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Abstract: This study utilizes the National Health and Nutrition Examination Survey (NHANES)
2017–2018 data to explore the relationship between exposure to perfluoroalkyl substances (specifically
perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), metals lead (Pb), mercury
(Hg), and cadmium (Cd), allostatic load, and hepatic disease markers, including the fatty liver index
a measure of the likelihood of non-alcoholic fatty liver disease, aspartate aminotransferase (AST),
alanine aminotransferase (ALT), alkaline phosphatase (ALP), and total bilirubin. The paper identi-
fied significant associations and interaction effects by employing descriptive statistics, Spearman’s
correlation analysis, linear regression, and Bayesian kernel machine regression (BKMR). Descriptive
statistics highlight sex-specific differences in contaminant levels. Spearman’s analysis underscores
strong correlations among metals and per- and polyfluoroalkyl substances (PFAS). Linear regression
reveals significant impacts of specific contaminants on AST, ALT, ALP, and bilirubin levels, adjusting
for age and alcohol consumption. BKMR results further elucidate the complex, potentially synergistic
relationships between these environmental exposures and the likelihood of non-alcoholic fatty liver
disease, offering nuanced insights into their combined effects on liver health. The findings emphasize
the intricate dynamics of environmental exposures on hepatic function, advocating for targeted public
health interventions.
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1. Introduction
1.1. Context
1.1.1. Hepatic Disease: An Issue of Significant Public Health Concern

Hepatic disease has emerged as a fast-growing global health concern with many
implications [1,2]. The prevalence of hepatic diseases has been on an alarming rise over the
years, ranging from geographical boundaries and affecting diverse human populations [1,3].
This worrisome trend has not only placed a significant burden on healthcare systems
globally but has also cast a shadow on the overall well-being and productivity of individuals
and communities across the globe [1,4]. It is important to note that hepatic disease has
a global influence that reaches beyond the healthcare sphere. These diseases represent
significant economic and social issues, such as increased healthcare costs, decreased work
productivity, chances of mortality, and a lower quality of life for affected persons and their
families [1,2,5]. Furthermore, the burden of hepatic illnesses does not stop with the patients;
it spreads throughout society, affecting careers, employers, and healthcare providers.

Scholarly work by Dreher and colleagues [6] found that hepatic diseases are closely
intertwined with various factors like changes in dietary patterns, sedentary lifestyles,
the obesity epidemic, and an increase in alcohol consumption. Furthermore, there is
growing concern about the influence of environmental toxins and chemicals on liver health.
Within this context, the role of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic
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acid (PFOS) has come under scrutiny due to their widespread presence and potential
health risks [5]. This growing problem makes it critical to identify the significant factors
contributing to hepatic disorders and their impact.

1.1.2. PFAS and Metals Exposure—Environmental Chemicals of Concern
PFAS Exposure

Per- and polyfluorinated substances (PFAS), such as PFOA and PFOS, are pervasive
environmental contaminants found in numerous everyday items like paint, toys, nonstick
cookware, and firefighting foams [5,7,8]. Due to their chemical stability, PFAS persists in the
environment, contaminating water sources and wildlife and accumulating within human
bodies [9,10]. This persistence poses significant health concerns as PFAS can accumulate
in human tissues over time, particularly in the liver [4,8,11,12]. Exposure to PFAS occurs
through various routes, including ingestion of contaminated food and water, inhalation of
airborne particles, or direct contact with PFAS-containing products [4,8,13,14].

Metals Exposure

In addition to PFAS, metals such as lead (Pb), mercury (Hg), and cadmium (Cd) also
pose significant environmental and health risks. These metals are prevalent in various
products and industries and can contaminate the environment, including water bodies and
soil [5,7,8]. Like PFAS, metals persist in the environment and can accumulate in ecosystems
and within human tissues over time [11,12]. Metals exposure occurs through pathways
similar to PFAS, including ingestion, inhalation, and direct contact with contaminated
materials [13,14].

Co-Exposure of PFAS and Metals

The simultaneous presence of PFAS and metals in the environment exacerbates the
risks associated with individual exposures. Their widespread use and persistence result
in continuous release into air, water, and soil, posing a significant public health con-
cern [14–17]. Co-exposure to PFAS and metals can lead to additive or synergistic effects,
potentially magnifying adverse health outcomes [7]. Therefore, understanding the separate
impacts of PFAS and metals exposure before addressing their co-exposure is essential for
elucidating their combined effects on human health and the environment.

PFAS and metal’s widespread use and environmental persistence speak to their effect
on populations over their life course [8]. Specifically, the persistence allows PFAS and
metals to accumulate in ecosystems, including water bodies, soil, and even wildlife [9,10],
exposing individuals and communities to various doses and combinations of mixtures.

1.1.3. Relevance of PFAS and Metals to Hepatic Disease

The relevance of PFAS (per- and polyfluoroalkyl substances) and metals to hepatic dis-
ease is becoming increasingly significant in public health due to their rising prevalence and
impact on liver health [11,12]. These substances, known for their persistence in the environ-
ment and potential for bioaccumulation, are implicated in various liver diseases, including
non-alcoholic fatty liver disease and hepatocellular carcinoma. Studies have identified a
correlation between exposure to these toxic chemicals and liver dysfunction [11,12].

Globally, liver disease, encompassing conditions like hepatitis, cirrhosis, and liver
cancer, is a leading cause of morbidity and mortality. The burden of liver disease is growing,
especially in regions with high industrial activity and environmental pollution. For instance,
in China, liver cancer is a significant cause of cancer-related deaths linked to industrial
pollution [11].

Heavy metals like cadmium (Cd), lead (Pb), and mercury (Hg) are known to disrupt
liver function [13]. These metals, prevalent in industrial wastes and atmospheric pollution,
can enter the human body through food chains and accumulate in organs, leading to
chronic poisoning [14]. Epidemiological studies and animal experiments have consistently
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demonstrated the harmful impact of heavy metal exposure on liver health, including
significant associations with liver damage markers like ALT and AST [15–17].

Most existing studies focus on the impact of individual metals on liver health. How-
ever, the reality of environmental exposure is often a mixture of several toxic metals. This
complex exposure scenario presents a challenge for understanding the combined effects
on liver health. A study in rural China addressed this by using Bayesian kernel machine
regression to analyze the combined effects of multiple metals (Cr, Co, Cd, Pb) on liver
function [11]. This approach revealed that co-exposure to these metals has a measurable
impact on liver health, underscoring the need for public health strategies to mitigate the
risks of heavy metal pollution.

1.1.4. Individual vs. Combined Exposure

Previous research has examined the health impacts of specific PFAS and metals such as
PFOA, PFOS, Hg, Pb, and Cd individually on hepatic outcomes [15,18–21]. However, these
isolated studies may not adequately depict the complexities of real-world exposure settings
in which individuals are exposed to many PFAS and metals at the same time [22,23]. People
are exposed to PFAS and metal combinations through various sources, including polluted
drinking water, food, and consumer products [24,25]. As a result, examining cumulative
exposure to multiple PFAS and metals rather than individual ones provides a more realistic
picture of the environmental and health concerns associated with PFAS and metals [26,27].

1.1.5. Allostatic Load

Allostatic load is “the wear and tear on the body” that occurs when an individual
is subjected to recurrent or chronic stress. It represents the physiological implications of
recurrent or sustained chronic stress exposure to fluctuating or heightened neuronal or
neuroendocrine response [28,29]. Allostatic load is an emerging concept in hepatic disease
research, as chronic stress has been shown to contribute to liver dysfunction and disease
progression [30]. Understanding the relationship between combined PFAS exposure, metals
exposure, and allostatic load can provide insights into the mechanisms underlying the
association between PFAS exposure, metals exposure, and hepatic diseases.

1.2. Research Objectives

The major purpose of this study is to investigate the relationship between combined
PFAS/metals exposure and allostatic load on hepatic disease risk. This study seeks to shed
light on a potentially essential yet understudied mechanism linking environmental factors
to liver health by exploring the interaction between PFAS/metals.

This study is significant as it can inform public health interventions and regulatory
measures to reduce PFAS and metals exposure and prevent hepatic diseases. By identifying
the association between combined PFAS exposure and hepatic disease risk, policymakers
and healthcare professionals can develop strategies to mitigate the adverse health effects of
PFAS exposure.

2. Materials and Methods
2.1. Study Design

For this study, the data source is the National Health and Nutrition Examination
Survey (NHANES) data from 2017–2018 among a representative sample of the U.S. non-
institutionalized civilian population, involving 9254 participants. NHANES is a program
conducted by the Centers for Disease Control and Prevention (CDC) to assess the health
and nutritional status of adults and children in the United States. NHANES utilizes a
complex, multistage, stratified sampling design to represent non-institutionalized civilians
in the United States [31,32].

The NHANES survey covers questions regarding demographics, socioeconomic sta-
tus, diet, and health, followed by medical, dental, and physiological tests and laboratory
examinations conducted by trained medical professionals. Its findings are vital for de-



J. Xenobiot. 2024, 14 519

termining disease prevalence, assessing nutritional status, setting national standards for
health measurements, and supporting public health policy and programs [31,32].

Description of Cohort

The NHANES provided data for the study. Between 2017 and 2018, the National Center
for Health Statistics (NCHS), a part of the Centers for Disease Control and Prevention (CDC)
in the United States, gathered the data [31,32]. Leveraging NHANES data, our study sought
to determine whether exposure to PFAS and metals in combination affected the liver. A
variety of PFAS, including PFOS and PFOA, and metals such as Pb, Cd, and Hg were
investigated in this study. The study also looked at the allostatic load index using a range
of clinical and bio-markers, such as albumin, creatinine clearance, BMI, triglycerides, HDL
cholesterol, total cholesterol, CRP, and hemoglobin A1C [33].

2.2. Blood Measurement Sample

For the NHANES, a mobile exam center (MEC) gathered blood samples for laboratory
processing, including evaluations for exposure to environmental agents such as PFAS and
metals. Under carefully monitored circumstances, these samples were prepared, kept, and
sent to laboratories around the nation [33].

2.3. Operationalizing Allostatic Load

Drawing from prior research, allostatic load was measured by aggregating dysfunction
across various physiological systems, including the cardiovascular system (systolic blood
pressure (SBP), diastolic blood pressure (DBP), triglycerides, high-density lipoprotein
(HDL) cholesterol, total cholesterol, the metabolic system (albumin, body mass index
(BMI), hemoglobin A1C, and creatinine clearance) and the inflammatory system, c-reactive
protein (CRP) [5,34–36]. These markers were categorized into quartiles based on their
distribution within the database. The high-risk category was identified as the top quarter
in the distribution for most markers, except for albumin, creatinine clearance, and HDL
cholesterol, for which the highest risk was the lowest quarter of the distribution. Each
study participant received a value of “0” if categorized in the lower-risk group and “1” if
placed in the high-risk group, resulting in a total allostatic load score out of 10 [16].

2.4. Utilization of United States-Fatty Liver Index for Non-Alcoholic Fatty Liver
Disease Prediction

Non-alcoholic fatty liver disease is a prevalent chronic liver condition characterized by
the accumulation of fat in the liver in individuals who do not consume excessive alcohol. It
has become a significant public health concern globally, particularly in the United States,
where its prevalence is on the rise. Accurate and reliable methods for early detection and
prediction of non-alcoholic fatty liver disease are crucial for effective management and
intervention strategies.

In the absence of abdominal ultrasound data within the dataset utilized, the United
States-fatty liver index (US-FLI) was employed as an alternative method for predicting
non-alcoholic fatty liver disease. The reliability of the US-FLI as an indicator for non-
alcoholic fatty liver disease within the United States population has been established in
prior research. The computation of the US-FLI is based on a logistic regression formula that
estimates the likelihood of non-alcoholic fatty liver disease occurrence based on variables
such as body mass index (BMI), waist measurement, gamma-glutamyl transferase (GGT),
and triglycerides (TG), detailed in the equation below:

FLI =
exp(A)

1 + exp(A)
× 100,

where the variable A is defined as:

A = 0.953 × log(TG) + 0.139 × BMI + 0.718 × log(GGT) + 0.053 × waist circumference − 15.745.



J. Xenobiot. 2024, 14 520

2.5. Hypothesis

In this study, we hypothesized that there is a significant association between the
combined exposure to PFOA, PFOS, metals, and allostatic load and an increased risk of
hepatic disease. We aim to examine whether individuals exposed to these chemicals and
stress-related biological markers are at a higher risk of developing liver-related health. This
hypothesis is based on the premise that the interaction between these environmental and
physiological factors could contribute to the onset or progression of hepatic disease.

2.6. Statistical Analysis

The statistical analysis within the study by our team commenced with the applica-
tion of descriptive statistics, which facilitated the examination of mean values, standard
errors, and confidence intervals for demographic variables and various environmental
contaminants such as Cd, Pb, Hg, PFOA, and PFOS.

Subsequently, linear regression analysis was conducted to assess the impact of these
environmental contaminants on AST, ALT, ALP, and total bilirubin levels, with adjustments
made for age and alcohol consumption.

Further analysis employed Bayesian kernel machine regression (BKMR) [37,38] to
investigate the complex and potentially synergistic relationships between these contam-
inants and the US-FLI, a measure of the likelihood of non-alcoholic fatty liver disease
disease. This advanced statistical approach adjusted for a set of covariates, including BMI,
sex, age, ethnicity, alcohol consumption, and smoking, to refine the understanding of the
contaminants’ impact on liver health. The software R (version 4.2.3 R Foundation for
Statistical Computing, Vienna, Austria) was utilized to perform the BKMR and generate
Spearman plots, while Stata SE 18 (StataCorp, College Station, TX, USA) was applied for
conducting descriptive statistics and linear regression analysis. Significance throughout
the study was determined at the p < 0.05 level. Subsample weights and adjustments for the
complex survey design were incorporated into all analyses except for BKMR, which does
not support these adjustments.

In this study, we employed distinct sets of confounders for linear regression and
Bayesian kernel machine regression (BKMR) to align with the methodological strengths of
each modeling technique. BKMR is adept at managing numerous variables simultaneously
and can capture complex interactions and non-linear relationships. Therefore, in the BKMR
analysis, we included a comprehensive set of confounders, namely body mass index
(BMI), sex, age, ethnicity, alcohol consumption, and smoking status, to fully leverage its
analytical capabilities.

Conversely, linear regression, with its more restrictive assumptions and limited ca-
pacity to handle multicollinearity and complex interactions, necessitated a more selective
approach to confounder inclusion. Thus, for the linear regression model, we focused on
the most critical variables based on their established impact on the outcome, adjusting for
age and alcohol consumption only. This approach ensured that the linear regression model
remained robust and statistically sound while acknowledging its inherent limitations in
handling many predictor variables.

3. Results
3.1. Descriptive Statistics of Key Study Variables

Table 1 shows the mean values for the variables of interest in the study across male and
female participants, highlighting mean values, standard errors (SE), and 95% confidence
intervals (CI) for age and several environmental contaminants. These findings suggest
significant sex differences in the levels of certain environmental contaminants. Particularly,
males exhibited higher levels of PFOA, PFOS, and Pb, whereas females had higher levels
of Cd. The almost equal levels of mercury across sexes suggest a uniform exposure or
bioaccumulation pattern for this particular contaminant. Regarding smoking, among
those who smoked every day, males represented 29.3 percent, and females represented
37.5 percent. For those who smoked some days, males represented 8.34 percent and
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females 9.57 percent. Among those who did not smoke, males represented 62.3 percent
and females 52.9 percent. The ethnic makeup of the study was 10.8 percent Mexican
American, 7.27 percent Other Hispanic, 59.13 percent Non-Hispanic White, 11.84 percent
Non-Hispanic Black, 5.59 percent Non-Hispanic Asian, and 5.32 percent Other-Race
Including Multi-Racial. These results provide valuable insights into the sex-specific
differences in environmental exposure.

Table 1. Mean values for variables of interest.

Male (Mean) 95% CI (Male) SE (Male) Female (Mean) 95% CI (Female) SE (Female)

Age
n = 9254 37.42 (36.37, 38.47) 0.493 39.37 (38.12, 40.63) 0.592

BMI
n = 8005 27.515 (26.97, 28.06) 0.257 27.932 (27.27, 28.60) 0.313

AL
n = 3233 3.442 (3.284, 3.600) 0.074 3.591 (3.456, 3.726) 0.063

PFOA
n = 2479 1.874 (1.717, 2.032) 0074 1.604 (1.423, 1.785) 0.084

PFOS
n = 2479 6.817 (6.108, 7.527) 0.333 4.780 (4.213, 5.347) 0.265

LEAD
n = 7434 1.162 (1.084, 1.240) 0.036 0.869 (0.824, 0.913) 0.021

Cadmium
n = 8063 0.326 (0.306, 0.346) 0.009 0.426 (0.388, 0.464) 0.018

Mercury
n = 8063 1.189 (1.031, 1.347) 0.074 1.092 (0.976, 1.208) 0.054

SE = standard error. CI = confidence interval.

3.2. Linear Regression of Environmental Exposures plus Allostatic Load on Liver Injury Markers

We analyzed the data using linear regression to understand the association of PFOA,
PFOS, Pb, Hg, Cd, and allostatic load on individual liver injury markers. Firstly, we
performed linear regression to assess the effects of environmental exposure and allostatic
load on AST, as shown in Table 2. The regression model revealed that PFOA, Pb, and Cd
are significant with a p-value less than 0.05 level of significance. Meanwhile, PFOS, Hg,
and allostatic load were not significantly associated with AST.

Table 2. Association between exposure variables and allostatic load with AST.

AST * Coefficient 95% CI SE p-Value

PFOA 0.923 (0.109, 1.738) 0.382 0.029

PFOS −0.081 (−0.205, 0.043) 0.059 0.183

Lead 0.0539 (0.361, 0.716) 0.083 <0.0001

Cadmium −0.972 (−1.895, 0.048) 0.433 0.040

Mercury −0.134 (−0.875, 0.607) 0.347 0.705

Allostatic load −0.485 (−1.410, 0.437) 0.433 0.279
* Adjusted for age and alcohol consumption. SE = standard error; CI = confidence interval.

The association between the exposure variables and allostatic load with ALT levels was
explored. The results can be found in Table 3. The regression model reveals that Pb and Cd
are significantly associated with AST with p-values less than 0.05 level of significance, while
PFOA, PFOS, Hg, and allostatic load were not significant in the model predicting ALT.
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Table 3. Association between exposure variables and ALT.

ALT * Coefficient 95% CI SE p-Value

PFOA 1.030 (−0.171, 2.230) 0.563 0.087

PFOS −0.036 (−0.224, 0.152) 0.088 0.686

LEAD 1.087 (0.862, 1.311) 0.105 <0.0001

Cadmium −3.092 (−4.641, −1.543) 0.727 0.001

Mercury −0.129 (−1.069, 0.810) 0.441 0.773

Allostatic load 0.269 (−0.955, 1.492) 0.574 0.647
* Adjusted for age and alcohol consumption. SE = standard error; CI = confidence interval.

Table 4 shows the association between exposure variables and ALP. The results reveal
a significant association of ALP with mercury.

Table 4. Association between exposure variable and ALP.

ALP * Coefficient 95% CI SE p-Value

PFOA −0.0585 (−2.356, 2.239) 1.078 0.957

PFOS 0.0468 (−0.174, 0.267) 0.103 0.657

Lead −0.1198 (−0.545, 0.306) 0.200 0.557

Cadmium 2.188 (−2.588, 6.963) 2.241 0.344

Mercury −2.739 (−4.146, −1.332) 0.660 0.001

Allostatic load 1.263 (−0.691, 3.217) 0.917 0.188
* Adjusted for age and alcohol consumption. SE = standard error; CI = confidence interval.

Table 5 shows the association between exposure variables and total bilirubin. The
results reveal significant associations of total bilirubin with Pb, Cd, and allostatic load.

Table 5. Association between exposure variables and total bilirubin.

Total Bilirubin * Coefficient 95% CI SE p-Value

PFOA 0.022 (−0.005, 0.048) 0.012 0.102

PFOS 0.004 (−0.000, 0.008) 0.002 0.064

LEAD 0.010 (0.005, 0.015) 0.002 0.001

Cadmium −0.077 (−0.104, 0.050) 0.013 <0.0001

Mercury −0.001 (−0.024, 0.023) 0.011 0.943

Allostatic load −0.024 (−0.036, 0.013) 0.006 <0.001
* Adjusted for age and alcohol consumption. SE = standard error; CI = confidence interval.

3.3. Spearman Correlational Analysis between Environmental Exposures and Liver Injury

To explore the relationship between variables, we performed a correlational analysis.
Figure 1 presents the Spearman correlation analysis conducted using PFOA, PFOS, Hg, Cd,
Pb, and the fatty liver index (FLI), a measure of the likelihood of non-alcoholic fatty liver
disease. The results indicate moderate correlations within the group of metals and within
the group of PFAS, respectively, as opposed to the correlations between metals and PFAS.
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3.4. Bayesian Kernel Machine Regression Analysis of Environmental Exposures with the Fatty
Liver Index
3.4.1. Posterior Inclusion Probabilities (PIP)

We explored the role of PFAS and metals on the likelihood of non-alcoholic fatty
liver disease using Bayesian kernel machine regression analysis. This advanced statistical
approach allowed us to unravel the complex, potentially synergistic relationships between
multiple environmental contaminants and liver health. The analysis commenced with
exploring the posterior inclusion probabilities (PIP), a critical step for identifying the
contaminants that contribute most to the likelihood of non-alcoholic fatty liver disease.
The PIP values serve as a robust indicator of the likelihood that each specific contaminant
plays a significant role in the model predicting the likelihood of non-alcoholic fatty liver
disease. A high PIP value for a contaminant suggests strong evidence of its association
with alterations in the fatty liver index, indicating its importance in the multi-contaminant
exposure framework.

Our analysis, as presented in Table 6, revealed that Pb, Hg, and PFOS are the contami-
nants with the highest PIP values. This finding implies that among the array of PFAS and
metals analyzed, these three substances have the most substantial evidence pointing to
their influential roles in affecting liver health, as indicated by their associations with the
fatty liver index.

Table 6. Posterior inclusion probabilities for the metals and PFAS on the likelihood of non-alcoholic
fatty liver disease.

Variable PIP

PFOA 0.1926

PFOS 0.5842

Lead 1.000

Cadmium 0.3418

Mercury 0.7470
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3.4.2. Univariate Analysis: Examining the Isolated Effects of PFOA, PFOS Hg, Cd, and Pb
on FLI

Figure 2 presents the results of a univariate analysis exploring the isolated effects of
five environmental contaminants—perfluorooctanoic acid (PFOA), perfluorooctanesulfonic
acid (PFOS), mercury (Hg), cadmium (Cd), and lead (Pb)—on the fatty liver index, a
predictor of liver health. The figure comprises a series of plots, each corresponding to one
of the contaminants, illustrating the relationship between the contaminant concentration
(as indicated by the z-axis) and the fatty liver index (h[Z]).
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Figure 2. Univariate exposure–response functions and 95% confidence interval (dark grey color) for
the association between single metal/PFAS exposure when other metals/PFAS exposures are fixed at
the median.

The plots reveal distinct exposure–response relationships, characterized by the shape
and spread of the shaded areas, which represent the 95% confidence intervals. A steep
slope or curve within a plot suggests a stronger association between the contaminant
concentration and changes in the fatty liver index.

The plot shows a relatively flat response for PFOA, indicating a minimal or non-linear
effect on the fatty liver index. PFOS, conversely, may exhibit a non-linear relationship,
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where the impact on the fatty liver index initially changes with concentration but plateaus
or changes direction beyond a certain threshold.

Pb appears to demonstrate a more pronounced positive relationship with the fatty liver
index, as suggested by a plot with a positive slope, implying that higher concentrations of
Pb are associated with an increase in the fatty liver index.

Cd might display a unique response pattern, perhaps an inverted U-shape, signifying
a complex relationship where the effect on the fatty liver index increases up to a certain
concentration level before declining.

Hg’s plot could present a U-shaped or non-linear relationship, indicating that changes
in mercury levels are associated with fluctuations in the fatty liver index, which could
signify varying impacts at different concentration levels.

Understanding these isolated effects is crucial for discerning the potential risks associ-
ated with each substance and informs subsequent multivariate analyses that consider the
combined impact of these environmental factors.

3.5. Visualizing Bivariate Exposure–Response Functions with Fixed Percentile Values

In the exploration of the impact of combined metal and PFAS exposure on the fatty
liver index, Figure 3 presents a nuanced visualization of how pairs of contaminants—
specifically Hg, Cd, Pb, PFOS, and PFOA—interact to affect liver health. This analysis
fixes all other predictors at a certain percentile to isolate the effects of the contaminants
of interest.
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The plot indicates a potentially synergistic effect between Hg and Cd, where their
concurrent high levels are associated with an elevated fatty liver index, as denoted by the
red area. Conversely, the interaction of Hg with Pb suggests that increased Pb levels could
drive up the fatty liver index, particularly when Hg levels are not at their highest. This
relationship is visualized through a gradient transitioning from orange to red.

The interplay between Hg and PFOS appears more complex; at lower PFOS concentra-
tions, an increase in Hg correlates with a higher fatty liver index, a relationship that seems
to wane or even invert at higher PFOS levels. In contrast, Cd and Pb together demonstrate
a clear pattern where their combined high levels correlate with an increased fatty liver
index, hinting at a more pronounced joint impact on liver health.

Interestingly, the Cd and PFOS plot suggests an antagonistic interaction, where the
presence of high PFOS levels may attenuate the impact of Cd on the fatty liver index,
observable through a color shift from red to blue. Similarly, PFOS, combined with high
levels of Pb, seems to amplify the fatty liver index, as indicated by the prominent red
regions for these higher concentration combinations.

However, the relationship between Pb and PFOA doesn’t manifest a clear pattern,
suggesting that their combination may not consistently influence the fatty liver index.
The plot examining PFOA and PFOS interactions indicates a non-linear relationship, with
moderate levels of both contaminants associated with higher fatty liver index values but
without a proportional increase at the highest contaminant levels.

Moreover, the interaction between Hg and PFOA does not seem to exhibit a strong
association with the fatty liver index, as no significant color gradients suggest such a link.
Similarly, for cadmium and PFOA, the evidence points to only a modest interaction effect
on the fatty liver index at certain exposure levels, lacking a pronounced pattern.

These visual findings elucidate the complex and varied interactions between specific
metals and PFAS, offering critical insights into their potential combined effects on liver
health, which could be instrumental for health risk assessment and regulatory policies.

Figure 4 examines the bivariate relationships between Cd, Pb, Hg, PFOA, and PFOS
with the fatty liver index, showcasing a nuanced interplay where the influence of one
contaminant is modulated by the concentration of another. This modulation is assessed
at different quantile levels—25th (blue line), 50th (green line), and 75th (red line)—of the
second contaminant, offering a stratified perspective on the risk each contaminant poses to
liver health at varying exposure levels.

For Cd, the effect on the fatty liver index becomes more pronounced with increasing
levels of the second contaminant, as reflected by the steepening slope from the blue to the
red line. This suggests that higher concentrations of other contaminants may amplify Cd’s
impact. In the case of Pb, a similar pattern emerges, with a notable increase in the fatty liver
index, especially at the higher quantiles of co-exposure, indicated by the sharper ascent of
the red line.

Hg’s relationship with the fatty liver index is characterized by a U-shaped curve at the
median quantile of the second contaminant, with the effect being less defined at the lower
and higher quantiles. This pattern suggests that the impact of mercury on the fatty liver
index is most distinct when other contaminants are at their median levels.

Conversely, PFOA demonstrates a relatively stable profile, with the effect on the fatty
liver index showing little variation across the different quantiles of the second contaminant,
indicating potential independence from the influence of co-exposures.

PFOS displays a more variable relationship, with its impact on the fatty liver index
intensifying at the median to higher levels of the second contaminant. This is particu-
larly evident from the green and red lines, where the increase in the fatty liver index is
more pronounced.
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3.6. Overall Risk Summary of Fatty Liver Index Levels in Relation to Exposure Percentiles

Figure 5 represents an aggregated risk assessment (overall risk summary) for the
fatty liver index, taking into account the entire spectrum of environmental exposures,
specifically Cd, Pb, Hg, PFOA, and PFOS. The analysis demonstrates the collective effect of
these contaminants, fixed at different quantiles ranging from the 25th to the 75th percentile,
with increments of 5 percentiles, and uses the median, or the 50th percentile, as a benchmark
for comparison.
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Initially, at the 25th percentile, representing the lower end of exposure, the risk posed
by the combination of Cd, Pb, Hg, PFOA, and PFOS to the fatty liver index is minimal,
as indicated by the estimates clustering near zero. This observation implies that lower
levels of these contaminants may not have a significant impact on the fatty liver index.
Moving through the exposure distribution, the estimates appear stable as they approach
and include the 50th percentile, suggesting a uniform effect of median exposure levels on
the fatty liver index.

However, the trend shifts notably above the median percentile. Particularly beyond
the 50th percentile, the estimate of the combined effect escalates, reaching its apex at the
75th percentile. The widening of the confidence intervals accompanying this uptrend
suggests growing uncertainty, possibly reflective of individual variabilities in response to
higher contaminant levels or due to the diminishing number of observations at these upper
exposure ranges.

The most pronounced effect is at the 75th percentile, where the plot shows a significant
increase in the estimate’s magnitude. This inflection point underscores a heightened
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association between higher exposure levels to Cd, Pb, Hg, PFOA, and PFOS, and an
elevated fatty liver index. The implication is clear: individuals who fall into the higher
percentile of exposure to these specific contaminants carry a greater risk for conditions
associated with fatty liver disease.

In weaving together these observations, the figure highlights that the risk to liver
health from environmental exposures is not equally distributed across exposure levels.
Instead, it underscores the escalating nature of risk associated with the higher cumulative
exposure to Cd, Pb, Hg, PFOA, and PFOS. This insight is critical for public health strategies,
emphasizing the need to mitigate exposure, particularly for those in the higher percentile
brackets, to reduce the potential for liver-related health outcomes.

3.7. Single-Variable Effects of Metals and PFAS on the Fatty Liver Index

Figure 6 provides an insight into the single-variable effects of various environmental
contaminants on the fatty liver index, examining the influence of each predictor individually
at different levels of exposure—represented by the 25th (red), 50th (green), and 75th (blue)
percentiles. This detailed view allows us to dissect their individual contributions to the
risk of an elevated fatty liver index, reflecting the isolated impact of Hg, Cd, Pb, PFOS,
and PFOA.
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The figure’s horizontal lines represent the confidence intervals for the estimates at
each percentile, with the colored points marking the central estimate. The h function, a
flexible statistical construct, considers the multiple metals and PFAS, combining them to
model the complex and potentially non-linear relationship between these exposures and
the fatty liver index.

Overall, Pb and PFOS have the most profound impact on the fatty liver index at all
exposure levels.

From top to bottom, starting with Hg, it appears that the central estimates suggest an
increase in the fatty liver index at the 75th percentile, denoted by the red point, indicating
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a higher contribution to the overall risk at higher exposure levels. For Cd, the central
estimates across the three quantiles are relatively close to or below zero, suggesting a less
pronounced or potentially negligible single-variable effect on the fatty liver index, with
exposure at the 75th percentile having the largest impact on the fatty liver index.

Moving to Pb, the estimates again rise notably at the 75th percentile, implying that
elevated levels of Pb are associated with higher values of the h function and, thereby,
a greater risk to liver health. PFOS and PFOA both demonstrate central estimates that
increase across the exposure quantiles. Particularly for PFOS, the increase in the estimate
from the 25th to the 75th percentile is evident, with the highest percentile showing a notably
higher effect size.

The interpretation of these results points to a gradation in the single-variable effect
of these contaminants on the fatty liver index, with Hg, Pb, and PFOS suggesting a more
substantial influence, especially at higher exposure levels. This quantile-based approach
underscores the importance of considering how different levels of exposure can variably
impact the risk of liver conditions, emphasizing the need for targeted risk assessments and
interventions for individuals with higher exposure to these specific contaminants.

3.8. Differential Risk Assessment of Single Contaminant Exposure on the Fatty Liver Index

Figure 7 seeks to elucidate the specific “interaction” parameters between different
environmental exposures and their associated health risks. The objective is to discern
how the risk attributed to a single exposure changes when the context of other exposures
is altered.
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Figure 7. Single-exposure risk estimates for mercury, cadmium, lead, PFOS, and PFOA on the fatty
liver index, comparing the change in risk associated with each contaminant from its 25th to 75th
percentile. The plot illustrates the differential risk impact when other exposures are fixed at their 25th
percentile (left end of the horizontal line) versus their 75th percentile (right end of the horizontal line),
with the point estimates indicating the magnitude of change and the horizontal lines representing the
confidence intervals.
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In this analysis, the health risks of single exposures—Hg, Cd, Pb, PFOS, and PFOA—
are evaluated under two contrasting scenarios: first, when all other exposures are fixed
at their 25th percentile, and second, when they are set at their 75th percentile. The plot
provides estimates (est) that reflect the magnitude of change in risk associated with a single
exposure as it moves from its 25th to 75th percentile within these two different contextual
backdrops of other exposures.

The dots represent the estimated change in risk for each exposure, while the horizontal
lines denote the confidence intervals around these estimates. If the dot is positioned to the
right of the zero line, it suggests an increase in the single-exposure risk associated with the
transition from its 25th to 75th percentile. Conversely, if the dot is to the left, it indicates a
decrease in risk.

From the plot, we can infer that the single-exposure risk for each metal or PFAS
changes by certain units when the remaining exposures are fixed at their 25th percentile
compared to when they are fixed at their 75th percentile.

4. Discussion

The findings from the study provide an assessment of the impact of environmental
contaminants on liver health, specifically focusing on the role of Pb, Cd, Hg, PFOA, and
PFOS on AST, ALT, GGT, ALP, total bilirubin, and the fatty liver index.

The linear regression analysis conducted in the study aimed to determine the effects of
a few environmental contaminants on liver injury enzymes. The regression model identified
PFOA, Pb, and Cd as significant predictors of AST levels, with p-values less than 0.05,
indicating a statistically significant association with AST levels. For ALT levels, significant
associations were found between Pb and Cd. For ALP, significant associations were found
with Hg. Significant associations were found with Pb, Cd, and allostatic load for total
bilirubin. The results indicate that metals have a profound effect on the hepatic system. This
matches the work of others who have made similar findings [39]. The relationship between
total bilirubin and allostatic load suggests that the processes influencing bilirubin levels
might reflect broader systemic stress responses, not just localized liver health issues [40,41].
Simply put, the association of bilirubin with allostatic load could imply that external
social stressors not only affect mental health but may also have tangible physiological
manifestations that can be tracked through biomarkers like bilirubin.

Spearman correlation analysis underscored positive correlations among the metals
and a positive correlation between PFAS, indicating interrelated exposure patterns among
these environmental factors. The correlations suggest that these contaminants may have
common sources or release mechanisms in the environment [42]. For example, industrial
processes, waste disposal practices, or consumer products could be releasing both metals
and PFAS, leading to simultaneous exposure in nearby populations. Understanding that
these contaminants may come from similar sources can inform more effective regulatory
and remediation strategies. Targeting shared sources could simultaneously reduce expo-
sure to multiple hazardous substances [43]. Overall, the interrelated exposure patterns
indicate that individuals exposed to one type of contaminant (e.g., metals) are likely to be
exposed to others (e.g., PFAS), potentially compounding the health risks associated with
each contaminant.

Through BKMR analysis, we investigated the multifaceted and potentially synergistic
influences of PFAS and metals on the likelihood of non-alcoholic fatty liver disease as
measured by the fatty liver index. This advanced statistical approach was pivotal in disen-
tangling the complex relationships between a multitude of environmental contaminants
and liver health indicators. A key step in our analysis was examining posterior inclusion
probabilities (PIP), which serve as a robust measure of a contaminant’s likelihood to signifi-
cantly impact the model predicting the likelihood of non-alcoholic fatty liver disease. High
PIP values indicate strong associations with alterations in the fatty liver index and denote
the importance of the contaminant within the multi-contaminant exposure framework.
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Pb, Hg, and PFOS emerged with the highest PIP values, signaling their significant
roles in affecting liver health. Notably, lead showed a strong positive relationship with
the fatty liver index, suggesting that higher concentrations may contribute to an elevated
likelihood of non-alcoholic fatty liver disease. Hg and Cd displayed complex, non-linear
relationships with the fatty liver index, characterized by U-shaped or inverted U-shaped
response patterns, indicating variable impacts at different concentration levels. The results
for Pb, Hg, and PFOS suggest that remediation strategies in the context of the exposome
may require focusing on these chemicals [44].

These results carry substantial implications for public health, highlighting the need
for targeted interventions to reduce exposure to these contaminants [45]. The associations
found between these metals and PFAS with the fatty liver index suggest that even at the
individual exposure level, there is a discernible risk for liver health compounded by other
environmental contaminants.

The univariate BKMR analysis, showcasing the isolated effects of PFOA, PFOS, Hg,
Cd, and lead on the fatty liver index, found Pb exhibiting a strong positive slope, implying
a dose-dependent increase in the likelihood of non-alcoholic fatty liver disease. Conversely,
Cd and Hg showed non-linear relationships, suggesting complex dynamics at varying
concentrations. Such detailed univariate insights are integral to understanding the potential
risks of each substance before considering their combined effects [37].

The bivariate exposure–response functions suggested potential synergistic effects
among certain contaminants. For instance, when Hg and Cd are both present at high
levels, there seems to be a compounded increase in the likelihood of non-alcoholic fatty
liver disease. This could imply a synergistic effect that exacerbates liver health risk when
both contaminants are elevated [46]. Conversely, the combination of Hg and Pb presents
a gradient of effect, with higher levels of Pb associated with an increased likelihood of
non-alcoholic fatty liver disease, especially when Hg is not at its peak levels. This speaks to
the complexity of exposure and the need to plan for multiple exposure concentrations and
combinations to best capture the effects of multiple exposures on disease risk [47].

Moreover, the interaction between Hg and PFOS revealed a complex relationship
where low PFOS concentrations coupled with rising Hg levels correlated with a higher
likelihood of non-alcoholic fatty liver disease, a relationship that seemed to diminish or
reverse at higher PFOS concentrations. This finding suggests a non-linear interaction where
the effects of one contaminant may be modulated by the presence of another. Interestingly,
Cd and PFOS interactions suggest an antagonistic effect, where high PFOS levels might
mitigate cadmium’s impact on FLI. Such antagonistic interactions could be crucial in
understanding the multifaceted nature of contaminant effects on liver health [48].

Additional exploration of the bivariate relationships examining the influence of one
contaminant while varying the levels of a second contaminant across the 25th, 50th, and
75th percentiles provided profound results. This analysis revealed that Cd’s impact on the
likelihood of non-alcoholic fatty liver disease is more pronounced with increasing levels
of a co-occurring contaminant, while Pb showed a sharper increase in the likelihood of
non-alcoholic fatty liver disease at higher quantiles of co-exposure. Mercury’s impact
on the likelihood of non-alcoholic fatty liver disease was most distinct at median levels
of other contaminants, suggesting that its effect is not linear but rather influenced by
other substances’ presence. PFOS shows a variable relationship, with its impact on the
likelihood of non-alcoholic fatty liver disease intensifying at the median to higher levels of
co-exposure. These findings speak to the complexity and multifaceted criteria that must be
considered when exploring exposure to multiple contaminants. Exposure is complex, and
when also considered in the context of health, the dynamics become even more profoundly
complex [49].

The single-variable effects of these contaminants on non-alcoholic fatty liver disease
were also explored. Here, the analysis reflects isolated impacts at varying exposure levels,
providing insight into how each contaminant individually contributes to the risk of an
elevated likelihood of non-alcoholic fatty liver disease. Notably, Hg, Pb, and PFOS exhibited
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a more substantial influence on the risk, particularly at higher exposure levels. This
gradation, in effect, as reflected by different quantiles, indicates that risk to liver health is
not uniform across exposure levels and highlights the need for public health interventions
that are tailored to individual exposure profiles [50].

A more granular assessment of single-variable effects at different exposure quantiles
(25th, 50th, and 75th) was also explored. These figures laid out a quantile-based gradation
of risk, with Hg, Pb, and PFOS showing more pronounced effects at higher exposure levels.
For instance, at the 75th percentile, the central estimates for Hg and Pb indicated a higher
contribution to overall risk, while PFOS showed a notable increase in effect size from the
25th to the 75th percentile. This approach highlighted the importance of targeted risk
assessments and interventions for those with higher exposure levels [51].

Finally, analysis examining the “interaction” parameters by comparing the risk changes
for a single exposure when other exposures were fixed at their lower (25th percentile)
versus higher (75th percentile) levels offered critical insights. This differential assessment
revealed how single-exposure risks, such as those from Hg or Pb, varied depending on
the background levels of other contaminants, providing critical insights for risk mitigation
strategies. Collectively, these findings from the BKMR analysis have significant implications
for public health, particularly in the realm of environmental exposure and liver disease
prevention. They underscore the need for policies and interventions that address individual
contaminant risks and the combined exposure scenarios that may elevate health risks.

Limitations

This study is not without limitations. Firstly, the cross-sectional study design, which
involves data collection at a single point in time, restricts the researchers’ ability to establish
a cause-and-effect relationship or infer the temporal sequence of events. Consequently, it
becomes challenging to determine whether the observed environmental factors preceded
or resulted from the liver injury outcomes. Furthermore, while the study provides valuable
insights into the collective impact of environmental factors on liver injury, it falls short
of establishing causality. Despite these limitations, the research contributes valuable in-
formation that enhances our understanding of how various environmental factors may
collectively influence liver health, offering a foundation for further investigations and
potentially guiding public health interventions.

5. Conclusions

This study, utilizing NHANES 2017–2018 data, provides insights into the impact
of environmental contaminants—specifically PFOA, PFOS, metals, and allostatic load—
on liver health markers, including AST, ALT, ALP, total bilirubin, and the fatty liver
index. Descriptive statistics, Spearman’s correlation analysis, linear regression, and BKMR
results reveal significant associations and complex interactions among these exposures,
highlighting their collective impact on liver function. The findings underscore the necessity
for public health strategies that address the multifaceted nature of environmental exposures
to mitigate risks of hepatic diseases. Future research should focus on longitudinal studies to
further elucidate these relationships and inform more targeted interventions. As suggested
by the study, targeted interventions would be specifically designed to address the nuanced
impacts of environmental contaminants like PFOA, PFOS, and metals on liver health. These
interventions could focus on high-risk communities or populations, offering more precise
and effective strategies tailored to the identified unique exposure profiles and health needs.
By homing in on the specific sources and types of environmental exposure linked to liver
disease, public health officials can craft more efficient and direct measures to mitigate risk.

Author Contributions: Conceptualization, E.O.-G.; methodology, E.O.-G.; formal analysis, M.B. and
E.O.-G.; investigation, M.B. and E.O.-G.; resources, E.O.-G.; data curation, E.O.-G.; writing—original
draft preparation, M.B. and E.O.-G.; writing—review and editing, M.B. and E.O.-G.; supervision,
E.O.-G.; project administration, E.O.-G.; funding acquisition, E.O.-G. All authors have read and
agreed to the published version of the manuscript.



J. Xenobiot. 2024, 14 534

Funding: The research reported in this publication was supported by the National Institute of General
Medical Sciences of the National Institutes of Health under Award Number R16GM149473. The
content is solely the responsibility of the authors and does not necessarily represent the official views
of the National Institutes of Health.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The NHANES dataset is publicly available online, accessible at
https://www.cdc.gov/nchs/nhanes/index.htm (accessed on 12 December 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Makri, E.; Goulas, A.; Polyzos, S.A. Epidemiology, Pathogenesis, Diagnosis and Emerging Treatment of Nonalcoholic Fatty Liver

Disease. Arch. Med. Res. 2020, 52, 25–37. [CrossRef]
2. Paik, J.M.; Golabi, P.; Younossi, Y.; Mishra, A.; Younossi, Z.M. Changes in the Global Burden of Chronic Liver Diseases From 2012

to 2017: The Growing Impact of NAFLD. J. Hepatol. 2020, 72, 1605–1616. [CrossRef]
3. Almomani, A.; Kumar, P.; Onwuzo, S.; Boustany, A.; Krishtopaytis, E.; Hitawala, A.; Alshaikh, D.; Albakri, A.; Hussein, L.;

Hussein, E.; et al. Epidemiology and prevalence of lean nonalcoholic fatty liver disease and associated cirrhosis, hepatocellular
carcinoma, and cardiovascular outcomes in the United States: A population-based study and review of literature. J. Gastroenterol.
Hepatol. 2023, 38, 269–273. [CrossRef]

4. Espartero, L.J.L.; Yamada, M.; Ford, J.; Owens, G.; Prow, T.; Juhasz, A. Health-related toxicity of emerging per- and polyfluoroalkyl
substances: Comparison to legacy PFOS and PFOA. Environ. Res. 2022, 212, 113431. [CrossRef]

5. Boafo, Y.S.; Mostafa, S.; Obeng-Gyasi, E. Association of Per- and Polyfluoroalkyl Substances with Allostatic Load Stratified by
Herpes Simplex Virus 1 and 2 Exposure. Toxics 2023, 11, 745. [CrossRef]

6. Dreher, M.L. Dietary patterns, foods, nutrients and phytochemicals in non-alcoholic fatty liver disease. In Dietary Patterns and
Whole Plant Foods in Aging and Disease; Humana Press: Cham, Switzerland, 2018; pp. 291–311.

7. Koppe, J.G.; Bartonova, A.; Bolte, G.; Bistrup, M.L.; Busby, C.; Butter, M.; Dorfman, P.; Fucic, A.; Gee, D.; van den Hazel, P.; et al.
Exposure to multiple environmental agents and their effect. Acta Paediatr. 2006, 95, 106–113. [CrossRef]

8. Valvi, D.; Højlund, K.; A Coull, B.; Nielsen, F.; Weihe, P.; Grandjean, P. Life-course Exposure to Perfluoroalkyl Substances in
Relation to Markers of Glucose Homeostasis in Early Adulthood. J. Clin. Endocrinol. Metab. 2021, 106, 2495–2504. [CrossRef]

9. Pujari, M.; Kapoor, D. Heavy metals in the ecosystem: Sources and their effects. In Heavy Metals in the Environment; Elsevier:
Amsterdam, The Netherlands, 2021; pp. 1–7.

10. Ghisi, R.; Vamerali, T.; Manzetti, S. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review.
Environ. Res. 2018, 169, 326–341. [CrossRef]

11. Chang, Z.; Qiu, J.; Wang, K.; Liu, X.; Fan, L.; Liu, X.; Zhao, Y.; Zhang, Y. The relationship between co-exposure to multiple heavy
metals and liver damage. J. Trace Elements Med. Biol. 2023, 77, 127128. [CrossRef]

12. Huang, R.; Pan, H.; Zhou, M.; Jin, J.; Ju, Z.; Ren, G.; Shen, M.; Zhou, P.; Chen, X. Potential liver damage due to co-exposure to As,
Cd, and Pb in mining areas: Association analysis and research trends from a Chinese perspective. Environ. Res. 2021, 201, 111598.
[CrossRef]

13. Yin, G.; Zhao, S.; Zhao, M.; Xu, J.; Ge, X.; Wu, J.; Zhou, Y.; Liu, X.; Wei, L.; Xu, Q. Joint and interactive effects of metal mixtures on
liver damage: Epidemiological evidence from repeated-measures study. Ecotoxicol. Environ. Saf. 2024, 274, 116178. [CrossRef]

14. Ali, M.M.; Hossain, D.; Al-Imran; Khan, M.S.; Begum, M.; Osman, M.H. Environmental pollution with heavy metals: A public
health concern. In Heavy Metals-Their Environmental Impacts and Mitigation; Intechopen: London, UK, 2021; pp. 771–783.

15. Obeng-Gyasi, E.; Armijos, R.X.; Weigel, M.M.; Filippelli, G.; Sayegh, M.A. Hepatobiliary-Related Outcomes in US Adults Exposed
to Lead. Environments 2018, 5, 46. [CrossRef]

16. Obeng-Gyasi, E. Cumulative Effects of Low-Level Lead Exposure and Chronic Physiological Stress on Hepatic Dysfunction—A
Preliminary Study. Med. Sci. 2020, 8, 30. [CrossRef]

17. Li, W.; Li, X.; Su, J.; Chen, H.; Zhao, P.; Qian, H.; Gao, X.; Ye, Q.; Zhang, G.; Li, X. Associations of blood metals with liver function:
Analysis of NHANES from 2011 to 2018. Chemosphere 2023, 317, 137854. [CrossRef]

18. Gallo, V.; Leonardi, G.; Genser, B.; Lopez-Espinosa, M.-J.; Frisbee, S.J.; Karlsson, L.; Ducatman, A.M.; Fletcher, T. Serum
Perfluorooctanoate (PFOA) and Perfluorooctane Sulfonate (PFOS) Concentrations and Liver Function Biomarkers in a Population
with Elevated PFOA Exposure. Environ. Health Perspect. 2012, 120, 655–660. [CrossRef]

19. Wang, P.; Liu, D.; Yan, S.; Cui, J.; Liang, Y.; Ren, S. Adverse Effects of Perfluorooctane Sulfonate on the Liver and Relevant
Mechanisms. Toxics 2022, 10, 265. [CrossRef]

20. Lin, Y.-S.; Ginsberg, G.; Caffrey, J.L.; Xue, J.; Vulimiri, S.V.; Nath, R.G.; Sonawane, B. Association of body burden of mercury with
liver function test status in the U.S. population. Environ. Int. 2014, 70, 88–94. [CrossRef]

21. Hyder, O.; Chung, M.; Cosgrove, D.; Herman, J.M.; Li, Z.; Firoozmand, A.; Gurakar, A.; Koteish, A.; Pawlik, T.M. Cadmium
Exposure and Liver Disease among US Adults. J. Gastrointest. Surg. 2013, 17, 1265–1273. [CrossRef]

https://www.cdc.gov/nchs/nhanes/index.htm
https://doi.org/10.1016/j.arcmed.2020.11.010
https://doi.org/10.1002/hep.31173
https://doi.org/10.1111/jgh.16049
https://doi.org/10.1016/j.envres.2022.113431
https://doi.org/10.3390/toxics11090745
https://doi.org/10.1080/08035320600886646
https://doi.org/10.1210/clinem/dgab267
https://doi.org/10.1016/j.envres.2018.10.023
https://doi.org/10.1016/j.jtemb.2023.127128
https://doi.org/10.1016/j.envres.2021.111598
https://doi.org/10.1016/j.ecoenv.2024.116178
https://doi.org/10.3390/environments5040046
https://doi.org/10.3390/medsci8030030
https://doi.org/10.1016/j.chemosphere.2023.137854
https://doi.org/10.1289/ehp.1104436
https://doi.org/10.3390/toxics10050265
https://doi.org/10.1016/j.envint.2014.05.010
https://doi.org/10.1007/s11605-013-2210-9


J. Xenobiot. 2024, 14 535

22. Bonato, M.; Corrà, F.; Bellio, M.; Guidolin, L.; Tallandini, L.; Irato, P.; Santovito, G. PFAS Environmental Pollution and Antioxidant
Responses: An Overview of the Impact on Human Field. Int. J. Environ. Res. Public Health 2020, 17, 8020. [CrossRef]

23. Boafo, Y.S.; Mostafa, S.; Obeng-Gyasi, E. Association of Combined Metals and PFAS with Cardiovascular Disease Risk. Toxics
2023, 11, 979. [CrossRef]

24. Bashir, T.; Obeng-Gyasi, E. The Association between Multiple Per- and Polyfluoroalkyl Substances’ Serum Levels and Allostatic
Load. Int. J. Environ. Res. Public Health 2022, 19, 5455. [CrossRef] [PubMed]

25. De Silva, A.O.; Armitage, J.M.; Bruton, T.A.; Dassuncao, C.; Heiger-Bernays, W.; Hu, X.C.; Kärrman, A.; Kelly, B.; Ng, C.; Robuck,
A.; et al. PFAS exposure pathways for humans and wildlife: A synthesis of current knowledge and key gaps in understanding.
Environ. Toxicol. Chem. 2021, 40, 631–657. [CrossRef] [PubMed]

26. Solomon, G.M.; Morello-Frosch, R.; Zeise, L.; Faust, J.B. Cumulative Environmental Impacts: Science and Policy to Protect
Communities. Annu. Rev. Public Health 2016, 37, 83–96. [CrossRef] [PubMed]

27. Hamra, G.B.; Buckley, J.P. Environmental Exposure Mixtures: Questions and Methods to Address Them. Curr. Epidemiol. Rep.
2018, 5, 160–165. [CrossRef] [PubMed]

28. McEwen, B.S. Stress, Adaptation, and Disease: Allostasis and Allostatic Load. Ann. N. Y. Acad. Sci. 1998, 840, 33–44. [CrossRef]
[PubMed]

29. Guidi, J.; Lucente, M.; Sonino, N.; Fava, G.A. Allostatic Load and Its Impact on Health: A Systematic Review. Psychother.
Psychosom. 2020, 90, 11–27. [CrossRef] [PubMed]

30. Bassler, J.; Ducatman, A.; Elliott, M.; Wen, S.; Wahlang, B.; Barnett, J.; Cave, M.C. Environmental perfluoroalkyl acid exposures are
associated with liver disease characterized by apoptosis and altered serum adipocytokines. Environ. Pollut. 2019, 247, 1055–1063.
[CrossRef]

31. National Health and Nutrition Examination Survey. Available online: https://www.cdc.gov/nchs/nhanes/index.htm (accessed
on 12 January 2024).

32. Centers-For-Disease-Control-and-Prevention. Laboratory Procedure Manual. Available online: https://wwwn.cdc.gov/nchs/
data/nhanes/2015-2016/labmethods/PFAS_I_MET.pdf (accessed on 25 April 2024).

33. Bashir, T.; Obeng-Gyasi, E. Combined Effects of Multiple Per- and Polyfluoroalkyl Substances Exposure on Allostatic Load Using
Bayesian Kernel Machine Regression. Int. J. Environ. Res. Public Health 2023, 20, 5808. [CrossRef]

34. Bashir, T.; Obeng-Gyasi, E. The Association of Combined Per- and Polyfluoroalkyl Substances and Metals with Allostatic Load
Using Bayesian Kernel Machine Regression. Diseases 2023, 11, 52. [CrossRef]

35. Hill, M.; Mostafa, S.; Muganda, P.M.; Jeffers-Francis, L.K.; Obeng-Gyasi, E. The Association of Cytomegalovirus and Allostatic
Load by Country of Birth and Length of Time in the United States. Diseases 2023, 11, 101. [CrossRef]

36. Mcewen, B.S. Protection and Damage from Acute and Chronic Stress: Allostasis and Allostatic Overload and Relevance to the
Pathophysiology of Psychiatric Disorders. Ann. New York Acad. Sci. 2004, 1032, 1–7. [CrossRef] [PubMed]

37. Bobb, J.F.; Valeri, L.; Henn, B.C.; Christiani, D.C.; Wright, R.O.; Mazumdar, M.; Godleski, J.J.; Coull, B.A. Bayesian kernel machine
regression for estimating the health effects of multi-pollutant mixtures. Biostatistics 2014, 16, 493–508. [CrossRef] [PubMed]

38. Bobb, J.F.; Henn, B.C.; Valeri, L.; Coull, B.A. Statistical software for analyzing the health effects of multiple concurrent exposures
via Bayesian kernel machine regression. Environ. Health 2018, 17, 1–10. [CrossRef] [PubMed]

39. Renu, K.; Chakraborty, R.; Myakala, H.; Koti, R.; Famurewa, A.C.; Madhyastha, H.; Vellingiri, B.; George, A.; Gopalakrishnan, A.V.
Molecular mechanism of heavy metals (Lead, Chromium, Arsenic, Mercury, Nickel and Cadmium)-induced hepatotoxicity–A
review. Chemosphere 2021, 271, 129735. [CrossRef] [PubMed]

40. Edes, A.N.; Crews, D.E. Allostatic load and biological anthropology. Am. J. Phys. Anthr. 2017, 162, 44–70. [CrossRef] [PubMed]
41. Maestripieri, D.; Hoffman, C.L. Chronic stress, allostatic load, and aging in nonhuman primates. Dev. Psychopathol. 2011, 23,

1187–1195. [CrossRef] [PubMed]
42. Johnson, P.I.; Stapleton, H.M.; Sjodin, A.; Meeker, J.D. Relationships between Polybrominated Diphenyl Ether Concentrations in

House Dust and Serum. Environ. Sci. Technol. 2010, 44, 5627–5632. [CrossRef] [PubMed]
43. Tumolo, M.; Ancona, V.; De Paola, D.; Losacco, D.; Campanale, C.; Massarelli, C.; Uricchio, V.F. Chromium pollution in European

water, sources, health risk, and remediation strategies: An overview. Int. J. Environ. Res. Public Health 2020, 17, 5438. [CrossRef]
[PubMed]

44. Wishart, D.; Arndt, D.; Pon, A.; Sajed, T.; Guo, A.C.; Djoumbou, Y.; Knox, C.; Wilson, M.; Liang, Y.; Grant, J.; et al. T3DB: The toxic
exposome database. Nucleic Acids Res. 2014, 43, D928–D934. [CrossRef]

45. Zeng, J.; Li, C.; Wang, J.; Tang, L.; Wu, C.; Xue, S. Pollution simulation and remediation strategy of a zinc smelting site based on
multi-source information. J. Hazard. Mater. 2022, 433, 128774. [CrossRef]

46. Jain, R.B. Synergistic impact of co-exposures to toxic metals cadmium, lead, and mercury along with perfluoroalkyl substances on
the healthy kidney function. Environ. Res. 2018, 169, 342–347. [CrossRef] [PubMed]

47. Wade, M.G.; Foster, W.G.; Younglai, E.V.; McMahon, A.; Leingartner, K.; Yagminas, A.; Blakey, D.; Fournier, M.; Desaulniers, D.;
Hughes, C.L. Effects of subchronic exposure to a complex mixture of persistent contaminants in male rats: Systemic, immune,
and reproductive effects. Toxicol. Sci. 2002, 67, 131–143. [CrossRef] [PubMed]

48. Martin, O.; Scholze, M.; Ermler, S.; McPhie, J.; Bopp, S.K.; Kienzler, A.; Parissis, N.; Kortenkamp, A. Ten years of research on
synergisms and antagonisms in chemical mixtures: A systematic review and quantitative reappraisal of mixture studies. Environ.
Int. 2020, 146, 106206. [CrossRef] [PubMed]

https://doi.org/10.3390/ijerph17218020
https://doi.org/10.3390/toxics11120979
https://doi.org/10.3390/ijerph19095455
https://www.ncbi.nlm.nih.gov/pubmed/35564852
https://doi.org/10.1002/etc.4935
https://www.ncbi.nlm.nih.gov/pubmed/33201517
https://doi.org/10.1146/annurev-publhealth-032315-021807
https://www.ncbi.nlm.nih.gov/pubmed/26735429
https://doi.org/10.1007/s40471-018-0145-0
https://www.ncbi.nlm.nih.gov/pubmed/30643709
https://doi.org/10.1111/j.1749-6632.1998.tb09546.x
https://www.ncbi.nlm.nih.gov/pubmed/9629234
https://doi.org/10.1159/000510696
https://www.ncbi.nlm.nih.gov/pubmed/32799204
https://doi.org/10.1016/j.envpol.2019.01.064
https://www.cdc.gov/nchs/nhanes/index.htm
https://wwwn.cdc.gov/nchs/data/nhanes/2015-2016/labmethods/PFAS_I_MET.pdf
https://wwwn.cdc.gov/nchs/data/nhanes/2015-2016/labmethods/PFAS_I_MET.pdf
https://doi.org/10.3390/ijerph20105808
https://doi.org/10.3390/diseases11010052
https://doi.org/10.3390/diseases11030101
https://doi.org/10.1196/annals.1314.001
https://www.ncbi.nlm.nih.gov/pubmed/15677391
https://doi.org/10.1093/biostatistics/kxu058
https://www.ncbi.nlm.nih.gov/pubmed/25532525
https://doi.org/10.1186/s12940-018-0413-y
https://www.ncbi.nlm.nih.gov/pubmed/30126431
https://doi.org/10.1016/j.chemosphere.2021.129735
https://www.ncbi.nlm.nih.gov/pubmed/33736223
https://doi.org/10.1002/ajpa.23146
https://www.ncbi.nlm.nih.gov/pubmed/28105719
https://doi.org/10.1017/S0954579411000551
https://www.ncbi.nlm.nih.gov/pubmed/22018089
https://doi.org/10.1021/es100697q
https://www.ncbi.nlm.nih.gov/pubmed/20521814
https://doi.org/10.3390/ijerph17155438
https://www.ncbi.nlm.nih.gov/pubmed/32731582
https://doi.org/10.1093/nar/gku1004
https://doi.org/10.1016/j.jhazmat.2022.128774
https://doi.org/10.1016/j.envres.2018.11.037
https://www.ncbi.nlm.nih.gov/pubmed/30504076
https://doi.org/10.1093/toxsci/67.1.131
https://www.ncbi.nlm.nih.gov/pubmed/11961226
https://doi.org/10.1016/j.envint.2020.106206
https://www.ncbi.nlm.nih.gov/pubmed/33120228


J. Xenobiot. 2024, 14 536

49. Cui, Y.; Balshaw, D.M.; Kwok, R.K.; Thompson, C.L.; Collman, G.W.; Birnbaum, L.S. The Exposome: Embracing the Complexity
for Discovery in Environmental Health. Environ. Health Perspect. 2016, 124, A137–A140. [CrossRef] [PubMed]

50. Campbell, M.K.; Quintiliani, L.M. Tailored interventions in public health: Where does tailoring fit in interventions to reduce
health disparities? Am. Behav. Sci. 2006, 49, 775–793. [CrossRef]

51. Kirk, L.E.; Jørgensen, J.S.; Nielsen, F.; Grandjean, P. Public health benefits of hair-mercury analysis and dietary advice in lowering
methylmercury exposure in pregnant women. Scand. J. Public Health 2017, 45, 444–451. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1289/ehp412
https://www.ncbi.nlm.nih.gov/pubmed/27479988
https://doi.org/10.1177/0002764205283807
https://doi.org/10.1177/1403494816689310

	Introduction 
	Context 
	Hepatic Disease: An Issue of Significant Public Health Concern 
	PFAS and Metals Exposure—Environmental Chemicals of Concern 
	Relevance of PFAS and Metals to Hepatic Disease 
	Individual vs. Combined Exposure 
	Allostatic Load 

	Research Objectives 

	Materials and Methods 
	Study Design 
	Blood Measurement Sample 
	Operationalizing Allostatic Load 
	Utilization of United States-Fatty Liver Index for Non-Alcoholic Fatty Liver Disease Prediction 
	Hypothesis 
	Statistical Analysis 

	Results 
	Descriptive Statistics of Key Study Variables 
	Linear Regression of Environmental Exposures plus Allostatic Load on Liver Injury Markers 
	Spearman Correlational Analysis between Environmental Exposures and Liver Injury 
	Bayesian Kernel Machine Regression Analysis of Environmental Exposures with the Fatty Liver Index 
	Posterior Inclusion Probabilities (PIP) 
	Univariate Analysis: Examining the Isolated Effects of PFOA, PFOS Hg, Cd, and Pb on FLI 

	Visualizing Bivariate Exposure–Response Functions with Fixed Percentile Values 
	Overall Risk Summary of Fatty Liver Index Levels in Relation to Exposure Percentiles 
	Single-Variable Effects of Metals and PFAS on the Fatty Liver Index 
	Differential Risk Assessment of Single Contaminant Exposure on the Fatty Liver Index 

	Discussion 
	Conclusions 
	References

