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Abstract: Trichomes, epidermal protrusions in terrestrial plants, play diverse roles in plant de-
fense, metabolism, and development. Arabidopsis thaliana, a model plant with single-celled and
non-glandular trichomes, is a valuable system for studying cell differentiation in plants. However,
organelle biology in Arabidopsis trichomes is relatively underexplored. Using light and transmis-
sion electron microscopy, we investigated the phenotypes of intracellular structures in Arabidopsis
trichomes caused by tgd5 mutations, which are known to disrupt lipid transfer from the endoplasmic
reticulum to plastids and have a large impact on chloroplast morphology in pavement and guard
cells. Significant phenotypic changes in the plastid structure were observed in tgd5 trichome cells,
including the absence of plastoglobuli, the emergence of clusters of electron-dense particles in the
stroma, and the possibly cup-shaped morphology of plastids. Additionally, the tgd5 mutations
triggered the formation of giant, up to 15 µm in diameter, neutral lipid-containing droplets in the
trichome cells, as revealed using histochemical staining with lipophilic dyes. These lipid droplets
were substantially larger and more frequent in trichome cells than in other types of cells in tgd5.
These findings highlight the role of TGD5 in maintaining plastid structure and implicate the unique
activity of lipid metabolism in Arabidopsis trichomes.
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1. Introduction

Trichomes are epidermal protrusions comprising a single cell or multiple cells found on
the shoots of many terrestrial plants [1]. Various trichome functions have been postulated,
including protecting plants against abiotic and biotic stresses, the synthesis and emission of
specialized metabolites, developmental regulation, and facilitating interaction with insects [1].
Trichomes have attracted attention not only for their functional aspects but also as a model sys-
tem for cell differentiation in plants. This is partly because the trichome assumes a predictable
form on the plant surface; hence, any morphological changes can be easily detected, and
because mutants defective in trichome development can be obtained owing to the trichomes’
dispensability for plant growth under ambient laboratory conditions [2]. In particular, the
molecular mechanisms underlying trichome development have been systematically inves-
tigated in the model plant Arabidopsis thaliana, which has single-celled trichomes with two
to three branches, using various developmental mutants [3]. A detailed molecular network
model that mainly focuses on the interplay of transcription factors has been proposed to
explain trichome formation in Arabidopsis. Compared to this progress in the study of tri-
chome cell differentiation, there has not been much research on the intracellular structures
of trichome cells despite their possible importance in understanding the roles of trichomes.
While intracellular structures of “glandular” trichome cells, which are the accumulation and
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excretion sites of large quantities of specialized metabolites, have been well documented in
relation to the accumulated products and their secretions (see [4] for a recent example), studies
on the intracellular structures of “non-glandular” trichome cells that do not have a secretory
mechanism but are involved in protective and defensive roles are limited [5]. This situation is
similar in Arabidopsis, which has non-glandular trichomes, despite its widespread use as a
research material for trichome differentiation.

Plastids are key to plant life, serving as the hubs for crucial processes like photosynthe-
sis and nutrient storage. Their multifaceted functions in energy production and metabolic
synthesis make them essential for plant growth and adaptation to environmental changes.
We examined plastid morphology in trichome cells of the Arabidopsis parc6 mutant using a
transgene encoded, plastid-targeted cyan fluorescent protein (CFP) used in our previous
study [6] because trichome plastids in Arabidopsis are otherwise colorless (non-pigmented).
PARC6 was originally identified as a regulator gene of division site placement in mesophyll
chloroplasts [7–9]. Later, we identified PARC6 as the causal gene for one of our plastid
morphology mutants (suba mutants), in which chloroplasts in the pavement cells of the
leaf epidermis frequently emanated one or more extremely long extension(s), known as
stromules (stroma-filled tubules) [10]. We found grape-like aggregations of plastids in
both the trichome and pavement cells of parc6 (suba2) mutants but not in their mesophyll
cells [6], implying a similarity between the regulatory mechanisms of plastid division in
both trichome and pavement cells. This was expected, considering that both cell types share
the same developmental origin. We also examined plastid morphology in pavement and
stomatal guard cells of the other suba mutant, suba1, using plastid-targeted CFPs and trans-
mission electron microscopy (TEM), and noticed some unique and distinctive phenotypes,
including stromule hyperformation in pavement cells and the dismantling of chloroplasts
in guard cells [11]. The causally defective gene in suba1 was identified as TGD5 [11], which
encodes a subunit protein of the plastid envelope localized TGD complex [12]. It has been
suggested that the TGD complex is involved in the endoplasmic reticulum (ER)-to-plastid
lipid transfer, that is required to assemble thylakoid lipids [13]. These results indicate that
ER-to-plastid lipid trafficking plays a critical role in maintaining plastid morphology in
epidermal cells. In this context, we were interested in the morphology of trichome plastids
in tgd5. In the present study, we observed these plastids using fluorescence microscopy and
TEM. We also report on the formation and staining properties of giant spherical structures
in tgd5 trichomes, which were unexpectedly found in our observations, and discuss their
possible implications.

2. Materials and Methods
2.1. Plant Materials and Cultivation

Arabidopsis thaliana (L.) Heynh. accession Columbia (Col) was used in this study. The
transgenic Col line FL4-4, which expresses stroma-targeted CFPs, was used to visualize
plastids using fluorescence microscopy, as previously described [11]. Hereafter, the non-
mutant lines are referred to as wild-type (WT) plants. The TGD5 knockout mutant suba1
was obtained from an ethyl methanesulfonate-mutagenized population of FL4-4 seeds as
previously described [10,11]. The T-DNA insertional tgd5 mutant tgd5-3 (SAIL_254_A11;
Col background) [12] was obtained from the Arabidopsis Biological Resource Center (ABRC;
Ohio State University, Columbus, OH, USA). For the electron microscopy examination of
suba1, it was crossed with WT Col plants, and non-fluorescent tgd5−/− offspring plants
(denoted as suba1*) which were obtained at the F3 generation to exclude the possibility of
artifacts due to the CFP expression. Seeds were germinated and grown on soil (Jiffy-7 peat
pellets; Jiffy Products International BV, Zwijndrecht, The Netherlands) or Murashige–Skoog
agar medium as described previously [11].

2.2. Microscopy and Lipid Staining

CFP fluorescence from plastids was observed using an inverted epifluorescence mi-
croscope IX71 (Olympus, Tokyo, Japan), equipped with a CMOS camera ORCA-flash2.8
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(Hamamatsu Photonics, Hamamatsu, Japan) with previously described settings [6]. Differen-
tial interference contrast images were obtained using an IX71. Aqueous solutions of Sudan
Black B (FUJIFILM Wako Pure Chemical, Osaka, Japan) and Sudan III (FUJIFILM Wako)
dyes were prepared to a final concentration of 0.1% [w/v] for the lipid staining of trichome
cells. Excised leaves were submerged in one of the dye solutions in a 1.5-mL microtube and
incubated at room temperature (22–24 ◦C) for 10 min. Microscopic examinations of non-
stained and stained lipid bodies were performed under bright-field optics using a BX51 micro-
scope (Olympus, Tokyo, Japan) equipped with a CCD digital camera DP71 (Olympus) and a
40× UPlanApo objective lens (NA 0.85; Olympus). The ultrastructural analysis of the trichome
plastids was performed using TEM (JEM-1400Plus; JEOL, Tokyo, Japan) at 100 kV. The leaf
samples used for TEM were prepared as previously described [10].

3. Results
3.1. Morphology and Ultrastructure of Trichome Plastids in the Arabidopsis tgd5 Mutants

First, we examined the morphology of colorless plastids (or leucoplasts) in trichome
cells under epifluorescence microscopy using stroma-targeted CFPs (Figure 1). In the
trichome cells of Arabidopsis WT plants, plastids generally assumed round or ovoid shapes.
However, some plastids exhibited one or more constrictions (Figure 1b), as demonstrated
in our previous report [6].
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Figure 1. Morphology of plastids at the branch junction of leaf trichome cells of the Arabidopsis suba1
mutant. Differential interference contrast (DIC) images (left column) and corresponding images of
stroma-targeted cyan fluorescent protein (CFP; right column) are shown for trichome cells in the
adaxial side of foliage leaves from two-week-old wild type (FL4-4) (a,b) and suba1 (c,d) seedlings.
Arrows and arrowheads in (c) indicate giant and small spherical structures, respectively. Double
arrowheads in (d) indicate thin tubular plastids. Note that the image data for wild types (a,b) were
retrieved from our previous study [6]. The scale bar in (b) indicates 20 µm and applies to all panels.

Using TEM, we found that plastoglobuli had developed and were abundant in the
trichome plastids of the WT, and that the endomembrane system had also developed to
some extent, although no grana-like stacks were observed (Figure 2a,b). In the trichome
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cells of suba1, a TGD5-knockout mutant [11], the plastid morphology appeared relatively
heterogeneous compared to that of the WT under a fluorescence microscope (Figure 1d).
Some of these plastids were elongated and tube- or worm-like in shape (double arrowheads
in Figure 1d). Unlike the trichome cells of parc6/suba2 [6], no grape-like clusters of plastids
were found in those cells of suba1. With TEM, we also found that the trichome plastids
in suba1 (suba1*) were slightly enlarged and contained a less-developed endomembrane
system compared to those in the WT (Figure 2c,d). In addition, clusters of electron-dense
particles were locally present in the stroma of suba1 trichome plastids instead of the mature
plastoglobuli seen in WT trichome plastids. Interestingly, we frequently observed doughnut-
shaped plastids in the TEM analysis of suba1 trichome cells (Figure 2d), which were
presumed to be cross-sections of cup-shaped plastids.
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Figure 2. Ultrastructure of plastids and lipid droplets in leaf trichomes of the Arabidopsis suba1 mutant.
Trichome cells in the adaxial side of leaves from 14-day-old wild type (Columbia) (a,b) and suba1*
(the non-fluorescent line of suba1) (c–e) seedlings were observed. (a–d) Plastids. (e) Lipid droplet in
an epidermal cell at the base of a trichome. P, plastoglobule; Ed, cluster of electron-dense particles;
L, lipid droplet; N, cell nucleus; M, mitochondrion; U, unidentified organelle; Cy, cytosolic region
surrounded by a doughnut-shaped plastid, representing the cross-section of the cup-shaped plastid.
The scale bar in (c) depicts 500 nm for panels (a–d). The scale bar in (e) depicts 2 µm.

3.2. Formation of Giant Lipid Droplets in Trichomes of the Arabidopsis tgd5 Mutants

During the above observation of plastids, we discovered giant spherical structures
in the suba1 trichome cells (arrows in Figure 1c). These giant spheres were approximately
5–15 µm in diameter and often accompanied by tiny spheres (arrowheads in Figure 1c).
Given the emphasis in this study on qualitative observations and exploratory findings, a
statistical analysis of sphere sizes was not conducted, which can be considered a limitation.
They are usually located at or near the branch junction and occasionally in the middle
of the branches. While the exact number of spheres per cell could not be obtained, due
to the three-dimensional extended structure of the trichome, one to several spheres were
typically observed within one trichome cell. These spheres usually aggregated when cells
contained more than one. They did not exhibit the rapid cytoplasmic streaming, or the
second-by-second morphological changes as observed for trichome plastids, as reported in
our previous paper [6]. We examined and compared the frequency of sphere formation in
the trichome cells of the WT, suba1, and another tgd5 mutant, tgd5-3 [12] (Figure 3), and
confirmed that both tgd5 mutants had a statistically significant higher frequency of sphere
formation than the WT (54% in suba1 and 57% in tgd5-3 versus 0% in WT; p < 0.001 using
Fisher’s exact test; Table 1).
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Figure 3. Bright-field images of giant spherical structures in non-stained trichome cells of Arabidopsis
tgd5 mutants. Trichome cells in the adaxial side of leaves from three-week-old wild type (Columbia) (a),
suba1 (b), and tgd5-3 (c) plants were observed. Arrows in (b,c) indicate spherical structures. Scale bars
depict 100 µm in (a) and 50 µm in (b,c).

Table 1. Occurrence of spherical structures in non-stained trichome cells of Arabidopsis tgd5 mutants.
Trichome cells in the adaxial side of foliage leaves from three-week-old plants were examined.
Frequencies of sphere occurrence were compared between the wild type (Columbia) and each mutant
using Fisher’s exact test with Benjamini–Hochberg correction for multiple testing.

Plant Line
Number of Examined

Trichome Cells
(Number of Plants)

Number of Trichome
Cells with at Least

One Sphere

Frequency of Sphere
Occurrence (%)

Significant Difference
from Wild Type (p < 0.001)

Wild type 191 (5) 0 0 –
suba1 171 (6) 93 54 yes
tgd5-3 168 (6) 96 57 yes

We conducted histochemical assays to identify the main components of tgd5-specific
spherical structures. We focused on lipid-staining dyes for three reasons. First, the ap-
pearance of the spherical structures resembles that of lipid droplets (LDs, also referred
to as oil bodies) in various organisms. Second, TGD5 is involved in lipid synthesis and
transfer [12]. Last, LD-like structures were also observed in the pavement and stomatal
guard cells of suba1 using TEM in our previous study [11], although those LD-like structures
were approximately 1–2 µm in diameter and much smaller than the spheres seen in the
trichome cells of suba1 and tgd5-3. As a result, the spheres were stained with Sudan Black B
(Figure 4) and Sudan III (Figure 5), and the staining was statistically specific to tgd5 mutants
(p < 0.001, Fisher’s exact test; Table 2).
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Figure 4. Sudan Black B-stained images of giant spherical structures in trichome cells of Arabidopsis
tgd5 mutants. Trichome cells in the adaxial side of leaves from four-week-old wild type (Columbia)
(a), suba1 (b), and tgd5-3 (c) plants were stained and observed. Arrows in (b,c) indicate Sudan Black
B-stained spherical structures. Scale bars depict 50 µm.

As both dyes have the common property of staining neutral lipids, the spheres were
identified as LDs containing neutral lipids. We did not find giant LDs larger than 5 µm
in diameter, corresponding to those observed with light microscopy, and in TEM images
of the suba1* trichome cells. This might be because these giant LDs were usually located
at or near the branch junction of trichomes, and it is difficult to include the junction site,
which is usually displaced from the axis of the main stalk, in the longitudinal ultrathin
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sections (80 nm thickness) of trichomes. Nonetheless, we found enhanced development of
middle-sized LDs (approximately 2–3 µm in diameter) in epidermal cells around the base
of trichomes [14] in suba1* (Figure 2e).
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Figure 5. Sudan III-stained images of giant spherical structures in trichome cells of Arabidopsis tgd5
mutants. Trichome cells in the adaxial side of leaves from four-week-old wild type (Columbia) (a),
suba1 (b), and tgd5-3 (c) plants were stained and observed. Arrows in (b,c) indicate Sudan III-stained
spherical structures. The arrowhead in (b) indicates a tiny spherical structure attached to the giant
one. Scale bars depict 50 µm.

Table 2. Occurrence of lipid-stained spherical structures in trichome cells of Arabidopsis tgd5 mutants.
Trichome cells in the adaxial side of foliage leaves from four-week-old plants were stained with the
indicated lipophilic dye and examined. Frequencies of occurrence of the positively stained sphere(s)
were compared between the wild type (Columbia) and each mutant using Fisher’s exact test with
Benjamini–Hochberg correction for multiple testing.

Staining
Dye Plant Line

Number of Examined
Trichome Cells

(Number of Plants)

Number of Trichome
Cells Possessing at

Least One
Dye-Positive Sphere

Frequency of
Dye-Positive Sphere

Occurrence (%)

Significant
Difference from

Wild Type
(p < 0.001)

Sudan
Black

B

Wild type 209 (6) 0 0 –
suba1 206 (7) 95 46 yes
tgd5-3 200 (6) 88 44 yes

Sudan
III

Wild type 212 (6) 0 0 –
suba1 192 (6) 70 36 yes
tgd5-3 198 (6) 72 36 yes

4. Discussion

In this study, we examined the plastid phenotypes of trichome cells in Arabidopsis tgd5
mutants. Previously, a lack of functional TGD5 was shown to lead to the occurrence of
achlorophyllous or faintly chlorophyllous stomata [15], shrinkage and fragmentation of
plastids in the stomatal guard cells, and excessive formation of stromules in leaf pavement
cells [11]. In contrast, tgd5 mutations do not appear to affect mesophyll chloroplasts in terms
of size, shape, division, or ultrastructure [11]. Thus, we postulated that TGD5 plays an
important role in maintaining plastid morphology in epidermal (and other non-mesophyll)
tissue, but not in mesophyll tissues in Arabidopsis. The cell type dependent differential
effects of tgd5 mutations in Arabidopsis may reflect the differential activity of the ER pathway
(or eukaryotic pathway) of plastid lipid assembly, which requires the TGD complex; while
mesophyll cells depend on both the ER and plastidial (or prokaryotic) pathways. In
contrast, guard cells (and maybe other non-mesophyll cells) exclusively depend on the
ER pathway [15]. Our results demonstrate that the loss of functional TGD5 affects the
morphology and differentiation (as estimated from the development of the subplastidial
membrane system) of plastids in trichome cells (Figures 1 and 2), implying that plastid
lipid assembly in Arabidopsis trichomes relies heavily on the ER pathway. Nevertheless, the
influence of tgd5 mutations on plastid morphology in trichome cells differed from that in
pavement and guard cells, which share the same developmental origins as trichome cells.
One of the plastid phenotypes observed in the trichome cells of tgd5 was the disappearance
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of plastoglobuli and the emergence of clusters of electron-dense particles in the stroma
(Figure 2b,c). Because plastoglobuli are known to contain various types of lipids, including
galactolipids, diacylglycerol, and triacylglycerol [16], this phenotype may represent a lack
of certain lipids and the concomitant accumulation of their reactive substrates in the plastid
stroma. This is caused by the inability of ER-to-plastid lipid transfer due to the absence
of the functional TGD complex. Another plastid phenotype in tgd5 trichome cells was the
appearance of probably cup-shaped plastids (Figure 2c), which has never been observed
in other cell types in tgd5 [11] and is thus considered to be a trichome-specific phenotype.
While the meaning of this unique shape is not yet understood, this phenotype indicates the
large impact of the TGD5 defect on trichome plastid morphology and, therefore, the crucial
role of TGD5 in maintaining plastid morphology.

Unexpectedly, we also found that the loss of functional TGD5 led to the formation
of neutral lipid-containing giant LDs in trichome cells (Figures 3–5), as a new phenotype
of Arabidopsis tgd5 mutants. These LDs were large enough to be readily visible without
staining under a light microscope (Figure 3). Nile Red-positive LDs have also been reported
to exist in the cytosol of leaf cells in tgd5-3 in a former study [12]. Those LDs in leaf cells
were much smaller in size (<0.5 µm in diameter) and less frequent (detected in 6 of 42 cells
under TEM) than LDs in trichome cells of suba1 and tgd5-3 (approximately 5–15 µm in
diameter and >50% frequency of occurrence). Pavement and guard cells in suba1 were also
found to contain LD-like structures in our previous study [11], with a size of approximately
1–2 µm in diameter. Thus, we conclude that trichome cells are a particularly prominent site
of LD formation due to tgd5 mutations. The observation that giant LDs were found only
in the trichome cells of tgd5 plants is intriguing, and the activity of neutral lipid synthesis
might be high in Arabidopsis trichomes. To further elucidate the properties of those giant
LDs, additional research including time-lapse observation and lipidomic profiling will
be necessary in the future. In particular, potential dynamic behaviors of lipid droplets in
trichome cells, including growth, merging, movement, and morphological changes, are
worth further investigation by employing long-term time-lapse microscopy. Although the
functions of trichomes in Arabidopsis are not well understood, a recent study demonstrated
that they act as mechanosensory cells that activate a rapid immune response in plants [17].
The trichome-specific phenotypes observed in the present study provide clues for exploring
the functions of Arabidopsis trichomes.
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