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Abstract: Cotton leaf curl Kokhran virus (CLCuKoV) (genus, Begomovirus; family, Geminiviridae) is
one of several plant virus pathogens of cotton (Gossypium hirsutum L.) that cause cotton leaf curl
disease in Pakistan. Begomoviruses are transmitted by the whitefly Bemisia tabaci cryptic species
group and cause economic losses in cotton and other crops worldwide. The CLCuKoV strain, referred
to as CLCuKoV-Bur, emerged in the vicinity of Burewala, Pakistan, and was the primary causal
virus associated with the second CLCuD epidemic in Pakistan. The monopartite ssDNA genome
of (2.7 Kb) contains six open reading frames that encode four predicted proteins. RNA interference
(RNAi)-mediated antiviral immunity is a sequence-specific biological process in plants and animals
that has evolved to combat virus infection. The objective of this study was to design cotton locus-
derived microRNA (ghr-miRNA) molecules to target strains of CLCuKoV, with CLCuKoV-Lu, as a
typical CLCuD-begomovirus genome, predicted by four algorithms, miRanda, RNA22, psRNATarget,
and RNA hybrid. Mature ghr-miRNA sequences (n = 80) from upland cotton (2n = 4x = 52) were
selected from miRBase and aligned with available CLCuKoV-Lu genome sequences. Among the
80 cotton locus-derived ghr-miRNAs analyzed, ghr-miR2950 was identified as the most optimal,
effective ghr-miRNA for targeting the CLCuKoV-Lu genome (nucleotide 82 onward), respectively,
based on stringent criteria. The miRNA targeting relies on the base pairing of miRNA–mRNA targets.
Conservation and potential base pairing of binding sites with the ghr-miR2950 were validated
by multiple sequence alignment with all available CLCuKoV sequences. A regulatory interaction
network was constructed to evaluate potential miRNA–mRNA interactions with the predicted targets.
The efficacy of miRNA targeting of CLCuKoV was evaluated in silico by RNAi-mediated mRNA
cleavage. This predicted targets for the development of CLCuD-resistant cotton plants.

Keywords: computational algorithms; cotton leaf curl Kokhran virus; microRNA prediction; plant
host–begomovirus interactions; RNA interference; target binding sites

1. Introduction

The allotetraploid upland cotton (Gossypium hirsutum L.) is an economically important
fiber-producing industrial cash crop grown on several continents and represents ~40%
of agricultural outputs globally. Cotton is a prized natural textile fiber composed of
90% cellulose and a renewable natural fiber resource that supplies the global textile industry.
Quality parameters of cotton fibers determine the economic value of the crop for the
textile industry [1–3]. The allotetraploid upland cotton genome has 52 chromosomes
(2n = 4x = 52) [4,5]. The first draft genome and physical map for upland allotetraploid
cotton was released in 2015 [6].
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Cotton leaf curl disease (CLCuD) causes major damage to the cotton crop in Pakistan
and has been associated with more than four virus species, including CLCuKoV belonging
to the genus Begomovirus (Geminiviridae) [7,8], a monopartite begomovirus and betasatellite
complex [9–13]. Members of the genus are transmitted by the whitefly Bemisia tabaci cryptic
species group, which is characterized by host range plasticity and variable efficiencies of
begomovirus transmission [14–18].

Cotton leaf curl Kokhran virus-Lucknow (CLCuKoV-Lu) has recently emerged as
a new ‘strain’ of CLCuKoV [19,20]. Begomoviruses have a circular, single-stranded (ss)
DNA genome, with monopartite genomes encoding six proteins. Transcription and gene
regulation are governed by sequences in the large intergenic region (LIR) and a bidirec-
tional mode of transcription [12,21,22]. The plus (+) virion-sense (VS) and negative (−)
complementary-sense (CS) strand encodes ORFs V1 and V2, and ORFs C1, C2, C3, and
C4, respectively [15,19,23]. CLCuKoV-Lu was first reported in Lucknow in 2010 from
guar (Cyamopsis tetragonoloba) plants exhibiting leaf curl symptoms [20]. Rolling circle
amplification (RCA) is widely used to amplify and clone complete begomovirus genomes.
Loop-mediated isothermal amplification (LAMP), quantitative real-time polymerase chain
reaction (qPCR), multiplex PCR, and immunofluorescence assays are standard molecular
diagnostics methods for detecting CLCuD-associated begomoviruses [24–30].

Despite ongoing efforts to manage CLCuD by controlling the whitefly vector, genetic
resistance in cotton to multiple species and strains is required to manage this disease
complex in Pakistan. The use of RNA interference (RNAi) has emerged as a robust tool
for targeting microRNA-induced silencing complex (miRISC)-mediated gene silencing
in eukaryotes [31–34]. RNAi is a double-stranded (ds) RNA-mediated, sequence-specific
antiviral mechanism for inhibiting virus replication and transcription. The RNAi machinery
consists of the core central components, Dicer and Argonaute. They are responsible for
loading the 20–30 nucleotide RNA molecules, processing miRNA/miRNA* duplexes, and
their incorporation into RISC. The dsRNA is cleaved into 21–24 nucleotides [35–39]. Plant
microRNAs (miRNAs) are the smallest and most abundant highly conserved, non-coding,
single-stranded (ss) RNA molecules, range in size from 18 to 24 nt in length, and are
encoded by MIR genes. The endogenous miRNAs are important for regulating plant gene
expression and key biological processes [40–42].

The molecular mechanisms that require mature miRNAs critical for normal growth
in upland cotton have been studied [43–45]. Cotton-encoded miRNAs control biotic and
abiotic stress response networks [46–50], whereas artificial miRNAs (amiRNA) are known to
induce gene silencing that provides immunity against invading viruses [51]. An amiRNA
has been constructed to induce gene silencing against a number of plant viruses [52],
and the experimentally verified cotton plant locus-derived mature miRNAs have been
shown to regulate gene expression. Finally, a subset of mature cotton miRNAs has been
designed to predict target sites in genomes of the CLCuKoV species and strains with robust
confidence [51].

The objective of this study was to identify genome-encoded miRNAs expressed by
upland allotetraploid cotton that will target most or all CLCuKoV strains using an algo-
rithmic in silico approach for miRNA predictions. To explore the mechanisms involved
in host–virus interactions, miRNA–mRNA target site interactions were explored. Collec-
tively, the results are expected to identify predicted ghr-miRNAs that can be used for the
development of CLCuKoV-Lu-resistant cotton plants.

2. Materials and Methods
2.1. Biological Data

Eighty mature cotton locus-derived G. hirsutum microRNAs, or ghr-microRNAs (ghr-
miR156-ghr-miR7514; accession no. MIMAT0005806-MIMAT0029164) (Table S1, Supple-
mentary Materials) are available in the GenBank database. In another study, 78 stem-loop
(precursor) cotton locus-derived ghr-miRNAs (ghr-MIR156-ghr-MIR7514) (accession IDs:
MI0005638-MI0024206) have been published (Table S2). Cotton locus-derived ghr-miRNAs
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were downloaded from miRBase v22.1 (http://mirbase.org/ accessed on 26 July 2019),
which contains annotated miRNAs and associated biological information [53]. The complete
genome of CLCuKoV-Lu, 2761 nucleotides in size (accession no. GU385879), was selected
as the representative genome for miRNA screening. The sequence was downloaded from
the NCBI GenBank database (http://ncbi.nlm.nih.gov, accessed on 19 December 2018) [54].

2.2. Target Prediction

Target predictions were based on an in silico approach that utilizes the most widely
used, publicly available miRNA prediction algorithms, miRanda, RNA22, psRNATarget,
and RNAhybrid. With these four algorithms, the ‘most effective’ miRNA binding sites of
cotton miRNAs were predicted based on the CLCuKoV-Lu genome sequence (GU385879)
(Table 1). Analysis was carried out for the G. hirsutum locus-derived ghr-miRNA sequences
and CLCuKoV-Lu genome-predicted transcript sequences, inputted in FASTA format.

Table 1. Comparison of parameters among the miRNA–mRNA target prediction algorithms used in
this study.

Tools Algorithms Seed Pairing Multiple Target Sites Translation
Inhibition Free Energy Availability

(Web/Code)

miRanda Local alignment + + + + +/+

RNA22 FASTA − + − + +/−

psRNATarget Smith–
Waterman − + + − +/−

RNAhybrid Intermolecular
hybridization + + + + +/−

Tapirhybrid FASTA + + − + +/+

TargetSpy FASTA − + − + −/+

Targetfinder FASTA + − − + −/+

2.3. miRanda Algorithm

The miRanda algorithm offers seed-matching, scoring scheme, dynamic programming,
and conservation consisting of three major steps to identify target sites since its release in
2003 [55], facilitates the prediction of candidate target sites (CTSs) based on minimum free
energy, specifically taking into account RNA duplex dimerization and complementarity
score of the target sequence [56]. The miRanda software was downloaded using the online
source website (http://www.microrna.org/, accessed on 23 March 2019). Prediction analy-
sis was carried out using the default parameters, with an MFE threshold of −20 Kcal/mol,
score threshold of 140.00, gap open penalty of −9.000, gap extend penalty of −4.000, and
scaling parameter of 4.00.

2.4. RNA22 Algorithm

The RNA22 algorithm implements a pattern-recognition approach for predicting target
binding sites [57]. The RNA22 non-seed-based algorithm can be accessed on a web server
(http://cm.jefferson.edu/rna22v1.0/, accessed on 26 January 2019). Biologically significant
miRNA–mRNA interactions were predicted based on target patterns and maximum folding
energy (MFE) [58] to identify optimal site complementarity, a unique feature of the RNA22
algorithm. The default parameters were used for the analysis of cotton miRNAs and the
CLCuKoV-Lu genome sequence as templates, respectively, at 63% for x, 61% specificity,
and an MFE of −15.00 Kcal/mol.

2.5. psRNATarget Algorithm

The psRNATarget algorithm is used to predict small RNA targets with plant-specific
features, together with a seed-matching and -scoring scheme. Using the online website,

http://mirbase.org/
http://ncbi.nlm.nih.gov
http://www.microrna.org/
http://cm.jefferson.edu/rna22v1.0/
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predicted binding sites of plant miRNAs are identified based on complementary scoring [59]
while also reporting inhibition patterns [60]. The fasta sequence of the CLCuKoV-Lu
genome was inputted with selected G. hirsutum miRNAs into the webserver (http://
plantgrn.noble.org/psRNATarget, accessed on 26 October 2020). Target sites of cotton
miRNAs were identified using the default criteria consisting of an expected cut-off of
6.5 and ‘cleavage’ as the mode of inhibition.

2.6. RNAhybrid Algorithm

The RNAhybrid algorithm is a seed-based, flexible online computational method that
is based on intermolecular hybridization predictions of miRNA binding sites in the target
sequence, using the MFE model set at −20.00 Kcal/mol, with site complementarity and
seed match features [61]. The fasta sequence of CLCuKoV-Lu genome and miRNAs were
uploaded to the webserver (http://bibiserv.techfak.uni-bielefeld.de/rnahybrid, accessed
on 19 December 2020) for the analysis.

2.7. RNAfold and RNAcofold Algorithm

The RNAfold algorithm identifies accurate secondary structures associated with a
target single-stranded (ss) miRNA precursor [62], which were uploaded to the web server
(http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi, accessed on 6 September
2022) for analysis. The RNAcofold algorithm estimates the co-folding free energy (∆G)
of RNA duplex sequences. The MFE and base pairing of miRNA–mRNA target duplex
were predicted based on miRNA–mRNA interactions [63]. Also, FASTA sequences for
each unique duplex pair were uploaded and analyzed with RNAcofold with default
settings (http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAcofold.cgi, accessed on 6
May 2022).

2.8. Mapping Network Interactions between miRNA and Virus Target Sequences

A Circos plot was produced using the CIRCOS algorithm and circos package
v0.69-9R-Language [64].

2.9. Identification of miRNA Binding Sites

The predicted transcripts available for CLCuKoV strains were downloaded from the
NCBI GenBank database (accessed on 26 March 2018), as follows: GU385879.2, AM421522.1,
AJ496286.1, HF549182.1, and FN5520001.1 [19]. The MEGA X software v10.0.5 was used
to align the conservation of binding affinity of predicted consensus miRNAs [65]. The
MUSCLE algorithm was used to align the selected CLCuKoV genome sequences [66], and
the miRNA binding site sequences were mapped using the CLUSTALW algorithm [67].

2.10. Statistical Analysis

The miRNA target predictions were analyzed and processed, and graphical represen-
tations were produced in R (version 3.1.1, software version 3.5.1) [68].

2.11. Virus Genome Annotation

The pDRAW32 DNA analysis (AcaClone 1.1.147) was used to annotate the ssDNA
genome of CLCuKoV-Lu. The genome graphical output of the genome sequence characteri-
zation was carried out to identify coding and non-coding regions.

3. Results
3.1. Cotton-Encoded miRNAs–mRNA Interactive Pairs for the CLCuKoV-Lu Genome

The genome map of CLCuKoV-Lu, a circular ssDNA virus 2750 nucleotides in size
was drawn based on predicted start and stop sites of virus open reading frame (ORFs) and
non-coding sequences, respectively (Figure 1).

http://plantgrn.noble.org/psRNATarget
http://plantgrn.noble.org/psRNATarget
http://bibiserv.techfak.uni-bielefeld.de/rnahybrid
http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi
http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAcofold.cgi
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Figure 1. The CLCuKoV-Lu encodes six open reading frames (ORFs) indicated by the colored
arrows. The plus (+) or virion-sense strand encodes ORFs (V1 and V2). The negative (−) strand
encodes the complementary-sense strand ORFs, C1, C2, C3, and C4. Replication of the viral genome
and transcription of the coding regions are under the control of the non-coding large intergenic
region (LIR).

The CLCuKoV-Lu genome has six overlapping ORFs that encode viral proteins. Using
the miRBase web-based tool for miRNA genomics and three distinct prediction algorithms
(miRanda, RNA22, and psRNATarget), the cotton genome-encoded miRNAs possess the
capacity to target the representative species genome, CLCuKoV-Lu. The CLCuKoV-Lu
genome and experimentally verified mature cotton locus-derived ghr-miRNAs were down-
loaded from miRBase version 22 and evaluated for binding strength of miRNA–mRNA
target interactions.

The CLCuKoV-Lu genome sequence was analyzed by searching for cotton miRNAs
using the miRanda algorithm that predicted 11 miRNA–mRNA target pairs. The RNA22
predicted effective target binding sites in 11 cotton miRNAs affiliated with 11 loci in
the CLCuKoV-Lu genome. The psRNATarget predicted 20 cotton miRNAs at 26 loci as
cleavable target candidates, whereas the RNAhybrid approach predicted 76 miRNA–mRNA
target pairs (Figure 2, Tables S3 and S4, and File S1).
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computational tools reveals four commonly occurring ghr-miRNAs.
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3.2. Viral V1-Encoding Coat Protein (CP)

The begomoviral V1 ORF 291–1061 (770 nt) encodes the coat protein (CP), which
is required for encapsidation of the begomoviral ssDNA genome into virions, whitefly
vector-mediated transmission, and virus movement [69–71]. The V1 was targeted by four
predicted cotton locus-derived ghr-miRNAs: ghr-miR7486 (a, b) (locus 846), ghr-miR7497
(locus 349), and ghr-miR7506 (locus 509), based on the miRanda algorithm (Figure 3A).
The RNA22 algorithm identified two miRNAs: ghr-miR169a (locus 691) and ghr-miR7512
(locus 917) (Figure 3B). The psRNATarget algorithm predicted 10 miRNAs: ghr-miR827
(a, b, and c) (locus 740), ghr-miR3476-5p (locus 765), ghr-miR7492 (a, b, and c) (locus 901),
ghr-miR7497 (locus 459), ghr-miR7500 (locus 674), and ghr-miR7510a (locus 805) (Figure 3C).
The RNAhybrid algorithm identified nine ghr-miRNAs: ghr-miR393, ghr-miR482 (a, b), ghr-
miR7486 (a, b), ghr-miR7490, ghr-miR7504a, ghr-miR7510a, and ghr-miR7512 at nucleotide
coordinates 611, 581, 849, 670, 694, and 917, respectively (Figure 3D, Tables 2, S3 and S4,
and File S1).
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3.3. Viral V2-Encoding Pre-Coat Protein

The begomovirus V2 ORF (131–487 nt) is 356 nucleotides in size and encodes the
pre-coat protein. The V2 protein is involved in symptom development, movement, vector
transmission, and regulation of gene expression [71–74]. The r-miR7497 was predicted to
optimally target V2 at nucleotide 349 and 155 and 459, based on the miRanda and psR-
NATarget algorithms, respectively (Figure 3A,C). The RNAhybrid algorithm identified six
ghr-miRNAs to target the overlapping region of V1 and V2 ORF: ghr-miR164, ghr-miR479,
ghr-miR3476-5p, ghr-miR7497, ghr-miR7498, and ghr-miR7507 at nucleotide positions 375,
371, 421, 362, 370, and 364, respectively (Figure 3D; Tables 2, S3 and S4; File S1).
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Table 2. Cotton ghr-miRNAs predicted to target the CLCuKoV ORF genome sequences.

CLCuKoV-Lu
Gene miRanda RNA22 psRNATarget RNAhybrid

V1 ghr-miR7486 (a, b),
ghr-miR7506

ghr-miR169a,
ghr-miR7512

ghr-miR827 (a, b, c),
ghr-miR3476-5p ghr-miR393, ghr-miR482 (a, b),

ghr-miR7492 (a, b, c),
ghr-miR7500
ghr-miR7510a

ghr-miR7486 (a, b), ghr-miR7490,
ghr-miR7504a, ghr-miR7510a,

ghr-miR7512

V1/V2 ghr-miR7497 ghr-miR7497 ghr-miR164, ghr-miR479, ghr-miR3476-5p,
ghr-miR7497, ghr-miR7498, ghr-miR7507

C1 ghr-miR7486 (a, b) ghr-miR398,
ghr-miR7486 (a, b) ghr-miR7486 (a, b)

ghr-miR156 (a, b, c, d),
ghr-miR162a, ghr-miR166b,

ghr-miR169a, ghr-miR398, ghr-miR827 (a,
b, c), ghr-miR2949-3p, ghr-miR3476-3p,

ghr-miR7491, ghr-miR7492 (a, b, c),
ghr-miR7500, ghr-miR7501, ghr-miR7505,

ghr-miR7506
C2 ghr-miR394 (a, b), ghr-miR7504b

C1/C2 ghr-miR7510b ghr-miR7485, ghr-miR7487, ghr-miR7514

C3 ghr-miR7484 (a, b),
ghr-miR7492 (a, b, c) ghr-miR7484 (a, b)

C2/C3 ghr-miR7513 ghr-miR7489,
ghr-miR7513 ghr-miR396 (a, b)

ghr-miR167 (a, b), ghr-miR396 (a, b),
ghr-miR2949(a-5p, b, c), ghr-miR7489,

ghr-miR7493, ghr-miR7494, ghr-miR7511,
ghr-miR7513

C4/C1 ghr-miR390 (a, b, c),
ghr-miR7503 ghr-miR390 (a, b, c)

ghr-miR160, ghr-miR172, ghr-miR390 (a,
b, c), ghr-miR399d

ghr-miR7488, ghr-miR7495 (a, b),
ghr-miR7503, ghr-miR7508, ghr-miR7509,

ghr-miR7510b

LIR ghr-miR2950 ghr-miR2950 ghr-miR2950 ghr-miR399 (a, b, c, e), ghr-miR2948-5p,
ghr-miR2950,

3.4. Viral C1-Encoding Replication-Associated Protein

The C1 ORF (1505–2581), consisting of 1076 bases, encodes a replication-associated
protein (Rep) that is essential for ssDNA replication and transcription [19,75–77]. mi-
Randa predicted six miRNAs: ghr-miR390 (a, b, and c) (locus 2278), ghr-miR7486 (a, b)
(locus 2488), and ghr-miR7503 (locus 2214) (Figure 3A). The C1 ORF gene was also tar-
geted by six predicted miRNAs: ghr-miR390 (a, b, and c) (locus 2281), ghr-miR393 (locus
1735), and ghr-miR7486 (a, b) (locus 2488) by RNA22 (Figure 3B). Five potential miRNA
candidates were predicted to silence the C1 gene by psRNATarget: ghr-miR7486 (a, b)
(locus 2488), ghr-miR7505 (locus 2049), ghr-miR7510b (locus 1581), and ghr-miR7513 (lo-
cus 2540) (Figure 3C). The RNAhybrid algorithm predicted 21 ghr-miRNAs: ghr-miR156
(a, b, c, d), ghr-miR162a, ghr-miR166b, ghr-miR169a, ghr-miR398, ghr-miR827 (a, b, c),
ghr-miR2949-3p, ghr-miR3476-3p, ghr-miR7491, ghr-miR7492 (a, b, c), ghr-miR7500, ghr-
miR7501, ghr-miR7505, and ghr-miR7506 at nucleotide positions 2500, 1665, 2038, 1820,
2469, 2473, 1655, 2470, 1743, 2566, 2467, 2428, 2036, and 1795, respectively (Figure 3D,
Tables 2, S3 and S4, and File S1).

3.5. Viral C2-Encoding Transcription Activator Protein

The C2 ORF of begomoviruses (1153–1599; 446 nt) encodes the transcriptional activator
protein (TrAP) essential for symptom development in the plant host [15,78–80]. Among
the CLCuKoV-Lu genes targeted, C2 had very few binding sites; nonetheless, several
were identified as cotton miRNAs. The miRanda algorithm predicted the hybridization
of ghr-miR7513 at locus 1350 in the overlapping region of C2 and C3 ORFs (Figure 3A).
RNA22 predicted two miRNAs: ghr-miR7489 (locus 1408) and ghr-miR7513 (2540) in the
C2 and C3 ORFs (Figure 3B). Three miRNA had predicted binding affinity with C2 with
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respect to the psRNATarget: ghr-miR396 (a, b) at locus 1250 in the C2 and C3 overlapping
ORFs and ghr-miR7510b at locus 1581 in the C2 and C1 overlapping ORFs (Figure 3C).
RNAhybrid predicted cotton ghr-miRNAs: ghr-miR394 (a, b), ghr-miR7504b in the C2 ORF
(Figure 3D, Tables 2, S3 and S4, and File S1).

3.6. Viral C3-Encoding Replication Enhancer Protein

The C3 ORF of begomoviruses (1058–1459) (401 nt) encodes a replication enhancer
protein (REn) [81,82]. The psRNATarget algorithm identified five predicted miRNAs in
ORF C3: (locus 1250), ghr-miR7484 (a, b) (1081), and ghr-miR7492 (a, b, and c) (1094). In
addition, psRNATarget predicted in the overlapping region of C2 and C3: ghr-miR396
(a, b) (Figure 3C). The RNAhybrid algorithm predicted two cotton miRNAs targeting C3
ORF: ghr-miR7484 (a, b) at nucleotide position 1077. The RNAhybrid algorithm identified
cotton miRNAs in the C2 and C3 overlapping region: ghr-miR167 (a, b), ghr-miR396 (a,
b), ghr-miR2949 (a-5p, b, c), ghr-miR7489, ghr-miR7493, ghr-miR7494, ghr-miR7511, and
ghr-miR7513 at genomic positions 1400, 1226, 1242, 1447, 1352, 1399, and 1350, respectively
(Figure 4D, Tables 2, S3 and S4, and File S1).
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3.7. Viral C4-Encoding Transcription Regulator Protein

The C4 ORF (2091–2429) of 338 bases in size encodes a transcription regulator protein
that functions as a viral effector [77,83,84].

The miRanda and RNA22 algorithms both predicted the binding of ghr-miR390 (a, b,
and c) at consensus genomic locus 2281. The ghr-miR7503 targeting the C1 gene showed
binding affinity at nucleotide 2214 (Figure 3A,B). The RNAhybrid algorithm predicted
cotton miRNAs in the C4-C1 overlapping region: ghr-miR160, ghr-miR172, ghr-miR390
(a, b, and c), ghr-miR399d, ghr-miR7488, ghr-miR7495 (a, b), ghr-miR7503, ghr-miR7508,
ghr-miR7509, and ghr-miR7510b at nucleotide positions 2044, 2177, 2196, 2047, 2258, 2276,
2214, 2282, 2162, and 2175, respectively (Figure 3D, Tables 2, S3 and S4, and File S1).

3.8. Large Intergenic Region of Cotton Leaf Curl Begomoviruses

The large intergenic region (LIR) drives transcriptional regulation of begomovirus V1
and C1 ORFs [21,22,85]. Four algorithms (miRanda, RNA22, psRNATarget, and RNAhy-
brid) predicted a hybridization binding site of ghr-miR2950 at consensus genomic locus
82 of CLCuKoV that would target the LIR (Figure 3A–D). In addition, the LIR was pre-
dicted to be targeted by three miRNAs, ghr-miR7484 (a, b) and ghr-miR7497, as shown
for the psRNATarget (Figure 3C). The RNAhybrid predicted cotton ghr-miRNAs in LIR:
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ghr-miR399 (a, b, c), ghr-miR2948-5p, and ghr-miR2950 at nucleotides 2633, 2616, 2611, and
82, respectively (Figure 3D; Tables 2, S3 and S4, and File S1).

3.9. Prediction of Universal Cotton Plant-Encoded miRNAs

The target miRNAs predicted to silence expression of CLCuKoV-Lu genes were the
miRNAs ghr-miR2950, ghr-miR7486 (a, b), and ghr-miR7513, based on analysis with all
four algorithms considered in this study (Figures 2–4; Table S3 and File S1).

3.10. Prediction of Cotton Plant Genome miRNAs

Of the 80 targeting mature G. hirsutum locus-derived ghr-miRNAs investigated, 7 G.
hirsutum ghr-miRNAs: ghr-miR390 (a, b, c), ghr-miR7484 (a, b), ghr-miR7503, and ghr-
miR7512 at nucleotide positions 2281, 1081, 2214, and 917, respectively, were predicted
as potential binding sites in the CLCuKoV-Lu genome consensus, detected by at least
prediction tools (Tables 2–4). Of 80 cotton miRNAs, three conserved G. hirsutum ghr-
miRNAs were identified.

Table 3. Target binding sites of predicted consensus cotton ghr-miRNAs identified in the CLCuKoV-
Lu genome.

Cotton
miRNA

Target Site
miRanda

Target Site
RNA22

Target Site
psRNATarget

Target Site
RNAhybrid

MFE
*miRanda

MFE **
RNA22

Expectation
psRNATarget

MFE
*RNAhybrid

ghr-miR390
(a, b, c) 2278 2281 −21.48 −18.00

ghr–miR2950 78 78 78 82 −27.38 −23.70 6.5 −30.20
ghr–miR7484

(a, b) 1081 1077 6.5 −20.90

ghr-miR7486
(a, b) 2488/846 2488 2488 849 −23.15/−29.28 −21.48 5.0 −30.70

ghr-miR7503 2214 2214 −23.35 −27.00
ghr-miR7512 917 917 −16.70 −23.50
ghr-miR7513 1350 1350 1351 −21.45 −17.50 −26.80

* MFE represents minimum free energy while MFE ** is the abbreviation of the maximum folding energy.

Table 4. Binding sites of predicted consensus cotton ghr-miRNAs targets.

miRNA ID Accession ID Mature Sequence
(5′–3′)

Target Genes
ORF(s)

Target Binding
Locus Position

ghr-miR390a MIMAT0005815 AAGCUCAGGAGGGAUAGCGCC C1/C4 2278–2298
ghr-miR390b MIMAT0005816 AAGCUCAGGAGGGAUAGCGCC C1/C4 2278–2298
ghr-miR390c MIMAT0005817 AAGCUCAGGAGGGAUAGCGCC C1/C4 2278–2298
ghr-miR2950 MIMAT0014348 UGGUGUGCAGGGGGUGGAAUA LIR 78–97

ghr-miR7484a MIMAT0029124 UUUGUAUAUUAGAUCAAAGAGCAA C3 1081–1105
ghr-miR7484b MIMAT0029125 UUUGUAUAUUAGAUCAAAGAGCAA C3 1081–1105
ghr-miR7486a MIMAT0029127 AAGGAAGCGCUUUGUCCACGUGGA C1/V1 2488–2510/846–871
ghr-miR7486b MIMAT0029128 AAGGAAGCGCUUUGUCCACGUGGA C1/V1 2488–2510/871
ghr-miR7503 MIMAT0029150 AGAUCGAUGGCUGAACAAGUUAGA C4/C1 2214–2237
ghr-miR7512 MIMAT0029161 UGCUACUUGUAGUUAUGCAUG V1 917–938
ghr-miR7513 MIMAT0029162 AAUCAGCCAGGAAUCGUUUGA C2/C3 1350–1372

The ghr-miR7486 (a, b) and ghr-miR7513 were identified as predicted consensus
genomic binding sites at nucleotide positions 2488 and 1350, respectively, based on the
consensus of multiple algorithms used herein. Here, only one G. hirsutum ghr-miRNA
(ghr-miR2950) was predicted to have a target binding site at common genomic position
82 when analyzed by all of the algorithms tested (Tables 2–4, Figure 5). For the CLCuKoV-
Lu genome, ghr-miR2950 was predicted to target the non-coding LIR, while ghr-miR2488
(a, b) targeted the coding region C1 gene, and ghr-miR7513 targets the overlapping region
of ORFs C2/C3 (Figure 5 and Table 3).
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Figure 5. Intersection plot of predicted consensus binding sites of cotton ghr-miRNAs predicted
by multiple algorithms with predicted binding sites confirmed by at least three algorithms in the
consensus reference genome for the CLCuKoV-Lu species.

Of the 11 predicted consensus G. hirsutum ghr-miRNAs, only 1 ghr-miRNA of G.
hirsutum (ghr-miR2950 at nucleotide position 78–97), with an MFE of −27.38 Kcal/mol,
was detected as top effective candidate (Tables 4 and 5). The ‘cleavage’ efficacy of the ghr-
miR2950 was verified against CLCuKoV-Lu by RNAi-mediated suppression, as concluded
by Brodersen [86].

Table 5. Features of predicted consensus cotton G. hirsutum ghr-miRNA target pairs.

Cotton
miRNA miRNA Target Pair Locus

Position
MFE

(Kcal/mol) Score Complementarity
(%)

Mode of
Inhibition

ghr-miR2950

Query: 3′ auaag-
GUGGGGGACGUGUGGu 5′

| : | : | | | | | | | | | :
Ref: 5′

aataaCGCTCCC-GCACACTa 3′

78–97 −27.38 142 93.33 Cleavage

ghr-miR7486 (a, b)

Query: 3′ aggUGCACCUGUU-
UCGCGAAGGAa 5′

| : | | | : | | | | : | | | | | | |
Ref: 5′ tgaATTTGGG-
AAAGTGCTTCCTc 3′

2488–2510 −23.15 171 90.00 Cleavage

ghr-miR7513

Query: 3′ agUUUGCUAA--
GGACCGACUAa 5′

: : | | | : | | | | | | | | | | |
Ref: 5′ atGGACGGTTGACGTG-

GCTGATg 3′

1350–1372 −21.45 162 85.00 Cleavage

3.10.1. Visualization of miRNA Targets

To validate the predicted miRNA–mRNA target–gene interaction analysis, a Circos
plot was constructed to identify host miRNA targets. The mature cotton locus-derived
ghr-miRNAs are indicated on the CLCuKoV-Lu genome sequence maps (Figure 6).

3.10.2. Secondary Structure Analysis

The efficacy of the predicted consensus miRNAs was analyzed based on secondary
structure. Secondary structures were predicted based on manually curated cotton pre-
cursors. The MFE was used as the standard criterion for analyzing the stability of the
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CLCuKoV-Lu RNA structure. The diagrams show the characteristic features of seven
consensus precursors (Table 6).
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Table 6. Features of the precursor of the predicted cotton locus-derived ghr-miRNAs.

miRNA ID Accession
ID

Length
Precursor

MFE
*/Kcal/mol AMFE ** MFEI *** (G + C)%

ghr-MIR2950 MI0013555 108 nt −48.10 −44.53 −1.002 44.44

ghr-MIR7486a MI0024169 105 nt −81.90 −78.00 −1.436 54.29

ghr-MIR7486b MI0024170 101 nt −69.50 −68.81 −1.336 51.49

ghr-MIR7513 MI0024204 103 nt −36.70 −35.63 −0.965 36.89
* MFE is minimum free energy. ** AMFE is the abbreviation of adjusted free energy. *** MFEI is defined as free
energy index.

3.10.3. Free Energy (∆G) Computational Analysis

To validate the predicted miRNAs, the free energy (∆G) of the duplexes was analyzed
by computing the free energy (∆G) of four consensus cotton locus-derived ghr-miRNAs
(Table 7).

Table 7. Free energy (∆G) estimates of the consensus cotton ghr-miRNA–mRNA.

miRNA ID miRNA–mRNA Sequence
(5′–3′)

∆G Duplex
(Kcal/mol)

∆G Binding
(Kcal/mol)

ghr-miR2950 5′ UGGUGUGCAGGGGGUGGAAUA 3′

5′ AATAACGCTCCCGCACACTA 3′ −24.80 −24.37

ghr-miR7486 (a, b) 5′ AAGGAAGCGCUUUGUCCACGUGGA 3′

5′ TGAATTTGGGAAAGTGCTTCCTC3′ −22.70 −17.41

ghr-miR7513 5′AAUCAGCCAGGAAUCGUUUGA 3′

5′ ATGGACGGTTGACGTGGCTGATG 3′ −20.90 −17.74

3.10.4. Conserved Begomoviral Genome Binding Sites

Among the predicted genome binding sites, the greatest conservation among the
different CLCuKoV-Lu strains was found for ghr-miR2950 (78–97) (Figure 7).
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4. Discussion

The CLCuD disease is caused by a complex of species and strains endemic to Pakistan.
The results of this study have identified, based on several well-known computational
approaches and validated with different algorithms, three cotton miRNAs in 80 mature
miRNAs with the potential to target the genome of CLCuKoV-Lu and other CLCuKoV
strains. For several decades, the leaf curl disease caused by CLCuKoV and related bego-
movirus strains and species has limited cotton production in Pakistan [9,11,12,87,88]. By
exploiting adaptive host defenses that can be mounted against CLCuKoV using cotton
miRNAs, disease management may become a reality. The false-positive predictions were
filtered using the computational algorithms described above to evaluate predicted miRNAs
at three different levels. The performance of data-driven algorithms was validated at the
‘union of intersections’ level in relation to predicted biological data, and the potential cotton
miRNA–mRNA target interactions were validated (Figure 5).

The results of this study predict mature cotton genome-encoded miRNAs (ghr-miR2950,
ghr-miR7486 (a, b)) that are expected to target CLCuKoV-Lu (and other CLCuKoV strains)
toward developing leaf curl resistance in cotton. The miRNAs identified in this study are
predicted to interact with the C1 and LIR of CLCuKoV-Lu. These results indicate that an
evolutionarily conserved cotton miRNA, ghr-miR2950, has been selectively employed by
CLCuKoV-Lu to overcome host defenses and cause leaf curl disease in cotton. Previous
studies have reported host–virus interactions using online computational tools to identify
the binding affinity of genome-encoded miRNAs in RTV1 [89], SCBV [90], SCYLV [91],
ZYMV [92], SCBGAV [93], ToBRFV and PhCMoV [94], RYMV [95], MCMV [96], and ICMV-
Ker [97]. Here, similar results were obtained for a predominant causal begomovirus of the
cotton leaf curl disease using online computational tools previously shown to facilitate
optimal target predictions for sugarcane- and rubber tree-infecting plant viruses [89–91,93].

In this study, multiple in silico algorithms were used to enable computational predic-
tions, i.e., consensus target binding sites of ghr-miR2950 at a locus (locus 78), ghr-miR7484
(a, b) locus (1081) and ghr-miR7486 (a, b), and locus (2488), whereas no binding site was
predicted by TAPIR. Host plant-delivered plant miRNAs can induce the degradation of
viral targets through base pairing. The results demonstrate that CLCuKoV-Lu genomic
components (C1 and LIR) are expected to be highly susceptible to targeting by consensus
miRNAs identified here. Among the 80 cotton miRNAs identified, the ghr-miR2950 was
shown to harbor a consensus genomic binding site occurring within the large intergenic
region (LIR) of the CLCuKoV-Lu genome (Figure 7). The LIR governs the bidirectional
mode of transcription of C1 and V1 genes and functions as a bidirectional promoter [21,22].
The use of the union and intersection prediction approaches was essential for controlling
false-positive prediction. Union-level prediction relies on a combination of target prediction
algorithms to find ‘true targets’. In this study, the sensitivity level of data predictions was
increased at the cost of lower-level specificity. In contrast, the intersectional approach
combines two or more algorithmic tools, and a specific threshold level is set at the cost of
lower sensitivity [98–101].

The use of multiple approaches resulted in a comprehensive computational method that
predicted miRNA target interactions with the optimal or ‘best’ outcomes (Figures 2 and 5).
Previous studies conducted to identify plant host-delivered miRNAs have also predicted
the gene silencing targets in plant virus genomes with in silico tools. The successful experi-
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mental in vivo evaluation of plant host genome-encoded miRNAs targeting different plant
viruses has been reported [32,52,102]. The goal of this research was to apply computational
approaches to predict the most optimal cotton miRNAs in the CLCuKoV-Lu genome to
combat begomovirus infection of cotton transformed with miRNAs.

The application of RNAi to cotton varietal improvement to combat CLCuD infection
offers a superior strategy for decreasing cotton yield loss [103–106]. However, gene pyra-
miding for enhanced resistance to CLCuKoV-Lu for upland cotton is complicated because
of the allotetraploid nature of the cotton genome. The low regeneration efficiency of cotton
callus is another constraint to the development of CLCuD-resistant (allotetraploid) upland
cotton. The differential expression profile of ghr-miR2950 has been reported to combat
early-stage infection of cotton by V. dahlliae infection [49,107,108]. The cotton miRNA, ghr-
miR2950, exhibited differential expression in PHYA1 RNAi cotton [109]. The ghr-miR2950
is involved in gibberellin 3 hydroxylase expression [110], and it has been experimentally
shown to accumulate at high levels in fibers while also being responsible for fiber cell elon-
gation by GA signaling in PHYA1 RNAi cotton plants [109,111]. Further, a ghr-miR2950
was identified and demonstrated to be involved in the growth and development of ovule
and fiber in cotton, as well as in root-knot nematode (RKN) infection [112,113].

Finally, RNAi has been used for screening host plant-delivered factors for identify-
ing various cellular functions against viruses [114–116]. In this study, a bioinformatics
workflow has been developed that is expected to achieve CLCuKoV-Lu genome silenc-
ing as an antiviral capacity. Here, the design, construction, and in silico validation of an
optimal amiRNA is reported, which is expected to result in the formation of a modified
miRNA/miRNA* duplex via the precursor ghr-MIR-2950 (Figure 8). The results also add to
the knowledge base required for minimizing the antiviral effects of cotton genome-encoded
miRNAs to combat infection of CLCuKoV-Lu and related strains and potentially other
CLCuD members of the complex.
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Figure 8. Mechanism of miRNA–mRNA gene silencing exploited for the development of CLCuKoV-
resistant cotton. (A) Representative candidate consensus cotton precursor miRNA (ghr-MIR2950).
(B) miRNA/miRNA duplex replacement. (C) Representative miRNA expression construct harboring
the precursor sequenced driven by a promoter at the 5′ end and NOS terminator. (D) Mature
amiRNA/amiRNA*duplex. (E) RISC processing of amiRNA. (F) Degradation of mRNA mediated
by amiRNA.
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5. Conclusions

CLCuKoV-Lu is a damaging pathogen of cotton and a predominant begomovirus
species associated with the CLCuD epidemic in Pakistan. Infection by the virus results in
reduced yield and quality in most cotton varieties cultivated in Pakistan. This research
reports the application of optimized prediction tools and parameters for the identification
of ‘best-candidate miRNAs’ predicted to show efficacy against CLCuKoV-Lu begomovirus
infection of cotton.

To prepare for molecular cloning of effective miRNAs, in silico tools and approaches
were evaluated and implemented to facilitate the predicted optimal binding affinity of
mature candidate cotton miRNAs in the CLCuKoV-Lu genome. Among the 80 cotton
miRNAs investigated, 4 consensus cotton locus-derived ghr-miRNAs were identified that
are expected to base pair via miRNA–mRNA hybridization with miRNAs encoded by
allotetraploid upland cotton and strains of CLCuKoV. The ghr-miR2950 was identified from
among 80 miRNAs identified in cotton as the miRNA that shared the highest affinity for a
conserved region of the CLCuKoV-Lu genome. Based on genome sequence comparisons of
different CLCuKoV strains, the microRNA-binding region is conserved among CLCuKoV
genomes, suggesting the likelihood of achieving species-wide protection with a single
miRNA. Hence, mapping cotton miRNA–mRNA target interactions can result in untangling
molecular underpinnings of cotton genetics in relation to its co-evolution with CLCuD-
associated begomovirus pathogens.
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