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Abstract: A prompt seed germination and emergence coupled with an excellent seedling vigor are
highly desired features to ensure perfect crop establishment and subsequent vegetative growth. Seed
dressing with pesticides represents the most common technology for enhancing seed performance
after sowing, while little is known about biostimulant seed dressing. This practice could play a
fundamental role in developing new sustainable starter fertilization for cereals. The enhancement of
germination and seedling vigor of durum wheat seeds (Triticum turgidum L. subsp. durum (Desf.)
Husn) was the main target of this research. The experiment took place in a germination cabinet
under controlled environmental conditions, settled at the constant temperature of 10 ◦C and under
dark conditions for 8 days. The different seed dressings, sprayed on the seeds, were composed by
a combination of a fungicide and different biostimulants. Coleoptile and root length, as well as
biomass, were significantly increased by the different biostimulants, compared to the control. As
for germination traits, seeds treated with Codium fragile and Opuntia ficus-indica extracts, containing
phytohormones and different nutrients, showed a final germination (96%) significantly higher than
the one obtained with the control treatment (86%). These results show that treating seeds with
a suitable dressing solution can greatly improve the germination features and seedling vigor of
durum wheat. This can help the crop to withstand future stresses, especially in early stages, and
possibly increase the grain yield with a reduction in agrochemicals. However, the combination of the
substances used in the present study rarely showed a synergistic effect on the tested variable.
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1. Introduction

High physiological seed quality is a feature greatly requested by farmers for every crop.
However, the lack of close cooperation between the seed industry and scientific community
is slowing down the progress in obtaining high-performance seeds [1]. A rapid and uniform
field establishment is the first target for all growers, and the degree to which this target is
achieved determines the success and the profitability of crops [2–4]. Seeds and seedlings
undergo various biotic and abiotic stresses that can hinder vigorous plant establishment
and, consequently, future crop production [5–8]. Seed treatment is a crop-specific and
objective-oriented method, developed to protect seeds from major stressors, thus allowing
plant genotypes to entirely express their potential [9]. In the past years, dressing seeds
with fungicides or insecticides became a fundamental tool to ensure high agronomic
performances for all major crops. This technique is considered an environmentally friendly
practice, because it can provide long-term protection of the plants by using a lower dose of
pesticides per hectare as compared to conventional spraying [10,11]. Moreover, it has an
economic benefit and ensures higher workplace safety for farmers [12,13]. Seed dressing
is a valid solution not only to face most biotic stresses but also to reduce the negative
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impact of abiotic stress, such as drought and salinity, through the application of nutrients,
microorganisms and phytohormones [14–19].

In the Mediterranean area, wheat production is seriously threatened by severe abiotic
stresses that usually result in a significant yield reduction even when the stress occurs
during the initial growing stages of the crop [20–23]. Since durum wheat (Triticum turgidum
L. subsp. durum (Desf.) Husn) is a fundamental crop in the Mediterranean area, methods
and strategies aiming to enhance its resilience to abiotic stresses, without negatively affect-
ing the environmental sustainability, will be the core subject to face food security in that
peculiar geographic area [24].

A possible solution to help reach this fundamental goal is the use of biostimulants.
These products are garnering increasing attention among researchers and farmers due to
recent market trends and their capabilities to enhance crop performance, especially under
abiotic stresses [25]. Seed treatment with biostimulants and/or micronutrients appears
to be a sustainable and economically valid option to ensure good crop establishment in
different conditions. For this reason, scholars have started to investigate the effect of soak-
ing and/or priming seeds with various substances on germination and early development
of plants [26]. In the past years, seed treatment with zinc proved to be a good practice to
enhance seed germination and vigor for different crops [27]. Instead, in recent years, the use
of biostimulants like seaweed or plant extracts has spread as an efficient method for seed
dressing. Seaweed extracts appear to be rich in phytohormones and other compounds able
to trigger the expression of several genes, connected with defense and nutrient absorption
mechanisms [28]. The plant extracts play a similar role in promoting the development
of different crops, by providing nutrients, amino acids and other components directly to
the plant or by triggering the pathways involved in phytohormones biosynthesis, pho-
tosynthesis regulation and nitrogen assimilation [29]. Despite the overall good results
obtained by these kinds of compounds on wheat under different stress conditions, espe-
cially in terms of final germination percentage, fresh biomass of the seedlings and content
of chlorophyll [30–36], the biostimulant seed treatment is still an uncommon practice for
most farmers. That is probably because seed soaking, which is the most used method
in germination studies, is not viable at an industrial scale, especially for the mechanical
impediment of the soaked seeds to flow inside a seeder [37]. Foreseeing the great potential
of this technique, several fertilizer companies have been developing new seed dressing so-
lutions for years. However, the limited literature describing the industrial seed application
of non-microbial biostimulants evidenced contrasting results, caused by the plethora of
active compounds used and the interactions among them and with the different growing
conditions and crop species [38–42]. To better understand the effect and the efficacy of
the different seed coating products on durum wheat, especially in terms of germination
rate, germination speed and seedling vigor, we carried out several germination trials using
different plant biostimulants. The following hypotheses were tested: (i) when compared to
untreated seeds, biostimulant seed dressing significantly improves germination rate and
speed as well as the seedling vigor of durum wheat; (ii) the effect is improved by combining
different substances.

2. Materials and Methods
2.1. Experimental Design

To have uniform experimental conditions, durum seeds (cultivar Odisseo) were visu-
ally chosen based on their dimensions. Subsequently, they were treated with eight different
solutions containing the following components:

• A liquid fungicide, commercially known as VIBRANCE GOLD by SYNGENTA, at the
dose of 200 mL per 100 kg seed, which contains 4.63% Sedaxane, 2.32% Fludioxonil,
2.32% Difenoconazole;

• A liquid NPK organic fertilizer containing 3% N, 4% P2O5, 3% K2O, free amino
acids (e.g., phenylalanine, methionine, tyrosine, proline, etc.), humic and fulvic acids
(hereinafter referred to as NPK);
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• Zinc (hereinafter referred to as Zn), derived from a commercial product containing
chelated Zinc with ethylenediamine tetra-acetic acid (EDTA, 9% Zn);

• An experimental product containing a mixture of aqueous extracts from the seaweed
Codium fragile (10 g of dried alga per 1 L of distilled water) and the plant species
Opuntia ficus-barbarica (50 g of fresh puree of prickly pear per 1 L of distilled water).
Hereinafter referred to as SWEO;

• Distilled water.

The exact formulation of each solution is shown in Table 1.

Table 1. Active ingredients and formulations of the different dressing solutions.

Ingredient
(g) Control NPK Zn SWEO NPK + Zn NPK + SWEO SWEO + Zn SWEO + NPK

+ Zn

Fungicide 2 2 2 2 2 2 2 2
Distilled Water 8 5 7 5 4 2 4 1

SWEO 0 0 0 3 0 3 3 3
NPK 0 3 0 0 3 3 0 3
Zinc 0 0 1 0 1 0 1 1

SWEO: a mixture of extracts from seaweed Codium fragile (Suringar) Hariot and plant Opuntia ficus-barbarica A.
Berger; NPK: a liquid NPK organic fertilizer containing 3% N, 4% P2O5, 3% K2O, free amino acids, humic and
fulvic acids.

Odisseo was chosen because it is a modern durum wheat cultivar extensively culti-
vated around the Mediterranean basin [43,44].

The eight treatments were applied at the rate of 1 L solution per 100 kg seed, to
simulate the industrial dose. Seed treatment was applied by mixing 1 mL of dressing
solution with 100 g of seeds and shaking them in a weighing bottle. This dosage was
based on reference values found in the literature [45–47]. Four replicates (each consisting
of 100 seeds) were used for each treatment. The treated seeds were placed into a Petri dish
(120 mm diameter), with three layers of Whatman Grade 1 filter paper, soaked in distilled
water, and left for 8 days in a seed germination cabinet, in dark conditions, at a constant
temperature of 10 ± 1 ◦C [48], to simulate a possible field temperature during sowing
season. The Petri dishes were randomly allocated within the cabinet.

2.2. Measured Traits

Germination was determined by radicle emergence. The germinated seeds of each
replicate were counted every day to calculate

• Final germination percentage: (germinated seeds/total seeds) × 100, after 8 days;
• T50: time to achieve 50% of final germination calculated according to the following

formula [49,50]:

T50 = ti +

(
N
2 − ni

)(
tj − ti

)(
nj − ni

) (1)

where N is the final number of germinating seeds and nj and ni are the cumulative number
of seeds germinated by adjacent counts at times tj and ti, respectively, when ni < N/2 < nj;

• Germination curves.

After 8 days, all germinated seeds were analyzed, and the following traits were
measured for each replicate:

• Main root’s length (cm), measured by a ruler;
• Length of the coleoptile (cm), measured by a ruler;
• Mean dry biomass of the roots (weight, mg). For each replicate, the roots were

separated from the seeds, dried for 48 h at 60 ◦C and then the total biomass was
divided by the number of germinated seeds;



Int. J. Plant Biol. 2024, 15 233

• Mean dry biomass of the coleoptile (weight, mg). For each replicate, the coleoptiles
were separated from the seeds, dried for 48 h at 60 ◦C and then the total biomass was
divided by the number of germinated seeds.

2.3. Statistical Analysis:

In order to allow a better explanation of germination experiments, the data were
analyzed as time-to-event data [51]. To estimate fundamental traits (e.g., T50 and final
germination) and their corresponding standard errors, an event-time approach has been
used by fitting a three-parameter log-logistic model to data from each germination curve
separately [52]. The model equation used in this study was

F(T) =
d

1 + exp[b{log(T)− log(T50)}] (2)

where d denotes the proportion of germinated seeds (upper limit or final maximum germi-
nation), and T50 is the time (number of days) to reach 50% of final germination (median
germination time). The parameter b is proportional to the slope of F at time T equal to the
parameter T50.

Quantitative data indicating the seedling vigor, obtained by the analysis of germinated
seeds, were evaluated with the analysis of variance (ANOVA) to test the efficacy of the dif-
ferent seed dressing solutions. Two means were considered different at the 95% probability
level by Fisher’s protected least significant difference.

Statistical analysis was performed with the open-source environment R [53] using
the add-on packages ‘drcte 1.0.30’, for event-time models, which allowed us to analyze
the germination data, with a time to event curve fitting procedure, considering only three
fundamental indicators for seed germination. This approach was enough to ensure a clear
description of the whole-time course of events, for a simple experiment scheme [54].

3. Results
3.1. Final Germination Percentage and Median Germination Time (T50)

As reported in Table 2 and Figure 1, all treatments strongly influenced the germination
of durum wheat seeds. The application of biostimulants enhanced both the final germi-
nation percentage and the median germination time (T50). SWEO was the best treatment,
significantly raising the germination percentage by 11% compared to the control. The
other formulations showed a germination rate that ranged from 90.5% (NPK) to 92.5%
(SWEO + Zn), all significantly higher than control (86%). All treated seeds showed a signif-
icantly higher germination speed compared to control. The dressing solutions containing
SWEO alone displayed the fastest germination (T50 = 1.71 days), followed by NPK and Zn
(both with T50 = 1.84 days). The seed dressing solutions containing a mixture of different
ingredients showed a germination speed significantly higher than that obtained with the
single ones (except for SWEO + Zn) but still lower than that of the control treatment, which
had a median germination time of 2.26 days.

3.2. Length of the Main Root

As shown in Figure 2, the mean length of the main roots was significantly enhanced
by the biostimulant seed dressing as compared to the control treatment (p < 0.001). The best
result was obtained by the application of SWEO (11.4 cm), which lead to a 32% increase in
root length as compared with the control (8.6 cm). All the treatments containing SWEO
showed a length of the main root significantly higher than that of the other treatments
(except for SWEO + NPK + Zn, with 10.3 cm). The application of zinc, NPK and their
mixture had a similar effect on the root length of durum wheat seedlings (9.86 cm, 9.56 cm
and 9.94 cm, respectively).
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Table 2. Germination percentage at 8 days and median germination time (T50) for each seed treatment
± standard errors.

Seed Treatment Final Germination (%) T50 (Days)

Control 86.0 ± 0.4 c 2.26 ± 0.03 e

NPK 90.5 ± 0.29 b 1.84 ± 0.01 b

Zn 90.8 ± 0.48 b 1.84 ± 0.02 b

SWEO 95.8 ± 0.85 a 1.71 ± 0.01 a

NPK + Zn 91.3 ± 0.75 b 2.04 ± 0.03 d

NPK +SWEO 90.8 ± 0.48 b 2.1 ± 0.02 d

SWEO +Zn 92.5 ± 0.65 b 1.87 ± 0.02 b

SWEO + NPK + Zn 92.3 ± 0.63 b 1.94 ± 0.04 c

Means sharing letters are not significantly different at p < 0.05.
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3.3. Root Biomass

The mean root biomass of the single seedling was significantly influenced by the
different seed treatments (p < 0.001). SWEO and SWEO + Zn were the treatments showing
the highest value (6.2 mg), not significantly different to the treatment containing all the
biostimulants (6.1 mg) and NPK alone (5.9 mg). As shown in Figure 3, all the other
formulations produced a root biomass significantly greater, with an average increase of 8%,
in comparison with the control treatment (5.3 mg).
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3.4. Coleoptile Length

As with the root system, the coleoptile development was significantly influenced by
the different seed dressing solutions (p < 0.001). The application of biostimulants always
produced a coleoptile significantly longer than that of the control treatment (Figure 4). As
compared to the control, SWEO doubled the coleoptile length (6.3 cm vs. 3.2 cm), while
the other treatments produced an increase ranging from 26% (NPK, 4 cm) to 81% (SWEO
+ NPK, 5.8 cm). Formulations containing Zn or NPK alone showed a result significantly
lower than that obtained by applying their mixture (4.0 cm vs. 5.3 cm).

3.5. Dry Biomass of the Coleoptile

Different seed dressings significantly influenced the biomass of the coleoptile of durum
wheat seedlings (p < 0.001). Again, the SWEO treatment produced the highest biomass
(4.2 mg), but the effect was less evident than that obtained for coleoptile length (Figure 5).
The application of mixtures did not produce an effect significantly different from that of
the single components. The Zn treatment resulted in a coleoptile biomass significantly
lower than the SWEO treatment did, with a decrease of about 10%. The Zn seed dressing,
however, still produced a 23% enhancement as compared to the control (3.0 mg).
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4. Discussion

Since the different treatments markedly improved seed germination traits and the
seedling vigor of the durum wheat cultivar Odisseo, our first hypothesis was verified.
Conversely, considering our findings, the second hypothesis must be rejected. Indeed, as
compared to the application of single components, the combination of different biostim-
ulants in the same seed dressing solution did not significantly enhance the performance
of durum wheat, except for coleoptile length. This phenomenon, especially in the case of
SWEO and NPK, could be explained by the negative effect that excessive doses of nutrients
and phytohormones can have on early plant development. Similar results were found
by other studies in which high doses of biostimulants or their combinations reduced the
germination percentage and the seedling performance [14,55,56]. As for treatments con-
taining Zn, the negative effect could be probably due to EDTA and its competition with
other nutrients [57,58].

The Codium and Opuntia extracts showed the best results in all the analyzed traits. The
effectiveness of seaweed extracts in promoting growth and the physiological traits of wheat
has been reported by several studies [59,60]. Extracts from Codium fragile were recently
found to enhance the germination performance and seedling vigor of durum wheat both
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under normal and salt stress conditions [61]. Codium spp., like all macroalgae, contain
phytohormones (e.g., cytokinin, gibberellins and auxins), as well as essential nutrients
and amino acids [61–66]. All these substances are positively involved in seed germination
and seedling development [67–69]. Additionally, Opuntia spp. contain carbohydrates,
proteins, vitamins, fatty acids and minerals (e.g., magnesium, potassium, calcium and
zinc), as well as osmoprotective compounds, especially phenylalanine and proline [70–75].
Phenylalanine plays a fundamental role in early seedling growth and development [76,77],
while proline is involved in the protective mechanism against several abiotic stresses, like
water and salt stress [78]. The extremely effective action of Opuntia extracts in promoting
seed germination and seedling vigor is also reported by another study, in which the final
germination of tomato seeds increased from 64% with the untreated seeds to 100% with the
seeds treated with the plant extracts; similar results were obtained also in terms of the fresh
weight of the tomato plants [79].

The positive effect the NPK treatment had on germination traits as well as on root
and coleoptile development was due to the its formulation of macronutrients as well as
humic and fulvic acids. Other studies found that fulvic acids increased the germination rate
and growth speed of spring cereals [80], while humic substances improved the seedling
vigor of wheat [81]. As for macronutrients, the key role that phosphate fertilizer plays in
promoting early growth of different crops is well referenced [82–84]. Similarly, nitrogen
and potassium can boost seedling vigor, as reported by a study conducted on tomatoes [85].
The efficacy of NPK fertilizer in promoting wheat development was reported by another
study, in which seeds of different bread wheat cultivars, soaked in different NPK solutions,
showed an increase in plant height ranging from 2% to 11% [86]. In our study, seeds treated
with chelated zinc performed better than those of the control for all the analyzed traits.
This is consistent with other findings, in which seed priming with zinc strongly enhanced
the germination percentage of wheat compared to the untreated seeds (from 22% to 38%);
the dry weight of the seedlings was enhanced as well [87]. Seed dressing applied as zinc
sulphate or zinc oxide was reported to be one of the most common and effective ways to
increase the germination percentage and the seedling vigor of many crops [88–90]. While
the use of chelated zinc is still little explored for seed coating, its use could be very effective
in alkaline or calcareous soil, where Zn availability is limited [91,92].

5. Conclusions

Biostimulant seed dressing is a promising technique that deserves a deeper under-
standing to help the industry in obtaining an increasingly high-performance seed. Our
study clearly demonstrated that different biostimulants delivered together with a fungicide
seed dressing were great enhancers of the germination and vigor of durum wheat seeds.
The application of extracts from Codium fragile and Opuntia ficus-barbarica constantly was
the most effective treatment. Additionally, it never showed a synergistic action when
used in a mixture with other substances. A fast and uniform emergence would result in a
more resilient crop, especially in the earliest growth stages, thus leading to an important
reduction in the use of agrochemicals. For these reasons, farmers should pay more attention
to seed quality and to proper seed dressing. Our study, despite clearly showing the effect
of different seed dressings in promoting germination and seedling vigor of durum wheat,
still has strong limitations, including i) the controlled environmental conditions and ii)
the relatively short duration of the experiment. Further studies are needed to reveal the
mechanism of action of the different substances, especially their interactions, and to evalu-
ate their effectiveness on diverse crops in longer studies under field conditions. Having a
more complete understanding of these processes could help farmers to better face seeding
uncertainties with the right seed dressing.
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