However, the robustness was aimed for, and until now, my
simple experiments have indeed shown that hard-to-find global optima that
could almost never be found by either GA, DE, ASA or PSO individually, could
be found by but their combined efforts in GODLIKE.

5.1 GODLIKE in Detail

GODLIKE was written primarily with all of the above in mind, but also partly
for me personally to finally learn objective-oriented programming in MATLAB.
As such, the files pop single.m and pop multi.m are indeed classdef-class
definitions. A slight drawback of this is that only users who own MATLAB
2008b (or later) can use it, but I think it is not hard (only time-consuming) to
re-write these files to pure functions.

GODLIKE requires four files: GODLIKE.m, pop multi.m, pop single.m and
set options.m.

5.1.1 GODLIKE.m

This is of course the main function. All required operations are carried out here.
The operation of GODLIKE.M is kept simple, readable and understandable by
generously using nested-functions. All basic operations are performed in the
first three cells:

%%Initialize Here, the user-input is checked thoroughly. Also, the user-
provided objective function(s) are tested and used to determine whether
single or multi-objective is desired. Also, the user-input is reshaped and
reformatted into a form that is assumed in all classes and functions. Dur-
ing this last process, also default options and values are assigned should
they be empty or omitted.

%%GODLIKE loop The main loop that executes the optimization. In this
loop, the amount of individuals per optimizer, and the number of itera-
tions that is to be carried out by each optimizer, is selected by randomly
“breaking up” the user-selected (or default) values. For example, if 100
individuals are to be used in the algorithms GA, DE, and PSO, the al-
gorithms get assigned for instance [45, 13, 42] or [6, 22, 72] individuals.

17

Note that these numbers are chosen differently at every iteration.

Next, using these values, the number of desired populations are created
(objects of type pop single.m or pop multi.m are instantiated). Then,
GODLIKE performs the randomly selected number of iterations in each
algorithm, keeping track of the convergence of either of them. For single
objective optimization, convergence is said to have been achieved if the de-
crease in the global minimum found so far is less than [options.MinDescent(1)]
for at least [options.MinDescent(2) * options.MinDescentMultiplier]
iterations (see set options below). For multi-objective optimization, con-
vergence of an algorithm occurs simply when all members of that popula-
tion are non-dominated.

After all algorithms have been run for the said amount of iterations, con-
vergence of the GODLIKE loop is checked in a similar manner: for single-
objective optimization, if the amount if GODLIKE iterations is larger than
[options.MinIters] and the decrease in the global optimum is less than
[options.MinDescent(1)] for at least [options.MinDescent(2)] GOD-
LIKE iterations, the GODLIKE loop is terminated. For multi-objective
problems, at least [options.MinIters] GODLIKE iterations will be per-
formed, and if after said amount of iterations all solutions are non-dominated,
the GODLIKE loop is terminated. Note that the GODLIKE loop is also
terminated when more than [options.MaxIters] iterations have been per-
formed, or when more than [options.MaxFunEvals] function evaluations
have been executed at any point in the loop.

Every next GODLIKE iteration again randomly selects the number of indi-
viduals and iterations per algorithm to be carried out. Only this time, the
existing populations are first shuffled ; that is, the interchange-operator
is applied.

%%output values Simply assigns the desired output variables. These are
updated every iteration, but only properly formatted and nicely cut into
pieces by the operations in this cell, before they are returned to the user.

Note that the operation manual (how to actually use GODLIKE in MAT-
LAB) is included in a separate PDF-file (manual.pdf). The nested functions are
where the actual work is carried out. Note also the nested function display progress:
this is called only when [options.display] is set to ’plot’ or ’on’.

5.1.2 pop single.m

A SubClass of the handle class, this is the file where all the actual optimizations
are carried out. It constructs a “population” called pop, which has properties

algorithm the optimization algorithm used (either ’GA’, ’PSO’, ’DE’ or ’ASA’).

18

funfcn The objective function.

individuals All members of the population.

fitnesses their corresponding objective function values

size population size (number of individuals).

lb lower bounds,

ub upper bounds. Note that both the lower and upper bounds are replicated
and resized upon initiazation, to conform to the size [popsize × dimen-
sions]. This does away with the need to constantly replicate them for
operations like check bounds, or re-initializing individuals as is done in
some of the algorithms.

dimensions The dimensions of the problem.

funevals Total number of function evaluations made

iterations Total number of iterations so far performed

options A copy of the options structure (see set options)

pop info A structure to store intermediate data and pass it from method to
method. For single-objective optimization, it contains the following fields:

• parent population

• offspring population

• function values parent

• function values offspring

Note that the fields parent population and function values parent
are only here for completeness and consistent programming, their con-
tents is completely the same as the class properties individuals and
fitnesses.

These properties are all assigned by the constructor (when properly called).
The constructor also creates the initial population of randomly generated in-
dividuals within the given bounds, and evaluates the function for these initial
individuals. Note that the constructor does not perform any elaborate checks
on the given input; it relies on the fact that this has already been done in
GODLIKE.m.

On a population pop, the following methods can be applied:

iterate (Public) Perform one single-objective iteration. Aside from the con-
structor, this is actually the only method directly accessed in GODLIKE.m;
all other methods are only used within pop single.m.

19

create offspring (Hidden) Creates offspring from the parent population, us-
ing the pre-set algorithm. These offspring are inserted into the pop info
structure. Note that this contains only the first half of all the optimization
algorithms.

evaluate function (Hidden) Proper evaluation of the objective function. Func-
tion can be evaluated in two distinct ways, each of these requiring imple-
mentation in pop single. The correct one has been determined in GOD-
LIKE, which is passed to pop single in the background via the options
structure.

replace parents (Hidden) Selective replacement of the parent population;
the exact replacement procedure depends on the selected algorithm. Note
that the second half of the algorithms is carried out here.

check bounds (Hidden) Checks whether offspring is generated within the
given bounds lb and ub. Also, for PSO specifically, the bounds on the
new velocities are checked.

initialize algorithms (Hidden) PSO and ASA need some additional initial-
ization (temperature, velocities, ...). With future expansions of GODLIKE
in mind, I thought I make a separate method for this.

5.1.3 pop multi.m

A SubClass of pop single.m. Inherits all the methods defined therein, and is
constructed in exactly the same way. It adds only one property num objectives,
and the two methods non dominated sort and tournament selection.

Note that the methods evaluate function, initialize algorithms and iterate
are overloaded in pop multi.m. This is required because multi-objective func-
tions need to be evaluated differently (there may be multiple functions, or
a single function with two-dimensional output), one iteration now must call
non dominated sort and tournament selection in stead of replace parents,
and the PSO-algorithm must be initialized and used differently (see below).

5.2 PSO in Multi-objective Optimization

Using the ASA and DE optimizers (in stead of the usual GA) to create off-
spring populations for the NSGA-II method is quite straightforward. However,
the PSO algorithm is more demanding; it needs to have some values for lbest,
gbest and nbest, which are not defined in an obvious way for multi-objective
optimization. There are several papers in the literature that deal with this very
problem. Some find reasonable results, but most perform quite poorly compared
to similar algorithms. The best one I could find relied on a completely different
algorithm (so not NSGA-II), so for the time being, I chose to use another, worse
one, that did fit in GODLIKE’s NSGA-II context.

20

But, it is particularly in this context that PSO seems rather unsuited for the
task. To remedy the problem with lbest, gbest and nbest, the following criteria
seemed to work best:

• only update lbest if the new individual dominates the previous lbest, and
if it is part of the current population’s Pareto front (rank = 0)

• only update gbest with one of the members of the current Pareto front,
that has a larger crowding distance than the previous gbest.

• For every iteration, find the options.num neighbors individuals that are
closest in function-value space to the current individual. These form the
individual’s new neighbors. The best of these neighbors, nbest, dominates
all other neighbors and has the largest crowding distance.

Despite these remedies, PSO remains the least powerful algorithm for multi-
objective optimization; it doesn’t really seem to be able to achieve convergence.

5.3 Known Problems and Issues

As mentioned above, using the PSO algorithm on multi-objective problems
should be done sparingly, or at least in conjunction with another algorithm.
Initially it seems to push the solutions towards the Pareto front quite fast, but I
think this is more due to the non-dominated sorting and tournament selection.
It is very hard to get convergence with PSO, but in conjunction with DE it does
work reasonable.

The ’A’ in (A)SA is really not deserved. Basically I just used the simulated
annealing written by Joachim Vandekerckhove (also on the FEX, file ID#10548)
and rewrote it to be suited for populations. Adapting the control parameters
at each iteration, which is the true power of ASA, is not included now. As such
it is probably the weakest algorithm for single-objective optimization, and the
second-worst in multi-objective problems. However, I found it to still be use-
ful sometimes, as it generates many solutions in all regions of low function value.

For very large population sizes, the crossover operator in GA seems to take
up very much computation time. I have no idea why that is, so if you do know
why, please let me know. Also, the to-and-fro conversion between binary and
real representations is relatively costly. While this is probably not a problem
(the effect only becomes noticeable for population sizes larger than ∼4000), it’s
still something I’m baffled about. If anyone knows a better way to do it, please
let me know.

21

5.4 Future Work

Currently, GODLIKE only accepts objective functions, be it one or many. In the
near future, I think it is most important to include the possibility to also pass
it constraint functions. In the current form, penalty-function methods must be
used to incorporate constraint functions, but this is certainly not the best way
to do it.

Naturally, I need to do some more research on using PSO in multi-objective
problems. It was found to be quite promising in the literature despite the im-
plementation difficulties, but the current implementation in GODLIKE does not
really solve the problems satisfactorily.

22

