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Abstract: In the alpine mountain area, the stability of the steep-slope permafrost subgrade is mainly
affected by the temperature variation in the frozen soil layer at the base of the road. Under the
conditions of climate warming and engineering-related disturbance, the cooling of the subgrade is
an urgent problem to be solved in the field of construction. In this paper, the numerical calculation
method, combined with data monitored in situ, is used to study the cooling effects of several subgrade
cooling measures, in which the non-linear ventilation pipe and rubble layer are combined. The results
show the following: (1) the temperature field of the steep-slope subgrade is clearly different in lateral
terms—after 20 years of operation, the maximum difference in the melting depth between the left
shoulder and the subgrade center is 3 m; (2) the maximum melting depth of the gravel subgrade
center is 3.85 m, while the maximum difference in the melting depth between the left shoulder and
the subgrade center is 2.3 m; (3) the cooling effect of the composite measures is noteworthy, and a
−2.2 ◦C freezing area appears under the subgrade.

Keywords: steep-slope permafrost; half-cut and half-fill subgrade; non-linear vent pipe gravel layer;
cooling effect

1. Introduction

During the “Fourteenth Five Years Plan” period, Xinjiang accelerated the construction
of a transportation hub in the core area of the Silk Road Economic Belt, where the Kunlun
Mountains, Tianshan Mountains and Altai Mountains are distributed. The annual average
temperature is lower than −3 ◦C, which creates permafrost and segregated areas where
the frozen ground is widely distributed [1,2] Therefore, the construction project has many
technical difficulties due to the harsh climate, such as the cold temperature, high altitude
and high latitude. Slope road engineering can lead to the disturbance of natural frozen
soil [3], resulting in dramatic changes in the original soil temperature. Disturbances such
as uneven settlement, longitudinal cracks and road boiling occur frequently, and seriously
threaten the safe operation of the roads.

As a measure for actively regulating the ground temperature, the crushed stone
subgrade has been widely used in road engineering in permafrost regions, in which the
convection and conduction modes of cold air are used to increase the cooling capacity of
the subgrade and protect the permafrost under the subgrade by changing the embankment
structure. Through indoor tests, Yu found that crushed and block stone layers with a
certain thickness had obvious cooling effects [4–6]. Lai Yuanming studied the natural
convection effect and cooling effect of block stone particles with different sizes when the top
temperature fluctuated [7–9] Cheng conducted experimental analyses on the cooling effects
of gravel subgrade structures with different shapes [10,11], and found that the ventilation
pipe subgrade is one of the effective engineering measures employed to maintain subgrade
stability in permafrost regions.

Under the impact of natural convection and wind, cold air with a high density can
extrude the hot air in the pipe and constantly remove the heat from the surrounding soil
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to “cool the subgrade”, thus reducing the ground temperature of the permafrost under
the subgrade and improving the thermal stability [12]. Indoor model tests show that the
vent pipe can effectively reduce the temperature at the bottom of the embankment and
the maximum melting depth [9,13,14]. Relevant studies have confirmed that the diameter,
laying spacing and buried height of the ventilation pipe and the ambient wind speed all
have significant impacts on the cooling effect of the ventilation pipe subgrade [15–21]).
According to the convection heat transfer process [11,20], it is demonstrated that the
intensity of the forced convection in the pipe is greater than that of natural convection.
When the heat transfer of the viscous layer and tube wall is ignored, it is found to be mainly
affected by wind speed.

Currently, engineering construction mainly adopts the abovementioned measures that
are combined with anti-slip piles or retaining walls and other types of mechanical support
to achieve noteworthy results. However, in the case of the Xinjiang alpine mountain road
project, a steeper slope of the high-temperature permafrost section was carried out due
to the roadbed’s half-road rift design; the fact is that there is only a single slope and the
rainfall, thick winter snow and other factors, as well as the excavation of the roadbed
and slope stability are seriously inadequate, and there is even a risk of slippage at the
titled freeze–thaw interface. Corresponding to the above-mentioned problems, the multi-
year permafrost section in the Middle Tianshan Mountains of Xinjiang was taken as an
example in this paper, and we proposed a new composite-measure roadbed and employed
numerical calculation methods to study the law of the hydrothermal changes in the steep-
slope permafrost roadbed; the water migration and temperature change in soil under
different measures were revealed, which can be used as a theoretical basis for studying frost
heaving deformation of the roadbed and provide a theoretical reference for the construction
of alpine mountain road projects in the future.

2. Geometric Model

According to the standard for the Design of Highway Routes [21] and the survey data
of the G218 Line in the hinterland of the Central Tianshan Mountains [22–24] the physical
structure of the highway subgrade and its asphalt pavement are shown in Figure 1. The
width of the model at the upper and lower slope toe of the subgrade is 50 m, the depth is
30 m, and the slope angle is 25◦. In order to realize the best cooling effect, it is necessary
to release the heat of the asphalt pavement road and protect the permafrost layer; for
this purpose, four different subgrade structures were designed in this study. The specific
physical parameters of the soil layer are listed in Tables 1 and 2.
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Table 1. Thermodynamic parameters of the soil layer [25,26].

Material ρd/
(kg·m−3)

λf/
W·(m·K)−1

λu/
W·(m·K)−1

Cf/
kJ·(m3·K)

−1
Cu/

kJ·(m3·K)
−1

Water
Content/%

Fill soil 1940 1.98 1.919 1913 2227 8

Silt 1600 0.97 1.09 1932 2341 11

Gravel soil 1500 1.351 1.125 1879 2357 15

Mudrock 1800 1.824 1.474 1846 2099 10

Crushed rock 1950 0.387 0.385 1180 1180 0

Table 2. Soil moisture related parameters [27].

Material a/(1·m−1) m l θs θr ks/(m·s−1)

Fill soil 0.45 0.50 0.50 0.25 0.01 4 × 10−6

Silt 2.59 0.22 0.50 0.50 0.03 1 × 10−6

Gravel soil 2.00 0.38 0.50 0.50 0.05 5 × 10−6

Mudrock 0.80 0.50 0.50 0.30 0.01 1 × 10−9

Working condition 1: filling the subgrade without protection and using excavation
and backfilling to form the subgrade at the natural slope. According to the relevant surveys,
the natural slope soil mass is divided into three layers [23,24,28,29] from top to bottom. The
first layer is silty soil with a thickness of 3 m, the second layer is crushed and block stone
soil with a thickness of 6 m, and the third part is weathered mudstone with a thickness of
21 m.

Working condition 2: the gravel layer subgrade—adding a gravel layer to the subgrade
after excavation. The gravel grain size is 7~13 cm, with an average value of 10 cm [30]. The
gravel layer is 1.4 m in thickness, and the overburdened soil is 1.4 m in thickness.

Working condition 3: ventilation pipe subgrade—a concrete ventilation pipe is in-
stalled on the subgrade after excavation. The diameter of the ventilation pipe is 0.4 m, the
wall thickness is 0.05 m, and the thickness of the backfill on the vent pipe is 1.5 m.

Working condition 4: the gravel layer composite subgrade with a non-linear ventilation
pipe is covered by a gravel layer with a thickness of 1 m after excavation and average
particle size of 10 cm. The ventilation pipe, with a diameter of 0.4 m and a wall thickness of
0.05 m, is installed above the gravel layer, and the filling soil over the ventilation pipe is
0.5 m thick.

3. Mathematical Model and Boundary Conditions
3.1. Flow Equation

The water in the soil will migrate with the soil temperature changing, and the migra-
tion process is assumed to follow Darcy’s law [27,31–33]. According to Richard’s equation,
the control equation of water separation field used in this paper is:

∂θu

∂t
+

ρi
ρw
· ∂θi

∂t
= ∇[D(θu)∇θu + kg(θu)] (1)

where θu is the volume of unfrozen water; kg is the permeability coefficient of the unsatu-
rated soil in the direction of gravity acceleration and D(θu) is the water diffusion rate in
the frozen soil. The calculation formula is:

D(θu) =
k(θu)

c(θu)
· I (2)
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where k(θu) is the soil permeability (m/s); c(θu) is the specific water capacity (1/m) and I
is the impedance factor (I = 10−10θi ). The connection equation is:

Bi =
θi
θu

=

1.1( T
Tf
)

B − 1 (T < Tf )

0 (T ≥ Tf )
(3)

where B is a constant and is related to the soil type and salt content; according to the
empirical data, its value can respectively be taken as 0.61 for sand, 0.56 for clay and 0.47
for silt.

3.2. Heat Transfer Equation

In soil heat transfer, the effects of convection and mass transfer are ignored, while only
heat conduction and phase change are considered [34]. The differential equation for soil
heat conduction is:

ρC(θ)
∂T
∂t

= ∇ · (λ(θ)∇T) + L · ρi
∂θi
∂t

(4)

where T is the instantaneous temperature of the soil mass (°C); t is the time (s); ρ and ρi
are the density of soil and ice (kg/m3); L is the latent heat of the phase change; θ is the
volume of the water content (θ = θu + ρi/ρw · θi); θi is the volume of the ice content; C(θ)
is the volumetric heat capacity of the soil (J/(kg · K)); λ(θ) is the heat conduction of the
soil (W/(m · K)) and (Tf − ∆T, Tf + ∆T) is the temperature range of the ice–water phase
transition.

C(θ) =


C f T < Tf − ∆T

L
2∆T +

C f +Cu
2 Tf − ∆T ≤ T ≤ Tf + ∆T

Cu T > Tf + ∆T

(5)

λ(θ) =


λ f T < Tf − ∆T

λ f +
λu−λ f

2∆T

[
T −

(
Tf − ∆T

)]
Tf − ∆T ≤ T ≤ Tf + ∆T

λu T > Tf + ∆T

(6)

3.3. Air Flow Control Equation of the Ventilation Pipe

In general, the critical Reynolds number for maintaining the laminar flow in the pipe is
Re = 2300. Referring to the relevant research on the Qinghai Tibet Plateau [35–37], under the
0 ◦C condition, the motion viscosity coefficient of the air is u = (2.3 ∼ 2.73)× 10−5 m2/s.
For a ventilation pipe with an inner diameter of 0.4 m, its critical velocity is:

Vij =
uRe

d
= 0.132 m/s (7)

According to the calculation results, in the ventilation pipe, the deconstructed laminar
and turbulent critical velocity is very low, making it almost impossible for the air to flow in
the laminar form. Thus, the air heat exchange of the forced convection in the ventilation
pipe is turbulent, so the model k− ε, with good applicability, is selected:

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

[(
µ +

µt

σk

)
∂k
∂xj

]
+ Gk + Gb − ρε−YM + Sk (8)

∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂

∂xj

[(
µ +

µt

σε

)
∂ε

∂xj

]
+ G1ε

ε

k
(Gk + G3εGB)− G2ερ

ε2

k
+ Sε (9)

where ρ is the air density; k is the pulsating kinetic energy; ε is the pulsating kinetic energy
dissipation rate; t is time; ui is the velocity component of the air in the direction i; xj is the
displacement of the air in the direction j; σk and σε are, respectively, the Prandtl number
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corresponding to the turbulence kinetic energy k and dissipation rate ε; Gk is the turbulence
kinetic energy generated by the laminar velocity gradient; Gb is the turbulence kinetic
energy generated by buoyancy; YM is the contribution of the fluctuation expansion of
compressible turbulence to the total dissipation rate; Sk and Sε are user-defined source
terms; G1ε, G2ε and G3ε are empirical constants; µ is the aerodynamic viscosity and µt is the
turbulent viscosity coefficient of the air (Table 3).

Table 3. Air-related physical parameters [38].

Physical Parameters ρa/(kg·m−3) Ca/kJ·(m−3·K)
−1

λa/W·(m·K)−1 µ/(Pa·s)

Air 0.641 1004 0.025 1.75 × 10−5

3.4. Control Equation of Natural Air Convection in the Gravel Layer

The gravel layer can be regarded as a porous medium with high permeability, in which
the internal natural convection is unsteady, with a non-isothermal flow. Its control equa-
tions include the continuity equation, momentum equation and energy equation [39–42],
as follows:

Continuity equation:
∂vx

∂x
+

∂vy

∂y
= 0 (10)

where vx and vy are, respectively, the velocity of the air in the gravel layer in the direction
x, y.

Momentum equation:

∂p
∂x = − u

k vx − ρaB|v|vx
∂p
∂y = − u

k vy − ρaB|v|vy − ρ∗a g
(11)

In general, the critical Reynolds equation for maintaining laminar flow in the pipe is as

follows: v is the velocity, with |v| =
√

v2
x + v2

y for reference; ρa is the air density; p is the air
pressure; u is the aerodynamic viscosity coefficient; k is the air permeability coefficient, with

k =
d2

p ·ε3
p

180(1−εp)
2 and B is the inertial resistance coefficient (not the Beta factor of the Darcy

flow), so B =
1.75(1−εp)

dpε3
p

. Using Boussinesq to fit the relationship between the air density

and temperature, ρ∗a = ρa0[1− β(T − T0)], β is the coefficient of the thermal expansion of
the air and T and T0 are the temperature and the reference value.

Energy equation:

C(θ)∗
∂T
∂t

= λ(θ)∗
(

∂2T
∂x2 +

∂2T
∂y2

)
+ Ca

(
vx

∂T
∂t

+ vy
∂T
∂y

)
(12)

where C(θ)∗ is the equivalent volumetric heat capacity of the gravel layer, λ(θ)∗ is the
equivalent thermal conductivity of the gravel layer and Ca is the volume heat capacity of
the air.

3.5. Boundary Conditions and Model Parameters

Considering the area where the project is located, along the Naba Road in the per-
mafrost region (Alagou Township, Bazhou and Jingxian County, Xinjiang), with an altitude
of 3270 m, the observation data from the meteorological stations are selected. According to
the boundary layer effect [43] the temperature is simplified into a trigonometric function
considering the effect of global warming [44]) (the temperature has increased by 2.6 ◦C in
the last 50 years). The temperature fitting results are shown in Figure 2. Referring to the
fitting results of the asphalt pavement temperature and slope surface temperature and the
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measured data of the Qinghai Tibet Highway [45], the function of the final temperature
is obtained.
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The boundary conditions on both sides of the subgrade are adiabatic, and the boundary
conditions at the bottom of the subgrade are heat flux: q = 0.06 (W/m2).

The ambient wind speed is the main factor affecting the cooling effect of the ventilation
pipe. According to the long-term monitoring data of Balun meteorological station, it is
known that the local annual average wind speed is 3.4 m/s, and the wind speed is relatively
high from June to July and December to January, with the highest value of 17 m/s (Figure 3).
According to the relationship between the wind speed at the base of the ventilation pipe
and the ambient wind speed in the Beilu River of the Qinghai Tibet Plateau [46], the average
wind speed at the inlet of the ventilation pipe is 1 m/s.
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4. Results and Analysis
4.1. Model Verification

In order to verify the rationality of the simulation and the accuracy of the calculation
results, the actual recorded temperature of the natural slope ground is compared with the
simulation results.

The elevation of the K600 + 000~K474~690 section of the project is between
3040~3230 m. The permafrost in this section is relatively developed. With geological
radar detection, it is preliminarily determined that the upper limit of permafrost in this area
is between 2.3 m and 3.4 m. The calculation results show that the upper limit of permafrost
in this area is 3 m. It can be seen from Figure 4 that the calculated results are in substantial
agreement with the measured values, and the overall change trend is basically the same.
When the measurement depth is less than 2.5 m, the ground temperature is greater than
0 ◦C. When the measurement depth is 2.5~3.5 m, the ground temperature is between −0.5
and 0.5 ◦C. When the measurement depth is more than 3.5 m, the ground temperature
is between −0.5 and −1 ◦C, and the temperature change is moderate, indicating that the
calculation results can better reflect the actual situation of the change in the subgrade
temperature.
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Figure 4. Comparison of the Measured Ground Temperature and Simulated Ground Temperature of
the Natural Slope Surface of the Subgrade.

4.2. Analysis of the Subgrade Temperature State

In order to evaluate the cooling performance of the composite subgrade, the temper-
ature of four different subgrade structures over 20 years were simulated. The maximum
melting depth of the frozen soil subgrade in the alpine mountain area is usually reached
in October. The temperature disatribution of the subgrade on 15 October in the 10th and
20th year is analyzed in this paper.

In mid-July, with the increase in atmospheric temperature and solar radiation, the
upper boundary temperature reached the highest value of 16 ◦C in a year, and the tempera-
ture of the soil below the subgrade was lower than 0 ◦C. As the upper heat was transferred
downward, the whole roadbed turned into an endothermic state. In mid-October, with the
decrease in temperature, the slope on both sides of the subgrade first appeared negative
temperature, while the inside soil accumulated a lot of heat and diffused around. As shown
in Figure 5, in the middle of October in the 10th year, the maximum thawing depth of the
wide pavement was 8 m, which is 5 m deeper than the maximum thawing depth of the
natural slope of 3 m, indicating that the downward heat transfer at the top of the subgrade
has a certain lag. With the accumulation of heat, this phenomenon became more significant
in the 20th year, with a maximum melting depth of 12 m. It can be seen from the change in
the −0.35 ◦C isotherm that the deep permafrost is also deteriorating, and the degradation
of the permafrost and the melting of the upper soil layer change the mechanical properties
of the soil, which results in the settlement of the subgrade and is not conducive to the
stability of the subgrade.

Due to the convective heat transfer process, the crushed stone subgrade can cool
the frozen soil subgrade. As shown in Figure 6, at the center of the gravel subgrade, the
maximum melting depth in the 10th year was 3.85 m, which is almost the same as that
in the 20th year. Compared with the ordinary subgrade, the upper limit of the frozen
soil obviously rose, but the temperature of the permafrost layer under the subgrade was
relatively high; the frozen soil layer was still in a degraded state, with the−0.35 ◦C isotherm
dropping from 5.5 m in the 10th year to 7.5 m in the 20th year. Therefore, crushed stone
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subgrade technology cannot effectively solve the problem of the intense heat absorption of
the asphalt pavement.
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Figure 5. Temperature Distribution of the Ordinary Subgrade on 15 October in the 10th and 20th Years.
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Figure 6. Temperature Distribution of the Crushed Stone Subgrade on 15 October in the 10th and
20th Years.
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Figure 7 shows the temperature distribution of the ordinary ventilation pipe subgrade
on the 15th day of October in the 10th and 20th operation years. The average annual
temperature of the area where the Naba Road is located is −3.5 ◦C, and the average annual
wind speed is 3.4 m/s. It can be seen from Figure 7 that the 0 ◦C isotherm is smooth, and
the maximum melting depth under the pavement is 1.45 m, which is 6.55 m higher than
that of the ordinary subgrade. The melting depth in the 10th year is basically the same as
that in the 20th year; however, the melting depth of the frozen soil on both sides of the
ventilation pipe subgrade is significantly increased, as well as the air inlet and air outlet
sections while the −0.35 ◦C isotherm continues to develop in downward trend from the
10th year to the 20th year. Thus, the conventional ventilation pipe subgrade cannot reduce
the temperature of the wide pavement subgrade.
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Figure 7. Temperature Distribution of the Ventilation Duct Subgrade on 15 October in the 10th and
20th Years.

In the cold season, the heat exchange between the warm stratum and cold environment
can be intensified through composite measures. As shown in Figure 8, in the 10th year, the
temperature of the deep-frozen soil layer of the subgrade is decreased significantly, and
a −2.2 ◦C isotherm appears at 4 m below the pavement and forms a frozen area. In the
20th year, the frozen area is more clearly developed in the lateral and slope directions of the
subgrade. From the 10th to 20th years, the 0 ◦C isotherm and −0.35 ◦C isotherm change
little and are distributed smoothly and evenly in the transverse and slope directions of the
subgrade. The lateral cooling area is deep, which can effectively reduce the risk of uneven
settlement of the subgrade.
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20th Years.

4.3. Analysis of the Temperature Change Process

It can be seen from Figure 9 that the temperature of the ordinary subgrade is the
highest, especially at a depth of 2~−8 m, and the highest temperature is 6 ◦C. The cooling
effect of the gravel subgrade is poor, and the temperature above 0 m is higher than that
of the ordinary subgrade, which is due to the natural convection effect of the gravel layer
in the cold season. At a depth of −4 m, the temperature is 1 ◦C, which is 2 ◦C lower than
that of the ordinary subgrade. At the center of the subgrade, both the ventilation pipe
subgrade and the composite subgrade can effectively cool the subgrade. The temperature
of the composite subgrade is approximately −2 ◦C at a depth of −4 m~−12 m, and the
temperature of the permafrost layer is approximately −1.5 ◦C below the depth of −12 m,
indicating better thermal stability.

The change in the instantaneous heat flux at the bottom of the subgrade after 20 years
is shown in Figure 10. It can be seen that heat absorption mainly occurs in the warm
seasons, and heat dissipation mainly occurs in the cold seasons. The heat absorption
of the ordinary subgrade lasts from the end of March to the end of September, and the
maximum heat flux can reach 6.9 W/m2, which occurs from June to the middle of July. The
gravel subgrade’s heat absorption and release process are similar to those of the ordinary
subgrade, with a maximum heat absorption flux of 4.2 W/m2 in the middle of July and a
maximum heat release of −5 W/m2 in the middle of December. The changes in the heat
flux at the base of the ventilation pipe subgrade and the composite road are similar. The
maximum heat absorption of the ventilation pipe subgrade is 3 W/m2 in the middle of July,
and the maximum heat release is −3.5 W/m2 in the middle of December. The maximum
heat absorption of the composite subgrade is 2.1 W/m2, and the maximum heat release
is −2.15 W/m2. The overall heat absorption and release are basically the same, and the
process is mild, indicating that the thermal stability of the subgrade is acceptable.
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Figure 9. Temperature Change of the Subgrade Centerline with Depth on 15 October, 20th Year.
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Figure 11a shows the trend of the maximum melting depth at the center of the different
subgrades, and it can be observed that their maximum melting depth varies greatly. The
maximum melting depth of the ordinary subgrade increases over time. The melting rate is
approximately 0.5 m/a, and there is no stable trend. The melting rate of the block stone
subgrade is basically the same as that of the ordinary subgrade in the first 8 years, and the
change rate is relatively low. The maximum melting depths of the composite subgrade
and ventilation pipe subgrade show a rising trend and tend to be stable after the 15th year.
Figure 11b shows the temperature trend at the midpoint of the composite roadbed at a 10 m
depth, with year 5 as the starting time; it can be seen that there is essentially no change in
the −2 ◦C freeze zone after 12 years, suggesting that the influences of half-cut, half-fill and
climate warming on the subgrade can be ignored.

Sustainability 2023, 15, x FOR PEER REVIEW 13 of 17 
 

Figure 11a shows the trend of the maximum melting depth at the center of the differ-

ent subgrades, and it can be observed that their maximum melting depth varies greatly. 

The maximum melting depth of the ordinary subgrade increases over time. The melting 

rate is approximately 0.5 m/a, and there is no stable trend. The melting rate of the block 

stone subgrade is basically the same as that of the ordinary subgrade in the first 8 years, 

and the change rate is relatively low. The maximum melting depths of the composite sub-

grade and ventilation pipe subgrade show a rising trend and tend to be stable after the 

15th year. Figure 11b shows the temperature trend at the midpoint of the composite road-

bed at a 10 m depth, with year 5 as the starting time; it can be seen that there is essentially 

no change in the −2 °C freeze zone after 12 years, suggesting that the influences of half-

cut, half-fill and climate warming on the subgrade can be ignored. 

 

 
(a) 

 

(b) 

Figure 11. The variation in the maximum melting depth of the subgrade. (a) Variation of maxi-

mum thawing depth with time at subgrade center, (b) Variation of temperature at the center of 

composite subgrade with time. 

Firstly, after the embankment’s construction, the temperature at point M (3 m below 

the original natural slope) decreases with the decrease in temperature and then changes 

periodically within the next 20 years, as shown in Figure 12. In the case of the ordinary 

subgrade and crushed stone subgrade, both their temperatures increase. At point M, alt-

hough the temperature of the ordinary subgrade and crushed stone subgrade is higher 

than the freezing temperature of the stratum (0 °C), the temperature of the crushed stone 

4 8 12 16 20

−12

−10

−8

−6

−4

−2

0

M
ax

im
u
m

 t
h
aw

in
g
 d

ep
th

/m

Roadbed operating hours/year

Common roadbed

Gravel roadbed

Ventilation duck

roadbed

Composite measure

roadbed

−2

−2

−2

−2

−2

−2

−2

−2

−2
−2

−2

00 0

0

0

0 360 720 1080 1440 1800 2160 2520 2880 3240 3600

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

Roadbed operating hours (day)

R
o

ad
b

ed
 d

ep
th

 (
m

)

−12

−10

−8

−6

−4

−2

0

2

4

6

8

10

12

14

16

T
em

p
eratu

re (℃
)

Figure 11. The variation in the maximum melting depth of the subgrade. (a) Variation of maximum
thawing depth with time at subgrade center, (b) Variation of temperature at the center of composite
subgrade with time.
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Firstly, after the embankment’s construction, the temperature at point M (3 m below
the original natural slope) decreases with the decrease in temperature and then changes
periodically within the next 20 years, as shown in Figure 12. In the case of the ordinary
subgrade and crushed stone subgrade, both their temperatures increase. At point M,
although the temperature of the ordinary subgrade and crushed stone subgrade is higher
than the freezing temperature of the stratum (0 ◦C), the temperature of the crushed stone
subgrade is significantly lower than that of the ordinary subgrade, and their maximum
temperature difference can reach 2.3 ◦C. In addition, at point M, the temperature changing
trends of the ventilation duct subgrade and composite subgrade are also very similar,
and they both decrease to a negative value after the 10th year. However, due to the
comprehensive cooling effect of the composite subgrade, the temperature of the composite
subgrade is lower than that of the ventilation pipe subgrade, and the maximum temperature
difference is 0.6 ◦C. In general, the annual cycle of the temperature change of composite
subgrade is small, and the temperature of the permafrost is low, indicating that the overall
cooling effect is good.
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Figure 12. Temperature change at the center of the road base (Point M) after 20 years of operation.

5. Conclusions

1. In the alpine permafrost mountainous area of the Nalati Baluntai section in Xinjiang,
the construction of a wide asphalt expressway changed the original ecological balance
of the frozen soil. The calculation results show that the maximum melting depth of
the left shoulder is 9 m, the maximum melting depth of the subgrade center is 12 m,
and the uneven horizontal distribution of the temperature field becomes obvious after
20 years of operation of the half-cut and half-fill subgrade.

2. After 20 years of operation, the maximum thaw depth of the gravel layer roadbed at
the centre of the roadbed is 3.85 m, and the maximum thaw depth of the left and right
shoulders is 2.95 m; the maximum temperature difference between the original upper
permafrost depth and the normal roadbed is approximately 2 ◦C. After 20 years of
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operation, the maximum melt depth at the center at the roadbed is 1.45 m, with a melt
rate of 0.18 m/a within the first 12 years; then, it stabilises and the overall temperature
below 0 ◦C at a depth of 3 m below the roadbed after 10 years of operation.

3. After 20 years of operation of the composite gravel layer, the temperature at a depth
of 4 m of the subgrade is −2.2 ◦C, and a frozen area is formed along the slope
direction and transverse direction of the subgrade. At this time, the maximum heat
absorption at the bottom of the subgrade is 2.1 W/m2, and the maximum heat release
is −2.15 W/m2. The overall heat absorption and release are basically the same, and
the thermal stability of the subgrade is stable.
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