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Abstract: Unstable factors such as international relations, geopolitics, and transportation routes make
natural gas trade complex and changeable. Diversified and flexible sources of liquefied natural gas
(LNG) can guarantee the energy supply security of natural gas-consuming countries. Therefore, it is
very important to find potential natural gas trade links to help the government find potential partners
and prepare strategically in advance. In this paper, the global LNG network is taken as the research
object. In order to fully consider the importance of nodes and the influence of economic and political
factors, the “centrality degree” and “node attraction degree” are added into the link prediction
algorithm, and multifactor coupling is carried out. The reliability of the improved algorithm is
verified using the area under the curve (AUC) evaluation index, and the prediction results are
analyzed. The results are as follows: Trinidad, Russia, Algeria, Nigeria, Angola, and Equatorial
Guinea (Eq. Guinea) are more likely to establish new LNG trading relationships with other countries.
For all potential trade relationships, potential relations involving the above countries are more likely
to be realized within 5 years, while potential relations involving China, India, Japan, and South Korea
are more likely to be realized within 2 years. China, India, and South Korea are more likely to import
LNG from Algeria, and Taiwan Province is more likely to import LNG from Algeria, Angola, Eq.
Guinea, and America. On the basis of the above study, states and governments can give priority to
the above countries and regions when dealing with the possible LNG supply crisis.

Keywords: liquefied natural gas; potential trade; link prediction

1. Introduction

Environmental pollution and the energy crisis are two major problems in the develop-
ment of many countries. As a resource-rich, clean, and efficient energy source, the share of
natural gas in the energy consumption structure is gradually expanding. In recent years,
the increase in proven reserves of natural gas and the improvement of transportation and
storage capacity have further promoted the growth of global natural gas trade. However,
the distribution of natural gas is extremely uneven. According to British Petroleum’s (BP)
statistics, the Asia-Pacific region, as the main force of natural gas consumption, imported
70% of the global total demand in 2020, while the proven natural gas reserves in the Asia-
Pacific region only accounted for 8.8% of the global total. At the same time, more than 60%
of the world’s total LNG comes from America, Qatar, Australia, Russia, etc., which means
that the dominant power of LNG export is in the hands of a few countries. The influence of
investment environment and political laws makes the stable supply of LNG projects face
national politics and trade risks.

In addition, in most countries that have issued the goal of “carbon neutrality” at
present, natural gas still plays the role of the main force of energy supply, and Asian
countries such as China, Japan, and South Korea have also explicitly proposed to achieve
the goal around the middle of the 21st century. The Russia–Ukraine conflict, the European
energy crisis, the change of natural gas delivery mode, and other changeable situations
have further pushed the big natural gas-consuming countries to find more potential trading
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partners, thus making the trade relations more diversified. Therefore, it is necessary to
estimate the potential trade relationship of LNG using a reasonable forecasting method, so
as to help the governments to adjust their energy strategies in time and improve the safety
of natural gas trade when there are problems in the existing trade relationship.

This paper adopts a novel prediction method to find the potential partnerships in
international LNG trade, i.e., the link prediction method. This method can not only
distinguish various factors clearly and intuitively by using the quantitative results, but
also calculate the accuracy of the prediction method, which plays a very good role in the
prediction of trade links [1]. Therefore, this paper builds a global LNG trade network
from 2010 to 2020 using the network link prediction method, with the countries or regions
participating in LNG trade as nodes and the actual trade relations between countries or
regions as links, and then uses the accuracy evaluation index AUC to evaluate the accuracy
of the link prediction algorithm. In order to fully consider the importance of nodes in the
network and the influence of external factors on the prediction results, node centrality and
node attraction are introduced into the algorithm, and the prediction accuracy is further
improved using a multifactor coupling algorithm. By comparing the predicted results
with the actual trade relations, the possible future trade partnerships of the global LNG
demanders can be more accurately explored, and the theoretical basis for ensuring trade
security and diversification can be provided.

The main work and novel contributions of this paper are as follows. Firstly, the link
prediction index based on the proximity of local information is improved, so that the
attribute information of nodes can be used more effectively. Secondly, the information of
the network structure is made full use of, and the best algorithm is selected from various
link prediction indices to improve the prediction accuracy. Lastly, in the prediction of LNG
trade network, according to the actual situation in trade exchanges, the consideration of
political, economic, and other practical factors is added to make the prediction results
more realistic.

The remainder of this paper is organized as follows: Section 2 reviews the literature in
the relevant fields; Section 3 introduces the algorithm steps and indices of link prediction;
Section 4 confirms the feasibility of the proposed indices and analyzes the empirical results;
Section 5 discusses the results, include making estimations about future trade relations;
and Section 6 presents the derived conclusions.

2. Literature Review
2.1. Studies on Global Natural Gas Trade

In recent years, in order to cope with climate change and environmental pollution,
countries have accelerated the exploration of clean and low-carbon energy; accordingly,
the consumption of natural gas has increased steadily. Due to the uneven distribution
of natural gas resources and the seasonal difference between supply and demand, trade
flows in regional and global areas have emerged. More and more studies have emerged on
natural gas trade in academic circles. Some scholars have studied the present situation and
potential of natural gas trade, which provides a reference for the states and governments to
formulate long-term and short-term strategies of natural gas trade. Lin (2021) simulated
the supply and demand changes of regional LNG market in a low-carbon scenario by
2050 using a partial equilibrium model and provided suggestions for the government and
energy companies [2]. Egging (2016) analyzed the capacity investment and trade trend of
natural gas in some countries in the face of the Russia–Ukraine conflict, the change of final
demand level, and the shale gas supply potential [3]. Guo (2019) used the improved gas
game-risk model to predict the changes of the global natural gas market under changes of
the China–America natural gas tariff policy and demand level [4]. Kan (2020) analyzed the
evolution of international natural gas consumption structure and import and export mode
for 11 consecutive years using a time series, providing a basis for the formulation of future
natural gas trade policies [5].
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In order to further understand the characteristics of natural gas trade, some scholars
devoted themselves to mining the key factors that affect natural gas trade. Chen (2019) used
the extended logarithmic mean divisor index to identify the distribution of energy flow and
natural gas consumption in typical countries, and concluded that energy intensity, economic
growth and population drove the increase in natural gas supply and consumption [6]. Farag
(2021) explored the determinants of international natural gas trade from the perspective of
political economy and suggested that institutional gap and economic sanctions had a great
influence on natural gas trade [7]. Rasoulinezhad (2022) analyzed the energy trade pattern
of Central Asian economies based on the generalized moment method of transnational
trade force method and held that urbanization level and geographical factors are crucial to
shaping the energy trade policy of Central Asia [8]. Zhang (2018) concluded that LNG trade
is mainly affected by the economic scale of the demand side by identifying the influencing
factors of global LNG [9].

With the increasing importance of LNG trade, some scholars have identified the main
forces of the LNG competitive market. Magnier (2019) constructed a simplified coarse-
grained model based on four variables of LNG demand, liquefaction capacity, utilization
rate of liquefaction capacity, and transportation distance, and predicted the LNG import
trade relationship between the Asia-Pacific region and Europe in 2030 from the perspective
of trade security [10]. Meza (2021) predicted the competition and trade challenges among
LNG-trading countries using the agent-based predictive model and held that Qatar would
still be the most competitive LNG supplier in 2030, and that United States would be its
emerging competitor [11]. Li (2021) considered that the natural gas trade in Southeast Asian
countries such as China and India developed at a high speed on the basis of analyzing the
evolutionary characteristics of PNG (pipeline natural gas) and LNG network in countries
along the BRI (Belt and Road Initiative) [12]. Peng (2020) combined the related indices
of complex networks with vessel trajectory data, quantitatively analyzed the global LNG
network from the perspective of port scale, and considered that Singapore, Ras Laffan, and
Khawr Fakkan played an important role in the LNG network [13].

2.2. Studies on International Trade Prediction and Its Methods

In the past, the gravity model was mostly used to explore international trade relations.
Barnes (2015) estimated the relationship between the trade volume of PNG, LNG, and
the whole natural gas market and the distance between countries using the gravity model
and believed that LNG trade contributed to the de-regionalization of the natural gas
market [14]. Emikonel (2022) used the trade gravity model to analyze the trade among
ASEAN (Association of South East Asian Nations), APEC (Asia-Pacific Economic Region),
and China, and thought that energy trade plays an important role [15]. Bakouan (2022)
studied the export, industrial, and agricultural trade of 40 African countries for many years
through the spatial autoregressive gravity model and concluded that intra-African trade
was mainly influenced by political factors [16]. Chen (2022) embedded the gravity equation
into the exponential decomposition equation to explore the impact of bilateral trade on
energy consumption in BRICS (Brazil, Russia, India, China, and South Africa) countries,
and concluded that trade increased fossil energy consumption by promoting economic
development [17].

Although the gravity model relates the international trade flow and its determinants,
as well as measures the trade potential between countries from the key factors, its emphasis
is still on the study of existing trade relations, and the prediction of potential trade relations
is not ideal [18]. Therefore, many scholars used the complex network method to study inter-
national trade and found the law of trade evolution by analyzing the overall characteristics,
associations and related indicators of the trade network. Du (2017) used complex network
method to study the relationship and evolution characteristics of international oil trade
from 2002 to 2013 [19]. Wang (2022) used the complex network method to build the global
fossil energy trade network from 1998 to 2017 and analyzed the trade volume using the
point-wise mutual information method to reveal the fossil energy trade dependence among
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countries [20]. Chen (2018) identified the global, regional, and national energy flow pat-
terns from the perspective of complex networks based on the environmentally ex-tendered
input–output analysis [21]. Chen (2022) built a weighted orientation network of global
coal trade to determine the core countries and hub countries of coal trade and developed
different competitive strategies for different countries according to the competitive advan-
tage theory [22]. Recently, the more cutting-edge research method of trade relations has
been to combine link prediction with complex networks. Link prediction can predict new
links through appropriate algorithms on the basis of the structure of existing networks [23].
Guan (2016) took the number of trading partners of countries in the international crude oil
unweighted nondirectional trade network in 2014 as the basis for predicting the potential
international crude oil trade relationship and divided the relevant countries into different
trade roles according to the crude oil import, export, and proven reserves, making the pre-
diction more practical [24]. Zhou (2022) predicted the crude oil competition relationship on
the basis of the global crude oil import and export competition network and link prediction
method, combined with the analysis of geopolitical, economic, and social emergencies [25].
Zhang (2021) constructed an undirected weighted network of international trade of lithium
carbonate by using complex network method and explored the potential cooperation rela-
tionship of lithium carbonate resources between small exporting countries and importing
countries using the link prediction method based on local information proximity [26]. Liu
(2019) selected the best algorithm from four mainstream link forecasting methods based on
local information proximity to forecast the international bauxite trade, which provided a
new idea for the bauxite trade partnership forecast [27]. Liu (2020) identified the utilization
level of cobalt resources in various countries according to the trade data of cobalt ore and
cobalt waste and scrap, and then evaluated the potential trade relationship among countries
with different utilization levels by link prediction method [28]. Feng (2017) used the AUC
evaluation index to select the optimal link prediction algorithm, compared the weighted
and unweighted networks of LNG trade and predicted the potential trade relationship
of LNG [29]. Filimonova (2022) built a directed network of international LNG trade in
2019 and used the link prediction method to find potential trade routes to provide decision
support for countries and their governments [30].

Some scholars proposed that the traditional link prediction algorithm does not fully
consider the influence of nodes in the network [31,32]. Zhou (2022) proposed a community
adaptive network based on node centrality to measure the different contributions of nodes
and their neighbors in the network, effectively utilizing the community structure in the
network [33]. Hajarathaiah (2022) proposed the nearest neighbor trust ranking index based
on the structural attributes of neighbor nodes to evaluate the importance of each node [34].
Gao (2013) established a bionic centrality measurement model to measure the degree of
node influence in link prediction from the biological point of view [35].

In addition, in order to better capture and combine the local, quasi-local, and global
characteristics of nodes in the network and improve the accuracy of link prediction, Li
(2022) introduced naïve Bayesian algorithm into the weighted link prediction model [36].
Yu (2022) proposed a link prediction method based on multi-order local information [37].
Anand (2022) proposed an improved link prediction algorithm which integrated node
centralities, similarity measures, and machine learning classifiers [38]. Zhu (2022) proposed
a time network link prediction method combining the network collective influence method,
random walk index, and centrality [39]. Zhao (2022) put forward a link prediction method
using the induction matrix of node characteristics [40]. It turned out that the accuracy of
these models was indeed improved.

Previous studies have promoted the development of the research fields of natural gas
trade, trade forecast, etc. Through combing the existing literature, it was found that there
is still room for further research. Although many scholars have used the link prediction
method to predict the international energy trade, the method remains a classic link predic-
tion algorithm based on the proximity of local information. In spite of its simple program
and fast calculation speed, this kind of algorithm has poor performance in node informa-
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tion utilization. Therefore, this paper improves this algorithm, and selects the best among
several link prediction algorithms based on local information proximity, path proximity,
and random walk proximity, such that the node information can be fully utilized as best
as possible. At the same time, although many scholars believe that political, economic,
geographical distance, and other factors have a certain influence on natural gas trade,
there is no quantitative consideration of these practical factors in the current research of
international LNG trade link prediction. Therefore, this paper comprehensively considers
the influence of political, economic, geographical distance, and other major factors on the
prediction of international LNG trade links through quantitative indicators so as to improve
the prediction accuracy.

3. Methods
3.1. Link Prediction Model

For an undirected network G(V, E), the node set V is formed by N nodes in the
network, the connected link set E is formed by existing links among these nodes, set U0

is formed by links that do not exist among these nodes, and set U = N(N−1)
2 = E + U0.

The link prediction algorithm predicts the missing links and possible links in the set U0

through the known node set V and connected link set E in the network [23].
The process of link prediction can be divided into the steps below. A brief flowchart is

given in Figure 1.
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Step 1: Divide the connected link set E randomly.
The connected link set E is randomly divided into training set EP and test set ET . The

former is used as known information to calculate the score of connected links, and the
latter is used to test the accuracy of predicted connected links. Both satisfy the relationship:
EP ∩ ET = E, EP ∪ EP = ∅. The division ratio is considered to affect the accuracy of
calculation results, whereby a higher division ratio of EP generally leads to higher accuracy
of the algorithm. Therefore, EP : ET = 1 : 9 was established.

Step 2: Calculate the scores of unknown links.
According to step 1, only the structure and information of the links in the training

set EP are known; thus, a link prediction index is selected to calculate the scores of the
remaining unknown links according to the known information, and the scores are arranged
in descending order. Specific link prediction indices are described in Section 3.2.

Step 3: Evaluate the accuracy of link prediction indices.
It can be considered that a higher score denotes a greater probability that a link will

be generated between two nodes. Theoretically, the scores of links in the test set ET rank
high. Therefore, the prediction accuracy of the indices can be evaluated according to the
calculated ranking of links in the test set ET and the set U0.

The prediction effect of link prediction index can be judged using model evaluation
index AUC. AUC is a commonly used model evaluation index in the field of machine
learning, and it is also the most commonly used index to measure the accuracy of link
prediction. This method can measure the accuracy of the algorithm as a whole, and it can
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be understood as the probability that the score of a randomly selected connecting link is
higher than that of a randomly selected nonexistent connecting link. If the score of the
randomly selected link is higher, 1 point is added; otherwise, 0 points are added. Equality
is represented by 0.5 points. The algorithm is as follows:

AUC =
n′ + 0.5n”

n
, (1)

where n represents the times of independent comparisons, i.e., the times of sampling;
n′ represents the times in sampling comparison that the score of the links in the test set
ET is greater than that in the non-existent link set U0, and n” represents the times that
the two scores above are equal. A closer AUC to 1 denotes a more accurate current link
prediction index.

Step 4: Calculate the average precision of link prediction indices.
Steps 1–3 are repeated n times, and the average value of AUC is taken as the final

accuracy of this link prediction index.

3.2. Common Link Prediction Indices
3.2.1. Indices Based on Local Information Proximity

The link prediction algorithm based on the local information proximity emerged first,
and it is widely used because of its simple design and short operation time. This kind of
algorithm mainly considers the situation of common neighbors. Among them, the common
neighbors index is the simplest and most intuitive index, which only considers the number
of common neighbors of two nodes, while the Adamic–Adar, resource allocation and
preferential attachment indices also consider the role differences of common neighbors,
whereby the degree of common neighbors reflects their contribution in the network.

1. Common neighbors index (CN)

The CN index takes the number of common neighbors of two nodes x and y as the
basis to measure the possibility of establishing links between two nodes, whereby more
common neighbors between two nodes denotes a greater possibility of creating links. This
index is defined as

SCN
xy = |Γ(x) ∩ Γ(y)|, (2)

where Γ(x) and Γ(y) represent the set of neighbors of node x and y, respectively, and the
set of their common neighbors is Γ(x) ∩ Γ(y).

2. Adamic–Adar index (AA)

The AA index takes the influence of the common neighbors of nodes x and y into
consideration, considering the contribution of the common neighbor with a small degree
to be greater than that with a large degree. In other words, if the degree of a common
neighbor of nodes x and y is larger, the contribution of the common neighbor to these two
nodes is smaller. This index is defined as

SAA
xy = ∑

z=Γ(x)∩Γ(y)

1
logkz

, (3)

where kz represents the degree of a common neighbor of two nodes x and y.

3. Resource allocation index (RA)

From the perspective of resource allocation, the RA index follows the idea that each
node has certain resources, and these resources will be equally distributed to their neighbors.
Therefore, the common neighbor of x and y can be regarded as the medium of resource
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transmission between the two nodes, and the amount of resources allocated reflects the
proximity of the two nodes. This index is defined as

SRA
xy = ∑

z=Γ(x)∩Γ(y)

1
kz

. (4)

4. Preferential attachment index (PA)

The idea of the PA index is that a greater degree of two nodes denotes a greater
possibility of interconnection. This index is defined as

SPA
xy = kxky. (5)

3.2.2. Indices Based on Path Proximity

The link prediction index based on path proximity takes more information into account
than the index based on local information, while giving up redundant information that has
no or little contribution to the prediction accuracy. This method needs to consider paths of
all lengths in the network, which has high complexity and a long operation time.

1. Local path index (LP)

The LP index considers that a shorter path length between two nodes denotes a
closer relationship between the two nodes, taking the influence of the second-order and
third-order neighbors of the nodes into account. This index is defined as

SLP
xy =

(
A2

)
xy

+ α
(

A3
)

xy
, (6)

where α represents a variable parameter, and A represents an adjacency matrix. (Am)xy
represents the number of paths with a length of m between nodes x and y.

3.2.3. Indices Based on Random Walk

The proximity index based on random walk is transformed from the random walk
model, considering the topological information of the whole network; thus, the calculation
is very time-consuming.

1. Average commute time index (ACT)

Let the average step length of a random walk particle from node x to node y be m;
then, the average commuting time between two nodes is n(x, y) = m(x, y) + m(y, x) =
M(l+xx + l+yy − 2l+xy. The ACT index follows the idea that a shorter commuting time between
two nodes denoted that they are closer. This index is defined as

SACT
xy =

1
l+xx + l+yy − 2l+xy

, (7)

where l+xy represents the element in the row x and column y of the Laplace pseudo-
inverse matrix

3.3. Indices of Added Centrality

The link prediction indices based on local information proximity usually only consider
the number of common neighbors and the node degree of a node pair, but the information
contained by the node degree is relatively little; for example, the closeness and influence of
nodes in the network are not taken into account, which cannot comprehensively reflect the
proximity of network nodes. Centrality is an important parameter to judge the influence
of nodes in complex networks, which mainly includes degree centrality, betweenness
centrality, and closeness centrality. Using the centrality value instead of the traditional
degree value in link prediction can better reflect the structural characteristics of the network
and make the prediction results more accurate. It should be noted that the CN index only
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takes the number of common neighbors as a measure of the possibility of establishing
links between two nodes, but does not consider the contribution difference of common
neighbors, i.e., the degree value of common neighbors; therefore, the centrality cannot
be used to improve this index. At the same time, in heterogeneous networks such as the
international LNG network, because of the high degeneracy of the CN index, the CN values
of many candidate links are the same, and the link discrimination is far worse than other
indices according to the proximity of local information; therefore, the prediction effect is
not good. Accordingly, the CN index is not optimized below.

3.3.1. Definition of Centrality Index

1. Degree centrality

Degree centrality is the most intuitive centrality index in traditional centrality, which
shows the importance of a node in the network. It uses the degree of a node to emphasize
the individual value of the node. In undirected networks, the degree centrality value is
the number of connected links of a single node. More links of a node indicate a closer
relationship, a greater audience reached by the information when spread through this node,
and a wider spread range. The degree centrality of node i can be expressed by the number
of all connected links of the node. The formula is as follows:

CD(i) =
n

∑
j=1

xij(i 6= j), (8)

where xij is the element of row i and column j in the adjacency matrix A. In the adjacency
matrix A, if the nodes i and j are connected, aij is 1; otherwise, it is 0.

2. Betweenness centrality

Betweenness centrality refers to the proportion of the shortest path of any two nodes
through node i to all the shortest paths in a complex network. It emphasizes the between-
ness regulation ability of the node in the network. A shorter path through the node results
in a higher betweenness centrality, indicating that the node has superior betweenness
regulation ability in the network. The formula is as follows:

CB = ∑
s 6=v 6=t 6=V

σst(v)
σst

, (9)

where σst(v) represents the number of shortest paths between nodes s and t passing through
node v, and σst represents the number of shortest paths between two nodes.

3. Closeness centrality

Closeness centrality is related to the information flow transmission between nodes,
and it is used to indicate the ability of nodes to avoid being controlled by other nodes
and transmit information to other nodes in the network. Actually, closeness centrality
indicates the proximity of the “distance” between nodes in the whole network, which
reflects the reciprocal of the sum of the shortest paths from one node to other nodes. A
greater closeness centrality of a node denotes a smaller sum of distances between this node
and other nodes, as well as less time taken for the information flow of this node to other
nodes in the network, thus reflecting higher efficiency. The closeness centrality of node i
can be expressed by the reciprocal of the sum of the shortest distances between node i to
other nodes in the network. The formula is as follows:

Cc(i) =
1

∑n
j dij

, (10)

where n represents the number of nodes in the network, and dij represents the number of
shortest paths between two nodes i and j.
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3.3.2. Indices of Added Centrality

Through comprehensive consideration of the degree centrality, betweenness centrality
and closeness centrality, according to the information level provided by the centrality value
in evaluating the centrality degree of nodes, the entropy weight method is used to give
weight to the three kinds of centrality, and the proximity centrality value of a single node
CK is calculated as follows:

CK = a1CD + a2CB + a3CC. (11)

Then, the indices are improved on the basis of local information proximity, while
the improved link prediction indices are defined with centrality as CAA, CRA, and CPA
indices.

SCAA
xy = ∑

z∈|Γ(x)∩Γ(y)|

1
logCKz

. (12)

SCRA
xy = ∑

z∈|Γ(x)∩Γ(y)|

1
CKz

. (13)

SCPA
xy = CKx CKy . (14)

3.4. Node Attraction Index

All the above indices can be considered link prediction indices based on network
structure characteristics. However, when predicting the potential links in the network, it
is still one-sided to consider only optimizing the network structure characteristics. For
example, the indices based on local information proximity only depend on the known
topology information in the network, and their prediction results are easily affected by the
sparsity of network data. In actual networks, economic development, supply and demand,
national policies and other factors affect the links between nodes [41,42]. The complexity of
influencing factors makes it impossible to add only a single influencing factor to analyze
the characteristics of the whole network system in the prediction process. Therefore, the
index “node attraction” [43] is introduced to comprehensively consider the influence of
influencing factors on the actual network from many aspects.

Calculation of Mutual Attraction between Nodes

In a network, it can be considered that any two nodes attract each other, but the
attraction between different node pairs is strong or weak. When this attraction is strong
enough, the two nodes are linked, which shows the LNG trade relationship between
two countries or regions in the global LNG trade network. When this attraction is too
weak, there is no direct trade activity between the two nodes, and there is no direct link
relationship in the topological network, but the two nodes may have indirect trade activity
through other nodes.

Accordingly, the concepts of network node attraction and attraction degree are given.
Network node attraction is the ability of a node to link with other nodes by virtue of its
own advantages. Network attraction degree refers to the difficulty for a node to establish
connections with other nodes in the process of network evolution. A greater attraction
degree denotes that it is easier to establish links with other nodes [44].

Relevant scholars have identified the key factors in natural gas trade using various
methods, suggesting that energy intensity [6], political factors [7,45], geographical loca-
tion [8], and economic scale [46] have great influence on natural gas consumption and
supply. Zhang (2018) [9] analyzed the global LNG trade from multiple dimensions by using
the trade gravity model, which further confirmed the above conclusions. According to the
above research results, this paper selected the GDP (gross domestic product) of importing
countries, LNG consumption of importing countries, political stability of exporting coun-
tries, and natural gas output of exporting countries as influencing factors, as well as the
distance between countries or regions, as outlined below. The data sources are shown in
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Table 1. The entropy weight method was used to assign the above influencing factors and
calculate the attraction degree of each country. The formula is as follows:

Zi = 100×
n

∑
j=1

rijWj, (15)

where Wj represents the weight of the influencing factors, and rij represents the standard-
ized value of the influencing factor j in the country or region i.

Table 1. Data sources of influencing factors.

Variable Unit Data Source

GDP US dollars World Bank
Natural gas consumption Billion cubic meters BP
Natural gas production Billion cubic meters BP
Political Stability index - WGI

Distance Kilometers CEPII

Attraction degree is an attribute of the node itself, just like how every object has a
mass, and it is a positive scalar. A greater attraction degree denotes a greater attraction
between two nodes. According to Newton’s universal gravitation formula, it is extended to
calculate the attraction between nodes, and a gravitational model of interaction between
nodes is constructed [47]. This model indicates that the attraction between nodes is directly
proportional to the product of the attraction degree of two nodes, and inversely proportional
to the square of the distance between nodes.

Fxy = G
ZxZy

D2
xy

, (16)

where Fxy represents the mutual attraction between nodes, G represents the node attraction
coefficient, Zx and Zy represent the attraction degrees of nodes, and Dxy represents the
distance between nodes x and y.

3.5. Coupling Proximity Index

Whether the nodes in the network are linked or not is by no means determined by a
single factor. It is necessary to further couple different types of indices and combine the
network structure and node attribute information to comprehensively consider the link
mechanism of the network. Firstly, the influence of external political and economic factors
on links in the network is considered, and attraction is taken as one of the main coupling
factors. Then, two indices with the highest accuracy are selected from the remaining
nine link prediction indices based on network structure characteristics for multifactor
coupling [48], which can be defined as

SFinal
xy = λ1Fxy + λ2S1

xy + (1− λ1 − λ2)S2
xy, (17)

where Fxy represents the attraction index, and Sn
xy represents a link prediction index based

on the characteristics of network structure. The parameter coupling coefficient is λ ∈ [0, 1],
λ1 + λ2 = 1. The arbitrary step value of λ is 0.1. When λ is 1, the coupling algorithm
returns to the initial algorithm with the coefficient of 1. In order to ensure the rationality
and accuracy of the coupling algorithm, the proximity matrix parameters of each coupling
index are divided by their maximum values, i.e., the coupling calculation is carried out
after normalization measures are taken.
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4. Experiment and Evaluation
4.1. Accuracy Analysis of Each Link Prediction Index

The global LNG trade data from 2010 to 2020 were collected through the Shipping
Intelligence Network (SIN), covering 11 years, involving 60 countries or regions and
2610 pieces of trade data. Then, 11 annual undirected LNG trade networks were built with
trading countries as nodes and trade relations between countries or regions as links.

Each link prediction index was used to predict the actual global LNG network in each
year. Here, 90% of the links in the link set were included in the training set and 10% were
included in the test set. Through MATLAB simulation, 10 independent experiments were
carried out, and the average AUC of each year and the average AUC of the 11 years were
obtained, as shown in Table 2, where CAA, CRA, and CPA represent the improved link
prediction indices after adding centrality.

Table 2. AUC values of link prediction indices.

CN AA RA PA LP ACT CAA CRA CPA

2010 0.669 0.681 0.681 0.928 0.957 0.516 0.685 0.691 0.954
2011 0.659 0.675 0.679 0.927 0.964 0.537 0.677 0.687 0.955
2012 0.705 0.719 0.728 0.920 0.950 0.531 0.721 0.733 0.940
2013 0.798 0.805 0.806 0.932 0.953 0.638 0.817 0.826 0.946
2014 0.813 0.822 0.827 0.916 0.943 0.634 0.831 0.845 0.929
2015 0.772 0.786 0.792 0.914 0.932 0.653 0.791 0.802 0.939
2016 0.720 0.733 0.737 0.869 0.912 0.665 0.733 0.742 0.901
2017 0.718 0.734 0.746 0.886 0.929 0.678 0.738 0.757 0.936
2018 0.689 0.695 0.698 0.865 0.909 0.745 0.697 0.711 0.918
2019 0.604 0.628 0.651 0.853 0.915 0.729 0.629 0.666 0.913
2020 0.593 0.605 0.616 0.829 0.907 0.732 0.606 0.626 0.903

Average 0.704 0.717 0.724 0.894 0.934 0.642 0.721 0.735 0.930

As shown in Table 2, the AUC accuracy was basically above 0.6, and the accuracy
of the algorithm was high. Among the indices based on local information proximity, the
prediction accuracy of AA, RA, and PA indices was higher than that of the CN index, which
is also related to the fact that the contribution of common neighbors was not considered
in the CN index, as mentioned above. Among all indices based on network structure
characteristics, the LP index had the best prediction effect, with an AUC value of 0.934. The
PA index based on local information proximity had the second-best prediction effect, with
an AUC value of 0.894, while the ACT index based on random walk had a poor prediction
effect, which indicates that it is more appropriate to predict the structural characteristics
of the global LNG network from the perspective of network path and local information
proximity.

The AUC values of AA, RA, and PA after adding centrality were 0.721, 0.735, and
0.930, respectively, which are higher than the original values of 0.717, 0.724, and 0.894.
Among them, the prediction effect optimization efficiency of the CPA index was the highest,
with its AUC value increasing from 0.894 to 0.930, and its accuracy improving by 4.0%, as
shown in Figure 2. This shows that the centrality of nodes can better reflect the importance
of nodes in the network.
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Figure 2. AUC value of indices after adding centrality.

To sum up, the two indices based on network structure with the highest prediction
accuracy were the LP index and CPA index.

4.2. Accuracy Analysis of Coupling Index

The attraction index (ATT) was coupled with LP and CPA indices with the highest
AUC values, as follows:

SFinal
xy = λ1Fxy + λ2SLP

xy + (1− λ1 − λ2)SCPA
xy , (18)

where λ ∈ [0, 1], and the step size is 0.1. The AUC calculation steps were repeated to obtain
the AUC average of each year and the AUC average of 11 years of the coupling algorithm.
Figure 3 clearly shows the changes in the AUC average of the coupling algorithm under
different values of λ. With the change in coefficient, the accuracy of the coupling algorithm
also changed. When (λ1, λ2) = (0.1, 0.8), the accuracy of the coupling algorithm reached
the highest at 0.9397. Specifically, for the coupling algorithm of ATT, LP, and CPA, when
the coefficient of the ATT index exceeded 0.1, a larger index coefficient led to a worse effect
of the coupling algorithm is (Figure 3b). When the LP index coefficient became larger, the
effect of the coupling algorithm was improved (Figure 3c). When the coefficients of the PA
index ranged from 0 to 0.8, the effect of the coupling coefficient was good (Figure 3d).

As shown in Figure 4, compared with a single index, the coupling index achieved
multi-attribute fusion, and the prediction performance was improved. The average AUC
of each year was above 0.9, and the prediction effect was better. Although the coupling
algorithm had no obvious improvement in prediction accuracy compared with the LP index
and CPA index, this effect could not be ignored compared with other indices. This shows
that the coupling index could effectively improve the prediction effect.
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4.3. Comparison between Potential Trade Links and Actual Situation

The coupling index of ATT, LP, and CPA was used to predict the potential trade
relationship in the natural gas trade network. In the proximity ranking list, a higher
ranking indicated a greater likelihood of nonexistent links coming to be true in the future.
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The top ten nonexistent links in the 2010–2019 forecast results were extracted every year. As
some trade relationship pairs appeared repeatedly in many years, there were 76 potential
trade relationship pairs in the final forecast. Comparing the predicted results with the
actual trade situation, 52 pairs of potential trade relations predicted in 2010–2019 were
converted into actual trade relations before 2020, with a predicted success rate of 67.1%.
Among them, 31 pairs were converted into actual trade within 1 year, 43 pairs were
converted within 2 years, and 45 pairs were converted within 3 years, accounting for
86.5% of the successfully predicted trade relations. The remaining six pairs all turned
into actual trade relationships within 4–5 years, suggesting that improved link prediction
coupling algorithms are effective in discovering potential LNG trade relationships. Of the
52 successfully predicted relationships, 35 had actual trade relations before the prediction,
accounting for 67.3%, indicating that trading countries are more inclined to re-establish
trade relations with their previously familiar trading partners. The remaining 25 pairs
of relationships failed to predict, i.e., 25 pairs of potential trade relationships predicted
in 2010–2019 did not turn into actual trade relationships before 2020. Table 3 shows all
the trade relationship pairs that failed to predict in 2010–2019. The actual trade data
from 2010–2020 were taken from the LNG Trade and Transport 2021 report of Clarkson
SIN. In Table 3, the light-blue block in each row indicates no actual LNG trade between
the corresponding countries or regions in the corresponding year, but that, through the
link forecast, the trade relationship is likely to occur after that year. The dark-blue block
indicates that LNG trade indeed took place between the corresponding countries or regions
in the corresponding year. When the light blue block is followed by a dark blue block,
the predicted trade relationship became a reality. The “+” indicates the year in which the
actual trade relationship existed before the potential relationship was predicted. Among
them, the first 13 pairs of relationships with failed forecasts did not produce trade relations
between 2010 and 2020, indicating that it is very unlikely for them to establish new trade
relations in the future. However, the “Algeria–Kuwait” pair established trade relations
in 2021, although they did not produce trade relations in the 11 years after 2010, which
shows that these relationships with failed forecasts are still promising for the future. The
last 12 failed pairs had trade relations before the forecast, but they may have terminated
their trade relations for some reasons, remaining without trade relations after the forecast.
For example, the suspension of the “Qatar–Dubai” trade relationship may have been due
to the deterioration and breaking off of relations between Qatar and Bahrain, United Arab
Emirates, and other countries headed by Saudi Arabia in 2017. The suspension of the
“Trinidad–Japan” trade relationship may have been due to the decrease in demand for
LNG caused by the return of nuclear power plants in Japan in 2018. The disappearance of
the “Yemen–Spain” pair of trade relations may have been due to the decline in demand
for LNG caused by Spain’s increased dependence on renewable energy and domestically
produced coal, as well as Yemen’s domestic political challenges. The disappearance of the
“Peru–Brazil” trade relationship may have been due to the fact that Brazil mainly relies
on the import of pipeline natural gas. Before 2013, the import of pipeline natural gas in
Brazil was more than twice that of liquefied natural gas. After 2013, the import of liquefied
natural gas in Brazil increased, but pipeline natural gas still dominates.

Table 3. Relationship pairs that failed to predict in 2010–2019.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Egypt Brazil

Nigeria Chile
Yemen Brazil
Peru Kuwait

Yemen Argentina
Portugal Japan
Algeria Dubai
Algeria Kuwait
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Table 3. Cont.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Peru Egypt
Peru Pakistan
Peru Dubai

America Sweden
Trinidad Sweden
Yemen Spain +
Peru Brazil +
Peru India + +

Trinidad Belgium + +
Norway Dubai + +
Qatar Dubai + + + + + + + +

Trinidad Japan + + + + + + + + +
Angola Japan + + + +
Australia Pakistan + + +
Trinidad Pakistan + + +
Trinidad Lithuania +
America Finland

The light-blue block in each row indicates no actual LNG trade between the corresponding countries or regions
in the corresponding year. The dark-blue block indicates that LNG trade indeed took place between the corre-
sponding countries or regions in the corresponding year. The “+” indicates the year in which the actual trade
relationship existed before the potential relationship was pre-dicted.

It should be noted that the actual factors considered in the prediction method in this
paper mainly came from the identified key factors of natural gas trade in the existing
literature [6–9,45,46], such as energy intensity, political factors, geographical factors, and
economic scale. However, in the actual natural gas trade, the trade is not only affected
by the above factors; some factors, although their influence degree is limited, cannot be
ignored sometimes. For example, because of its remote location and scarce natural gas
resources, Japan has always been the world’s largest importer of LNG (except in 2021).
In 2011, due to the Fukushima nuclear power plant disaster in Japan, the demand for
LNG increased sharply, while the nuclear power restart plan in recent years caused the
demand for LNG to drop, which shows that alternative energy sources have an impact on
the demand for LNG to some extent. Furthermore, the price, technical conditions, sudden
disasters and other factors also play a certain role in the LNG trade [9]. Therefore, the
feasibility of the prediction results is further analyzed in combination with the annual LNG
report of the International Gas Union (IGU) and the actual situation of that year.

5. Discussion
5.1. Analysis of Global Potential Trade

According to the analysis of the relationship of successful prediction in Section 3, the
prediction time limit of the prediction method used in this paper was 3–5 years. Therefore,
28 pairs of relationships predicted in 2016–2020 were selected and analyzed in combination
with the World LNG Report in 2017–2022 of IGU, so as to accurately identify potential
trade relationships (Table 4). It should be noted that since the Russia–Ukraine conflict at the
end of February 2022, the price fluctuation and the change in supply and demand of LNG
caused by Russia’s reduction in pipeline gas supply to Europe and Europe’s “gas grabbing”
behavior in the international energy market have had a significant impact on the global
LNG pattern [49]. The below analysis is made in connection with this incident. Among
the 28 relationship pairs, 10 pairs of forecasting relationships were related to Norway.
Considering that, since 2016, Norway’s LNG export has basically shown a downward
trend, and the strong demand for Norway’s natural gas in the European market, coupled
with the tight supply of European natural gas caused by the recent Russia–Ukraine conflict
and the shortage of European natural gas reserves, Norway has hardly exported LNG
to other regions since 2019. Therefore, it is unlikely that the other countries involved in
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the above prediction will establish new LNG trading relationships with Norway in recent
years. Four pairs of forecasting relationships were related to Trinidad. It can be seen from
the forecast that three of them had frequent LNG trade since 2010 and had actual trade
transactions in the past 2 years. The LNG trade of “Trinidad–South Korea (S. Korea)” was
interrupted only once in 2016, maintaining stable trade relations in other years. Therefore,
it can be considered that it is more likely to establish a new LNG trade relationship with
Trinidad. Three pairs of forecasting relationships were related to France, which focuses
on LNG re-export trade. In recent years, France ranked first in the list of LNG re-export
countries, and the above three pairs of trade relations all turned into reality from 2016 to
2020. For re-export trade, the price difference of different river basins makes arbitrage an
important and profitable monetization strategy. However, considering the recent rising
price of LNG in Europe, the cutoff supply of Russian PNG is causing Europe to excessively
hoard imported LNG, and the bids are usually higher than those of Asian buyers. The
LNG trade relationship with France in the future depends on the changes in natural gas
prices in Europe and Asia, and there may be hope when the European gas supply crisis
eases. Belgium’s LNG re-export trade may also be delayed for the same reason. Two pairs
of forecasting relationships were related to Russia. In recent years, Russia has maintained
the status of the fourth largest exporter of LNG, and its LNG output is considerable. In
addition, with the reduction in supply to the European market, Russia’s gas is likely to
flow to other regions. Therefore, it is very likely that other countries will establish new
LNG trade relations with Russia. Egypt’s import and export market is unstable, and its
energy import and export strategies are mainly influenced by domestic natural gas supply
and international natural gas pricing. Africa’s liquefied natural gas is mainly exported to
Europe and Asia. Algeria, Nigeria, Angola, and Equatorial Guinea have unstable export
volumes due to raw gas supply or technical problems. However, in 2021, Africa’s proposed
liquefied capacity was 123.9 MTPA (million tons per annum), and Africa may become an
important LNG export region in the future. Therefore, African countries still have great
potential in LNG export.

Table 4. Potential relationships that may be realized in the future.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Norway Japan
Norway Malaysia +
Norway Jordan
Norway Japan
Norway Taiwan + + +
Norway America + + + + + + +
Norway Kuwait
Norway China
Norway S. Korea + + + +
Norway Jamaica +
Trinidad S. Korea + + + + + +
Trinidad Portugal + + + + +
Trinidad Dubai + + + + +
Trinidad Malaysia
France S. Korea
France China
France Taiwan +

Belgium S. Korea + + + + + +
Russia Turkey
Russia Dubai
Egypt S. Korea + + + + +
Egypt Taiwan + + + +

Algeria China + + + +
Algeria Egypt + +
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Table 4. Cont.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Algeria S. Korea +
Nigeria Thailand + + + + + + + +
Angola Taiwan

Eq. Guinea Taiwan + + + + + + +
The light-blue block in each row indicates no actual LNG trade between the corresponding countries or regions
in the corresponding year. The dark-blue block indicates that LNG trade indeed took place between the corre-
sponding countries or regions in the corresponding year. The “+” indicates the year in which the actual trade
relationship existed before the potential relationship was pre-dicted.

5.2. Analysis of Potential Trade of Countries or Regions with High Dependence on Foreign
Countries

Since 2014, the LNG trade has been growing continuously, and the Asia-Pacific region
has been the largest LNG import region in the world. In this region, mature natural gas
markets such as China, India, South Korea, Japan, and Taiwan Province have been the
strong driving forces for the import growth. In Japan, South Korea, and Taiwan Province,
the remote geographical location and scarcity of natural gas resources drive the LNG import,
while the inability of natural gas production to keep up with the demand growth is the
main reason for China and India importing LNG. According to the GIIGNL (International
Group of Liquefied Natural Gas Importers) survey, in 2021, the LNG imports of the above
countries and regions accounted for 65.6% of the total global LNG imports, ranking in the
top five for global LNG import. For these countries or regions, the source of LNG is highly
dependent on foreign countries. Ensuring the safety of LNG supply is the most important
thing. Reasonable prediction of potential trade relations can help these countries or regions
to find potential LNG trading partners, as well as provide a reference for the diversification
of LNG imports and the safety of energy trade. Further analysis is presented below.

The links related to China, India, Japan, and South Korea in the forecast results are
shown in Table 5. As can be seen, from 2010 to 2020, there were a total of 27 links involving
China, India, Japan, and South Korea, of which 85.2% were successfully predicted, and
95.7% of potential trade relations turned into actual trade relations within 2 years.

Table 5. Potential Relationships among China, India, Japan and South Korea from 2010 to 2020.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Norway Japan

Peru Japan
America Taiwan
Portugal Japan
Algeria Taiwan +
France S. Korea

Belgium Japan + + +
Norway Taiwan + + +
Norway China
Norway India + + +
France China

Belgium China
Peru S. Korea + + +

Norway S. Korea + + + +
Algeria India + + + +

Trinidad S. Korea + + + + + +
Algeria China + + + +
Belgium S. Korea + + + + + +

Peru India + +
Eq. Guinea Taiwan + + + + + + +

Angola Taiwan
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Table 5. Cont.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Egypt S. Korea + + + + +
Egypt Taiwan + + + +

Algeria S. Korea +
France Taiwan +

Trinidad Japan + + + + + + + + +
Angola Japan + + + +

The light-blue block in each row indicates no actual LNG trade between the corresponding countries or regions
in the corresponding year. The dark-blue block indicates that LNG trade indeed took place between the corre-
sponding countries or regions in the corresponding year. The “+” indicates the year in which the actual trade
relationship existed before the potential relationship was pre-dicted.

Although most potential trade relations were realized several years after the forecast,
there were still some trade relations ranked in the top 10 in the forecast results, for which
no real trade relations were generated after the forecast. In order to predict the future
potential trade relations more accurately, it is necessary to further analyze all the successful
and unsuccessful links to summarize the rules.

Taking 2016 as the dividing line, among the potential trade relations in China, India,
Japan, and South Korea predicted in 2010–2016, only the “Portugal–Japan” pair was not
realized before 2020. This pair of relations was predicted once in 2012, but these countries
had no actual trade relations in 2010–2021. On the one hand, the increase in nuclear and
renewable energy generation in Japan reduced the demand for gas power generation. On
the other hand, Portugal is mainly positioned as an importer of liquefied natural gas,
and only engages in a small amount of re-export trade. Recently, the European energy
crisis caused by the Russia–Ukraine conflict made it almost impossible for the predicted
relationship to become an actual trade relationship in the future. Among the remaining
17 pairs of successfully predicted trade relations, 16 pairs of potential trade relations
developed into actual trade relations within 2 years after the prediction. At the same time,
these successfully predicted trade relations often lasted for several years, among which
10 pairs of links generated actual trade relations for three consecutive years. Therefore, it
can be considered that, in this forecast of trade relations among China, India, Japan, and
South Korea, the forecast is valid for 2 years. If the potential trade relations between China,
India, Japan, and South Korea are not established within 2 years after the first forecast,
the possibility of establishing trade relations in the future is small; however, once trade
relations are established, China, India, Japan, and South Korea are more inclined to establish
long-term and stable trade relations. Of the nine pairs of potential trade relations among
China, India, Japan, and South Korea predicted in 2017–2019, three were not realized before
2020. The “Trinidad–Japan” and “Angola–Japan” pairs of predicted relations had actual
trade before 2018, but the trade relations disappeared after 2019. This was probably due
to the restart of Japan’s nuclear energy reducing domestic LNG demand. At the same
time, whether these two pairs of forecasting relationships were realized or not can only
be verified from the results in 2020, negating the forecast being valid for two years, and
these two pairs of forecasting relationships may still produce actual trade relations. The
relationship of “Peru–India” may be due to the unstable supply of raw materials and the
decline in natural gas production caused by technical problems in Peru.

At the same time, among the 23 successfully predicted trade relations, 15 (65.2%) had
trade relations before the first forecast. It can be understood that China, India, Japan, and
South Korea are more inclined to re-establish trade relations with countries or regions that
have previously had trade relations. Among the four pairs of trade relations that were
not successfully predicted, three pairs had trade relations for more than two consecutive
years before the prediction; hence, it is still possible to establish trade relations again in
the future.

The other predicted successful relationship pairs were mainly related to some countries
in Europe, Africa, and America, but the recent Russian–Ukrainian conflict is likely to hinder
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the export and re-export trade of LNG in Europe. Considering that Norway only exported
LNG to China and India, the only two non-European countries, in 2019, it is very likely
that “Norway–China” and “Norway–India” trade relations will be re-established in the
future. Furthermore, the potential trade relations among China, India, Japan, and South
Korea and some countries in Africa and America may continue in the future, such as
“America–Taiwan”, “Peru–S. Korea”, and “Algeria–China”.

6. Conclusions

As a clean and efficient energy source, LNG plays an important role in the global low-
carbon transformation process. The low-carbon requirement and energy transformation
have led to the LNG trade increasing continuously since 2015. How to ensure the stability
and safety of domestic LNG supply in the complex and changeable market environment
has become a concern of LNG importers. In this paper, the improved link forecasting
method was used to study the international LNG trade relations. While discovering the
potential trade relations according to the topological attributes of each country, it also
provides a further perspective, taking geographical, economic, and political factors into
account, thus further improving the forecasting accuracy. This paper attempted to find
potential partnerships for natural gas-importing countries through the improved link
prediction algorithm, aiming to help these countries realize the diversification of LNG trade
and ensure the safety of LNG supply. Combining the optimization of the link prediction
method and the analysis of prediction results, the main conclusions are as follows:

(1) For the global natural gas trade network, among the single forecasting indices, the LP
index based on path proximity had the highest forecasting accuracy; for the indices
based on local information proximity, the prediction accuracy of the index could be
improved by replacing the traditional node value with the centrality value. Economic
and political factors also had a certain influence on the prediction results, and the
prediction accuracy of multi-factor coupling indices was obviously better than that of
single indices.

(2) The correct rate of link prediction cannot reach 100% because changes in political
relations, newly promulgated policies of the state, and sudden epidemics all have
certain influences on trade relations. Therefore, it is a normal phenomenon for some
predicted links to fail. For example, the shale revolution of the United States led to
the country becoming a big exporter of LNG, instead of a net importer whose natural
gas production could not keep up with the demand growth as originally predicted
by the International Gas Union. For LNG trade, the price difference between river
basins, the change in domestic output, the competition with alternative energy, the
geopolitical situation, the change in natural environment (temperature, climate, etc.),
and the relevant restrictions of COVID-19 all have certain influences. At the same time,
the main influencing factors are also different for different countries. For example,
they are different for France, Belgium, and other countries engaging in re-export
trade, where the price difference between river basins is the main factor affecting LNG
trade relations.

(3) For those successful predicted trade relationships, in terms of prediction timeliness, it
generally took 3 years for a potential global LNG trade relationship to change from
the first prediction to an actual trade relationship. For countries or regions such as
China, India, Japan, and South Korea with high dependence on foreign countries,
this timeframe was generally 2 years. At the same time, previous trade cooperation
relationships led to countries re-establishing trade relations, whereby most countries
tended to establish trade relations with those countries they are familiar with.

(4) Trinidad, Russia, Algeria, Nigeria, Angola, and Equatorial Guinea are more likely
to establish new LNG trade relations with other countries. Trinidad and Portugal,
Trinidad and Dubai, Trinidad and Malaysia, Russia and Turkey, Russia and Dubai,
Algeria and Egypt, and Nigeria and Thailand are more likely to establish trade
relations in the next five years. The shortage of natural gas supply in European
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countries caused by the Russia–Ukraine conflict may temporarily restrict their export
and re-export trade. The forecast of the IEA (International Energy Agency) also shows
that African countries will be the biggest driving force of global natural gas production
growth in the next 5 years, which proves the accuracy of the link forecast results to
some extent.

(5) At present, about 90% of the LNG imported by China, India, Japan, and South Korea
comes from Australia, Qatar, Malaysia, and Indonesia. Considering the security
of energy supply, Algeria, Angola, Equatorial Guinea, Trinidad, the United States,
Peru, and Norway may become future partners. China, India, S. Korea, and Taiwan
Province are more likely to import LNG from Algeria in the next 2 years. In addition,
Angola and Taiwan Province, Eq. Guinea and Taiwan Province, Trinidad and S. Korea,
Peru and Japan, Peru and S. Korea, and America and Taiwan Province are more likely
to establish trade relations in the next 2 years.

Although the link prediction algorithm was improved in this paper, which effectively
improved its prediction accuracy, the LNG trade market is complex and changeable, and
the formation of trade is affected by many factors. The research carried out in this paper
still has certain limitations and room for improvement, as discussed below:

(1) In this algorithm, only the key factors affecting the LNG trade precipitated from
the existing literature were quantitatively considered, such as the price of LNG, the
competition of alternative energy, and the change in technology, but not quantified. In
the future, the potential factors affecting the global LNG trade can be comprehensively
studied through methods such as the trade gravity model [9] and incorporated into
the link prediction algorithm to make the algorithm more realistic.

(2) The data used in the link prediction algorithm in this paper were national statistical
data with a unit of 1 year, but the temporal resolution of the data is still insufficient.
Therefore, the response to unexpected events (e.g., Russia–Ukraine conflict) and the
characteristics of real-time LNG trade cannot be well reflected. In the future, the scale
and research timescale of the research object can be further refined by obtaining ship
history and real-time data [13].

(3) In the future, countries can be further classified according to the main factors that
affect the LNG trade to analyze the international trade relations; then, then combined
with the factors such as trade volume and trade direction, the potential trade relations
can be predicted more accurately and evaluated more deeply.
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