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Abstract: Soil organic carbon (SOC), an important indicator to evaluate soil fertility, is essential
in agricultural production. The traditional methods of measuring SOC are time-consuming and
expensive, and it is difficult for these methods to achieve large area measurements in a short time.
Hyperspectral technology has obvious advantages in soil information analysis because of its high
efficiency, convenience and non-polluting characteristics, which provides a new way to achieve
large-scale and rapid SOC monitoring. The traditional mathematical transformation of spectral data
in previous studies does not sufficiently reveal the correlation between the spectral data and SOC.
To improve this issue, we combine the traditional method with the continuous wavelet transform
(CWT) for spectral data processing. In addition, the feature bands are screened with the successive
projection algorithm (SPA), and four machine learning algorithms are used to construct the SOC
content estimation model. After the spectral data is processed by CWT, the sensitivity of the spectrum
to the SOC content and the correlation between the spectrum and the SOC content can be significantly
improved (p < 0.001). SPA was used to compress the spectral data at multiple decomposition scales,
greatly reducing the number of bands containing covariance and enabling faster screening of the
characteristic bands. The support vector machine regression (SVMR) model of CWT-R′ gave the best
prediction, with the coefficients of determination (R2) and the root mean square error (RMSE) being
0.684 and 1.059 g·kg−1, respectively, and relative analysis error (RPD) value of 1.797 for its validation
set. The combination of CWT and SPA can uncover weak signals in the spectral data and remove
redundant bands with covariance in the spectral data, thus realizing the screening of characteristic
bands and the fast and stable estimation of the SOC content.

Keywords: soil organic carbon content; visible-near infrared spectroscopy; continuous wavelet
transform; successive projections algorithm; machine learning algorithms

1. Introduction

Soil is the largest organic carbon sink in terrestrial ecosystems. Its carbon sequestration
capacity, which is subjected to the influence of factors such as climate, topography and
surface cover, plays an important role in climate change. It is well known that soil organic
carbon (SOC) has long been considered an essential factor in measuring soil fertility,
and it is one of the most important components of soil because it affects soil structure
and quality [1,2]. At the same time, SOC enhances crop yields, reduces greenhouse gas
emissions and enhances ecosystem services [3–5]. Many mountain—oasis—desert systems
are developed in the arid zone of Xinjiang. SOC is the main material and energy source for
oasis agricultural production in the arid zone of Xinjiang and plays a very important role
in improving soil fertility and productivity of agroforestry ecosystems. Chemical analysis
is a commonly used traditional method to determine the SOC content, which is time-
consuming and expensive, and it can barely realize large area determination rapidly. In
contrast, the visible-near-infrared (NIR) spectroscopy technique is efficient, convenient, and
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pollution-free, with significant advantages in analyzing soil information, thus providing
a new way to achieve large-scale and rapid monitoring of SOC. The new technique has
gradually become a powerful tool for analyzing soil physical and chemical properties [6],
facilitating the study of soil contamination with heavy metals, rare earth elements, and
petroleum hydrocarbons in the field of ecology and environment [7–9]. Moreover, it is
widely used to estimate soil salinity and soil nutrient content [10–14].

To improve the efficiency of estimating SOC content from visible-NIR spectral data, the
noise and interference from specific factors need to be eliminated. Effective hyperspectral
pre-processing techniques can achieve this through conversion processing, which separates
useful signals, improves the correlation between spectral data and soil physicochemical
indicators, and screens out sensitive bands in soil spectral information. Traditional spectral
pre-processing methods mainly include mathematical methods such as spectral inverse,
spectral logarithm, and spectral differential transform [7,11]. Scholars have tried to use
these to eliminate interfering signals, but there remain many problems in enhancing the
spectral absorption and reflection characteristics of low-frequency signals. This is when
the continuous wavelet transform method came into use [15,16]. With rich wavelet basis
functions, multi-resolution, and time-frequency localization, CWT has received increasing
attention in image and spectral signal analysis, decomposition, and denoising [17,18]. As
it is also effective in extracting weak signals, CWT has been widely used in inversion
of soil physicochemical parameters from hyperspectral data [19]. The large number of
bands in hyperspectral data, the strong collinearity among bands, and multitudinous
redundant information can all affect the speed and accuracy of hyperspectral modeling,
so an effective variable selection method is often needed to further select the optimal
variables [20]. Currently, the main algorithms commonly used to select variables are
forward selection, backward rejection, and stepwise regression, but these algorithms rely
heavily on the ranking of variables in their implementation, and the selected variables
are prone to collinearity, which leads to unstable prediction results of the model [21].
While some other variable selection methods, such as annealing algorithms and genetic
algorithms, are more complex and time-consuming in the search process, although they can
avoid collinearity [22,23]. In this context, Araújo et al. [24] proposed a successive projection
algorithm to select multiple linear regression variables, effectively reducing the complexity
and collinearity of spectral data and is widely used for selecting visible-NIR feature bands.
In recent years, SPA has been applied to feature band screening of soil physicochemical
parameters, and a common practice is to use it to screen out the feature bands closely
related to soil physicochemical parameters from the original spectral data, so as to directly
obtain the feature bands in the original spectral data [25]. It has been shown that the
band preference of spectral data after traditional spectral transformation using the SPA
can better estimate the SOC content [26], but traditional spectral transform cannot tap the
weak signals contained in the spectral data. Related research further confirms that wavelet
transform of spectral data and then using SPA to filter the characteristic waveform can fully
demonstrate the advantages of SPA [27]. For the current research status, there have been
fewer studies related to the estimation of SOC content by combining CWT and SPA on the
basis of traditional spectral transform. Therefore, this study used CWT combined with SPA
for hyperspectral estimation of SOC content to provide a technical reference for soil fertility
monitoring in the dry zone of Xinjiang. The main aims of this study are as follows: (1) to
decompose soil spectral data using CWT and extract the weak information in the spectra to
detect SOC content, respectively, (2) to compress the spectral data with SPA to eliminate
covariance and redundant bands while preferentially selecting the characteristic bands,
and (3) using machine learning algorithms to construct SOC content models and compare
the prediction accuracy of different models.
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2. Materials and Methods
2.1. Soil Sample Collection and Preparation

The SOC content estimation study was conducted on the cultivated layer soil of the
oasis in the Weigan-Kuqa river delta, which is located at the northern edge of the Tarim
Basin, southern Xinjiang Uygur Autonomous Region, China. The Weigan-Kuqa river delta
is an oasis under the joint administration of three administrative regions, Kuche City, Xinhe
County and Shaya County, geographically located at the cross of 40◦51′–41◦50′ N latitude
and 82◦06′–83◦45′ E longitude. The topography of the oasis is high in the north and low in
the south, sloping from northwest to southeast, which is a typical and complete alluvial fan
plain oasis in the arid region. The climate is temperate continental arid, with an average
annual temperature of 11.6 ◦C, an average annual precipitation of 52 mm, and an average
annual evaporation above 2000 mm with a large evapotranspiration ratio. The cropland is
mainly planted with cotton, with a small amount of wheat, corn and fruit trees; the desert
vegetation is mainly Populus, tamarisk, salt knapweed, reeds, and camel thorn. The oasis
has more soil types, mainly distributed with tidal soil, irrigated silt and brown desert soil.
The soil texture is mainly loam, clay, sandy loam and sandy soil. Moreover, the soil is poor,
with severe salinization [28].

The research team collected soil samples from this oasis in mid to late July 2019, during
the peak vegetation growth season. Before field work, according to the remote sensing
images of the study area, the four land use types of arable land, garden land, saline land
and barren grassland were selected to arrange the sampling points indoors, with a total of
98 sampling points (Figure 1). A handheld GPS was used on-site for accurate positioning
and to record the location of sampling points and detailed sample site information around
them. Soil samples were collected using the plum sampling method. Approximately 500 g
of 0–20 cm surface soil was collected from each sampling site, which was cleaned of debris
and plant roots, placed in well-labeled sampling bags, and brought back to the laboratory
in sealed bags. The collected soil samples were placed in a ventilated and dry room after
natural air-drying and grinding through a 0.25 mm soil sieve. Then the SOC content was
determined using the potassium dichromate oxidation method.
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2.2. Acquiring and Pre-Processing Spectral Data

Hyperspectral data of soil samples were collected using a FieldSpec3 geophysical
spectrometer developed by ASD (band range: 350–2500 nm; sampling interval: 1 nm). The
soil sample was scraped flat and then placed horizontally on kraft paper (50 cm × 50 cm);
the sensor probe of the spectrometer was placed 30 cm above the vertical. To ensure that
the spectral information acquisition is free from the interference of outdoor temperature
difference, the instrument was preheated for 30 min, and whiteboard calibration was
performed before the acquisition. Each soil sample requires 10 consecutive spectral data
collections, and the arithmetic mean is taken as the actual spectral reflectance of each
soil sample [13].

The noises in the bands of 2451–2500 nm, 1341–1400 nm, and 1811–1950 nm need to
be removed as they are mixed in the spectral data affected by measurement environment,
instruments, and water vapor in soil samples. The Savitzky—Golay (SG) smoothing method
is used to process the spectral data as it can effectively remove the noise while retaining the
overall characteristics. The original spectral reflectance (R) obtained by SG smoothing is
then further processed by three traditional mathematical transformations, namely spectral
inverse (1/R), spectral logarithm (LgR) and spectral first-order differentiation (R′).

2.3. Continuous Wavelet

Wavelet transform is another effective time-frequency analysis method developed
based on the Fourier transform, which can extract useful information from complex signals
and provides new ideas for data processing and analysis [29]. Wavelet transform mainly
includes Discrete Wavelet Transform (DWT) and Continuous Wavelet Transform (CWT).
DWT is mainly applied in remote sensing images, which can effectively reduce the redun-
dancy in image data analysis, but it can also cause the loss of weak but useful information
during data processing. CWT, by contrast, can separate useful information from spectral
data and has obvious advantages in decomposing spectral information. The spectral data
are decomposed by CWT to obtain a series of wavelet energy coefficients at different scales,
which are given by.

W f (a, b) =
∫ +∞

−∞
f (λ)ψa,b(λ)dλ (1)

ψa,b(λ) =
1√
a

ψ(
λ− b

a
) (2)

where f (λ) is the spectral reflectance; W f (a, b) is the wavelet energy coefficient containing
two dimensions, i.e., the decomposition scale (1, 2, . . . , m) and the band (1, 2, . . . , n); λ is
the band in the range of 350–2450 nm; ψa,b is the wavelet basis function; a is the stretching
factor; and b is the translation factor.

2.4. Successive Projection Algorithm

The Successive Projections Algorithm (SPA) is often applied to select visible-NIR
spectral feature bands, and its advantage lies in the ability to find the set of variables
with the least redundant information from the spectral information. In this way, the
effect of multiple collinearities between variables is eliminated, thereby reducing the
number of variables required for modeling and improving the computational efficiency
of modeling [30]. The number of samples M and the number of bands K form a matrix
XM×K with xk(0) and N as the initialization iteration vector and the number of bands to be
extracted, respectively. Since the algorithm is a forward cyclic selection method, it starts
with one wavelength, and for each cycle, its projection on the unselected wavelengths
is calculated and the wavelength with the largest projection vector is introduced into
the wavelength combination until it is repeated N times. Each time the newly selected
wavelength has the smallest linear relationship with the previous one. The calculation
steps are as follows.
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(1) Initialize the vectors: n = 1 (first iteration); choose any column vector xj in the spectral
matrix and count it as xk(0).

(2) The set of unselected column vectors S can be represented as

S = {j, 1 ≤ j ≤ J, j /∈ {k(0), . . . , k(n− 1)}}

Calculate the projection xj onto the set S of column vectors.

Pxj = xj − (xT
j xk(n−1))xk(n−1)(xT

k(n−1))(xT
k(n−1)xk(n−1))

−1
, j ∈ S

(3) Determine the maximum projection vector’s ordinal number.

k(n) = arg(max
∥∥Pxj

∥∥, j ∈ S)

(4) Determine the projection vector for the next iteration.

xj = Pxj, j ∈ S

(5) n = n + 1, if n < N, return to step (2).

2.5. Sample Set Partitioning Algorithm Based on Joint x-y Distance (SPXY)

In this study, the SPXY algorithm proposed by Galvão et al. is used to divide the
training and validation sets [31]. The SPXY algorithm is an improved method based on
the KS algorithm, which divides the data set by calculating the Euclidean distance of
different samples in the x vector direction, while SPXY adds the Euclidean distance in
the y vector direction on this basis and combines the distances in the x and y directions
through regularization to evaluate and divide the data set more comprehensively, with the
following distance formula.

dx(p, q) =

√√√√ J

∑
j=1

[xp(j)− xq(j)]2; p, q ∈ [1, N] (3)

where xp(j) and xq(j) are the spectra of samples p and q in the j band, respectively; J is the
total number of spectral bands; and N is the number of samples.

dy(p, q) =
√
(yp − yq)

2 =
∣∣yp − yq

∣∣; p, q ∈ [1, N] (4)

where yp and yq are the attribute parameters of p and q, respectively.
The weights in the x and y space are the same for all samples, so dx(p, q) and dy(p, q)

are divided by the maximum value into the data set to obtain the normalized xy dis-
tance formula.

dxy(p, q) =
dx(p, q)

maxp,q∈[1,N]dx(p, q)
+

dy(p, q)
maxp,q∈[1,N]dy(p, q)

(5)

2.6. Model Building and Validation

Four machine learning models, i.e., K-nearest neighbor (KNN), BP neural network
(BPNN), extreme gradient boosting machine (XGBoost) and support vector machine regres-
sion (SVMR), were used to estimate the SOC content, and R language programming was
used in the model building process. Each machine learning model has different parameters,
and the optimal parameters are determined by manually tuning the input and output
variables. In machine learning models, the K-nearest neighbor is a basic classification and
regression method, and its main principle is to measure the distance between different test
samples and then find the K most similar samples for classification [32,33]. When perform-
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ing regression, it is also necessary to find the K-nearest neighbors and then assign their
average attributes to the sample to obtain the sample attributes. In this study, the model
training is better when the K values of the four spectral transformation forms are 15, 10, 8,
and 5. The BP neural network, one of the most widely used models, is multilayer feedfor-
ward and follows error back propagation. In addition, the network is highly self-learning
and adaptive, with strong nonlinear mapping capability, which has become an effective
method for solving nonlinear problems [34]. In this study, the BP network uses the nnet
package with all implied layers of 15, iterations of 2000, and weight decays of 20 × 10−1,
24 × 10−1, 9 × 10−1, and 15 × 10−1 for the four spectral transform forms, respectively.
XGBoost is a class of integrated learning boosting algorithms that belongs to the gradient
boosting machines category. Its basic idea is to fit the new base model to the deviation of the
previous one to continuously reduce the deviation of the additive model [35,36]. Compared
with the classic gradient lifter, XGBoost has made some improvements in performance and
effectiveness. Model tuning can optimize the complexity of model training, and in this
paper, the parameters are set as eta = 1, gamma = 0.00001, max_ depth = 1. Support vector
machines are relatively simple supervised learning algorithms that use kernel functions to
transform data and find optimal bounds. They are also effective in solving classification
or regression problems with high-dimensional features using a large number of internal
kernel functions, thus allowing flexibility in solving nonlinear regression problems [37,38].
In this study, the radial basis function (RBF) of the e1071 package is used as the kernel
function to construct the support vector machine regression model. Cost and gamma are
important parameters of the support vector machine regression model, and it is considered
that the model prediction is the best when cost is adjusted to 11 and gamma to 0.01 through
repeated training.

The coefficients of determination (R2), root mean square error (RMSE) and relative
analysis error (RPD) are used as accuracy metrics to evaluate the estimation ability of the
machine learning models. The coefficient of determination reflects the degree of fit of the
model, and the closer its value is to 1, the stronger the fit of the model; smaller root mean
square error represents higher stability of the model; the relative analysis error indicates the
predictive ability of the model, and the model predicts poorly when RPD < 1.4, normally
when 1.4 ≤ RPD < 2, and indicates better prediction when RPD > 2 [39].

R2 = 1− ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − y)2 (6)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (7)

RPD =
SD

RMSE
(8)

The number of samples is n; yi is the measured value of the sample i; ŷi is the predicted
value of the sample i; and y is the average of the measured values of the samples.

3. Results and Analysis
3.1. Soil Organic Carbon Content and Soil Spectral Characteristics Analysis

The processed 98 sample data are divided into two parts using the SPXY algorithm,
i.e., the training set (about 70%), and the validation set (about 30%). The former is used
for estimation model training and the latter for accuracy validation. The descriptive
statistics analysis of SOC content showed (Table 1) that the content varied between 0.67
and 10.20 g·kg−1 with standard deviations of 2.17, 1.90 and 2.08 g·kg−1 for the training
set, validation set, and full data set, respectively. The variation coefficients range from
10% to 100%, indicating moderate spatial variability in the SOC content of the study area.
Figure 2a shows the distribution characteristics of the whole data set split into training and
validation sets by the SPXY algorithm. As can be observed, the mean and median of the
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three sets are approximately on the same level, which indicates that the sample set obtained
by the SPXY algorithm is reasonable and can be used for subsequent model construction.

Table 1. Sampling points’ statistical characteristics.

Sample Set Sample Size
Soil Organic Carbon (g·kg−1)

CV(%)
Minimum Maximum Average Standard Deviation

Calibration
dataset 68 0.67 10.20 5.00 2.17 43.37

Validation
dataset 30 1.42 7.85 4.91 1.90 38.77

All dataset 98 0.67 10.20 4.97 2.08 41.87
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Figure 2. Box plot of soil organic carbon content and spectral reflectance curve. (a) statistical
characteristics of box line plots of SOC content in different data sets; (b) raw spectral curves of
98 soil samples.

The spectral reflectance curves of each soil sample after SG smoothing are shown in
Figure 2b. It can be seen that the spectral absorption of the original spectrum is enhanced
near 1400 nm, 1950 nm and 2200 nm by the influence of water vapor, and there are obvious
absorption peaks in the spectral curves. The soil spectral reflectance shows a sharp increase
with increasing wavelength in the visible light (350–600 nm) range. In the band ranges of
600–1340 nm and 1401–1810 nm, the growth of spectral reflectance is weak but maintains
an increasing trend. In the range of 1951–2140 nm, the spectral reflectance shows a fast-
increasing trend, and after 2140 nm, the spectral reflectance gradually decreases. According
to the spectral characteristics of the soil, the higher the organic matter content, the lower
the reflectance. Due to the difference in SOC content, the spectral curves of 98 sampling
sites in the study area showed different reflectance in the full waveband interval. In
addition, soil texture type and soil water content are also factors that affect soil reflectance.
Coarse-grained sandy soils with good drainage and low water content have relatively
high reflectance [40].

3.2. Correlation Analysis of Spectral Data and Soil Organic Carbon

The correlations between the soil spectral reflectance R and three traditional mathe-
matical transformation treatments of reflectance (1/R, LgR, R′) were analyzed with the SOC
content to obtain the square of the correlation coefficient (r2), respectively. The analysis
in Figure 3 shows that the spectra R, 1/R, and LgR are highly correlated with the SOC
content during the 540–900 nm wavelength range (p < 0.01), and spectral R′ was likewise
correlated with the SOC content in the bands of 382–550 nm, 800–900 nm, 1200–1270 nm,
1452–1620 nm and 1952–2043 nm (p < 0.01). By comparing the r2 values of the four con-
ventional spectral transformations, it was found that the highest r2 values of R, 1/R and
LgR were relatively similar but significantly lower than the highest value of R′, indicating
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that spectral R′ was significantly correlated with SOC content. Graphically, the correlation
coefficient curves of R, 1/R, and LgR showed a relatively flat and similar trend. In contrast,
the correlation coefficient curve of R′ showed an obvious multi-peak, indicating that the
first-order differential transformation of spectra can significantly improve the correlation
between spectra and SOC content.
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Since the continuous wavelet transform can effectively separate the weak information
in the soil spectrum, this study used the Bior1.3 function, which is the basic function of
the wavelet, to perform CWT decomposition of R, 1/R, LgR, and R′, respectively (CWT-R,
CWT-1/R, CWT-LgR, CWT-R′). The continuous wavelet transform decomposition scale is
set as 2n (21,22,23, . . . ,210) [41]. The square of the correlation coefficient (r2) was obtained
by correlating the wavelet energy coefficients of each decomposition scale with the SOC
content, as shown in Figure 3. Many „information plains” with small r2 variations can
be observed in Figure 3, mainly located at 600–800 nm and 1000–1200 nm in the CWT-R
region in (a), 500–600 nm and 1000–1500 nm in the CWT-1/R region in (b), 600–800 nm and
1000–1500 nm in the CWT-LgR region in (c) and 700–1700 nm in the CWT-R′ region in (d).
The four spectral data show different degrees of correlations at different decomposition
scales, in which the regions with higher correlation after CWT-R and CWT-LgR decomposi-
tions are mainly located in the visible band of 21~28 scale and the NIR band of 24~28 scale,
while the correlation is weaker in the 29~210 scale; higher r2 after CWT-1/R decomposition
are mainly concentrated in the visible band of 28~210 scale and the NIR band of 24~28 scale;
while the regions with higher correlation are mainly distributed in the visible band of 24~28

scale and the NIR band of 26~27 scale after CWT-R′ decomposition. The results showed
that, after CWT decomposition, conventional spectral transformation showed higher r2

values at 423–536 nm in the visible, and 760–879 nm, 1540–1734 nm, 1952–2017 nm and
2305–2380 nm in the near-infrared.

Further analysis revealed that the r2 variation curves of R, 1/R and LgR were relatively
similar in the visible-NIR band, with the maximum values being 0.159, 0.162 and 0.161,
respectively. After decomposition by CWT-R, the correlation between spectral data and
SOC content reaches the maximum at 21 scale with r2 value being 0.282; after decomposition
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by CWT-1/R and CWT-LgR, r2 achieves the maximum of 0.229 and 0.270 at 29 and 21 scales,
respectively. After CWT-R′ treatment, the correlation between the spectral data and SOC
was significantly improved, and r2 could reach 0.357 at 26 scales. It can be seen that the
CWT-R′ decomposition is the most effective in improving the correlation compared to
the other three continuous wavelet spectral decompositions. By comparing the results of
CWT decomposition in these four spectral mathematical forms, high correlations after the
decompositions of the four decompositions can all be found in the near-infrared band of the
middle decomposition scale. In addition, those after CWT-R and CWT-LgR decompositions
can also be found in the visible band of the middle and low decomposition scales; those
after CWT-1/R decomposition in the visible band of the high decomposition scale; and
those after CWT-R′ decomposition in the visible bands of the middle decomposition scale.
From the above analysis, it is clear that the CWT spectral processing can effectively extract
the fine information of the spectral data, amplify the local information of the spectra, and
capture the sensitive spectral information related to the SOC content.

3.3. Feature Band Selection Based on the SPA Algorithm

As the dimensionality of the data volume increases after the CWT decomposition,
the interfering variables introduced can result in data redundancy. In order to further
screen out the characteristic bands characterizing the SOC content, the spectral data with r2

greater than 0.2 under four spectral transformations (p < 0.001) were firstly selected, and
then the SPA algorithm was used to filter them by variables, as shown in Figure 4. It can be
seen from the figure that the RMSE values of the four spectral data first decrease rapidly
with the increase of screening variables, and then gradually stabilize. When the number of
variables is 6, 15, 11 and 17 in order, the RMSE values of the four spectral data tend to be
stabilized, at which time the small red hollow squares in the figure indicate the optimal
number of variables preferentially selected using the SPA algorithm.
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based on CWT-LgR spectral form; (d) SPA feature band selection based on CWT-R′ spectral form.

The feature bands corresponding to the four spectral data at each decomposition scale
after the SPA algorithm optimization are shown in Table 2. By analyzing the table and
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Figure 3, it can be seen that 585 bands have r2 > 0.2 in the spectral data under CWT-R
decomposition, and 6 bands can be selected by the SPA algorithm after preferential selection,
including 1 visible band at the scale of 28 and 5 near-infrared bands at the scales of 23 and
26~28. After decomposing the spectral data by CWT-1/R, the number of bands with r2 > 0.2
is 65, and 15 characteristic bands can be selected by the SPA algorithm, including 3 visible
bands at 29 scales and 12 near-infrared bands at 23~26 scales. In the CWT-LgR spectral data,
317 bands have r2 > 0.2; one visible band at 26 scales and 10 near-infrared bands at 25~28

scales can be selected by the SPA algorithm. In the CWT-R′ spectral data, the number is 553,
and 17 bands can be preferentially selected, mainly 24, 26~28 and 9 visible bands on the
210 scale and 8 near-infrared bands on the 26~28 scale. The variables selected by the SPA
algorithm for the four spectral data are mainly concentrated in the high correlation region,
which means not only the bands with high correlation with SOC content are selected, but
the effect of collinearity between bands is also eliminated. Based on the above analysis,
the wavelet energy coefficients corresponding to the feature bands preferred by the SPA
algorithm were used as independent variables for constructing the hyperspectral estimation
model of SOC content.

Table 2. The preferred band according to the SPA algorithm.

Methods Scale Selected Wavelengths (nm)

CWT-R 23,26,27,28 23-853,26-1995,27-1994,27-2017,28-493,28-2010

CWT-1/R 23,24,25,26,29 23-1550,24-1548,24-1550,25-1461,25-1541,25-1547,26-2015,26-2018,26-2023,26-2028,26-2031,
26-2033,29-428,29-439,29-451

CWT-LgR 25,26,27,28 25-2012,25-2016,26-415,26-2004,26-2038,27-867,27-1998,27-2014,27-2049,28-2011,28-2045

CWT-R′ 24,26,27,28,210 24-454,26-381,26-494,26-569,26-2033,26-2319,26-2324,26-2331,27-581,27-1969,27-2076,28-408,
28-572,28-594,28-1960,28-2140,210-761

3.4. Hyperspectral Model Building and Comparison

In order to explore the quantitative regression relationship between SOC content and
hyperspectral data, this study used the spectral data screened by the SPA algorithm as the
independent variable and SOC content as the dependent variable, respectively, to construct
a hyperspectral estimation model of SOC content by the machine learning algorithm.

Figure 5 summarizes the cross-validation results of KNN, BPNN, XGBoost and SVMR
machine learning models under four spectral transformation forms. The R2

val of the models
constructed by CWT-R spectral treatment were all less than 0.5, and the RPDval was less
than 1.4, indicating that the CWT-R spectral treatment was less effective, and the estimation
ability of the established models was lower. Among the models constructed by CWT-1/R
spectral processing, only the XGBoost-CWT-1/R model has R2

val greater than 0.5, while
the only model with RPDval greater than 1.4 is the KNN-CWT-1/R. Among the models
constructed by CWT-LgR spectral processing, the models with R2

val greater than 0.5 are
the BPNN-CWT-LgR and SVMR- CWT-LgR models, and the RPDval of these two models is
also greater than 1.4, indicating that these models can offer a proper prediction. Among the
models constructed by CWT-R′ spectral processing, the algorithms with R2

val greater than
0.6 include BPNN, XGBoost, and SVMR, and the models built by all three algorithms have
RPDval greater than 1.4. It can be seen that in the model constructed by KNN and XGBoost
algorithm, the two spectral transform treatments, CWT-1/R and CWT-R′, have the best
modeling effect. In contrast, in the model constructed by BPNN and SVMR algorithm,
LgR and R′ have the best modeling effect, fully indicating that the model fitting accuracy
of the original spectral R is improved after the traditional mathematical transformation
combined with the continuous wavelet transform treatment. Notably, the spectral transform
CWT-R′ has the best-fitting effect. To further analyze the estimation stability of the four
machine learning algorithms, the accuracy metrics of the training and validation sets of each
model are compared, showing that BPNN, XGBoost and SVMR exhibit good predictive
ability in estimating SOC compared to the KNN algorithm. Further comparison of the
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16 hyperspectral estimation models shows that in the BPNN algorithm, CWT-LgR and
CWT-R′ build models have higher coefficients of determination; in the XGBoost algorithm,
CWT-1/R and CWT-R′ built models with the best accuracy by combining various accuracy
indicators. Similarly, in the SVMR algorithm, CWT-LgR and CWT-R′ models are better
compared with other spectral treatments.

Sustainability 2023, 15, x FOR PEER REVIEW 12 of 17 
 

 

 

  
(a) Calibration dataset for machine learning modeling approaches. a-1 indicates the training set 

constructed using KNN and BPNN machine learning methods. a-2 indicates the training set con-

structed using XGBoost and SVMR machine learning methods. 

  
(b) Validation dataset for machine learning modeling approaches. b-1 indicates the validation set 

constructed using KNN and BPNN machine learning methods. b-2 indicates the validation set 

constructed using XGBoost and SVMR machine learning methods. 

Figure 5. Four Machine Learning Modeling Approaches to Predict SOC Performance. (a,b) indi-

cate the predicted SOC performance in the training and validation sets, respectively. 

To better demonstrate the estimation power of the models, the measured and esti-

mated values of the six models are plotted as 1:1 line scatters on the horizontal and vertical 

axes, as shown in Figure 6. As can be seen, the sample points of both values for CWT-1/R 

and CWT-LgR are distributed near the 1:1 line, but that for CWT-R′ is closer to the 1:1 line 

with a better fitting effect, further indicating that the CWT-R′ spectral treatment is more 

accurate in estimation. Among the BPNN, XGBoost and SVMR models established by 

CWT-R′ spectral processing, the R2val of the SVMR model improved by 0.132, RMSEval de-

creased by 0.141 g∙kg−1 and RPDval improved by 0.165 compared to the BPNN modeling 

results. Compared to the XGBoost modeling results, the SVMR model R2val improved by 

0.132, RMSEval decreased by 0.114 g∙kg−1, and RPDval improved by 0.129. Therefore, the 

SVMR-CWT-R′ model has higher estimation accuracy than the BPNN-CWT-R′ and 

XGBoost-CWT-R′ models. Based on the comparison above, it can be concluded that the 

SVMR-CWT-R′ model had the best estimation, with R2 of 0.755 and RMSE of 1.093 g∙kg−1 

in the training set, R2 of 0.684 and RMSE of 1.059 g∙kg−1 in the validation set. The RPD 

value in these two sets are 1.985 and 1.797, respectively, greater than 1.4. The results indi-

cate that the SVMR model under CWT-R′ treatment can better achieve an accurate estima-

tion of the SOC content. 

Figure 5. Four Machine Learning Modeling Approaches to Predict SOC Performance. (a,b) indicate
the predicted SOC performance in the training and validation sets, respectively.

To better demonstrate the estimation power of the models, the measured and estimated
values of the six models are plotted as 1:1 line scatters on the horizontal and vertical axes,
as shown in Figure 6. As can be seen, the sample points of both values for CWT-1/R and
CWT-LgR are distributed near the 1:1 line, but that for CWT-R′ is closer to the 1:1 line
with a better fitting effect, further indicating that the CWT-R′ spectral treatment is more
accurate in estimation. Among the BPNN, XGBoost and SVMR models established by
CWT-R′ spectral processing, the R2

val of the SVMR model improved by 0.132, RMSEval
decreased by 0.141 g·kg−1 and RPDval improved by 0.165 compared to the BPNN modeling
results. Compared to the XGBoost modeling results, the SVMR model R2

val improved
by 0.132, RMSEval decreased by 0.114 g·kg−1, and RPDval improved by 0.129. Therefore,
the SVMR-CWT-R′ model has higher estimation accuracy than the BPNN-CWT-R′ and
XGBoost-CWT-R′ models. Based on the comparison above, it can be concluded that the
SVMR-CWT-R′ model had the best estimation, with R2 of 0.755 and RMSE of 1.093 g·kg−1

in the training set, R2 of 0.684 and RMSE of 1.059 g·kg−1 in the validation set. The RPD
value in these two sets are 1.985 and 1.797, respectively, greater than 1.4. The results indicate
that the SVMR model under CWT-R′ treatment can better achieve an accurate estimation of
the SOC content.
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4. Discussion
4.1. Continuous Wavelet Analysis

Wavelet features contain information about the scale and wavelength position, which
correspond to the state of the wavelet function generated during CWT. In this study, the
Biorthogonal function was chosen as the generating function of CWT. In the reflectivity
spectrum, the specific wavelength position and scale of each wavelet feature enable good
detection of the absorption characteristics of biochemical parameters at different positions
and intensities. As observed in this work, the soil reflection in the green and blue light
bands is weaker than in the red light region; the wavelet features sensitive to SOC were
located near the green, blue and near-infrared light bands. Different SOC contents affect the
shape and size of the reflection peaks, and wavelet features easily capture these variations.
This study found that, after the continuous wavelet transform treatment, the squared r2

maxima of R and LgR increased with SOC content more significantly by 0.77 and 0.68,
respectively, compared with those before treatment; while the r2 maxima of 1/R and R′

increased weakly, by 0.41 and 0.26, respectively. This shows that CWT of spectral data helps
to separate weak signals in the spectral information and improve the correlation between
wavelet energy coefficients and SOC content. The results of this study are consistent with
previous studies that use CWT to accurately predict SOC content [15,42,43]. Therefore,
combining the mathematical spectral transform with CWT is more effective for improving
the accuracy of the inverse model. Furthermore, related studies further confirmed that
the model constructed by the spectral first-order differential transform with CWT works
the best [44,45].

4.2. Feature Wavelength Analysis

The SPA algorithm can effectively compress the spectral data and eliminate bands
containing collinearity and redundancy, thus extracting the feature bands quickly [46].
Our results demonstrated that the combination of the SPA algorithm could effectively
extract the characteristic wavelengths in the soil spectrum, which were consistent with
previous studies [25,47–49]. In this study, most of the bands chosen by the SPA algorithm
are dominated by high decomposition scales (26~29), while low decomposition scales
(23~25) account for only a few. Comparing the spectral data under the four transformation
forms, it was found that the variables preferentially selected by SPA for CWT-R treatment
contained visible and near-infrared bands; CWT-1/R and CWT-LgR were mostly in the
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near-infrared long wavelength band (1100–2526 nm). CWT-R′ contained both visible and
near-infrared long wavelength bands, and the proportions of the two bands were almost
the same, indicating that the near-infrared long wavelength band better reflected the weak
changes in SOC content. Gao et al. used the SPA algorithm to optimize the characteristic
wavelengths of total soil nitrogen also located in the NIR long wavelength band, and
Zhang et al. further confirmed that the SPA-optimized characteristic wavelengths are more
representative in the NIR long wavelength band, which may be closely related to the methyl
and covalent bonds in the soil [25,48].

4.3. Prediction Models Analysis

Both linear and nonlinear models are used in studies related to predicting SOC, while
the nonlinear one is more commonly used to predict SOC. In general, the relationship
between the response and predictor variables is nonlinear, and a linear model can only
explain part of the variation in the response variable [50]. Using machine learning al-
gorithms to construct nonlinear models can better predict SOC, as verified by previous
studies [37,51,52]. A study related to the prediction of SOC using the combination of CWT
and machine learning algorithms showed accurate prediction accuracy, verifying that the
nonlinear model built by this combination can achieve accurate prediction results [53–55].
In this study, the SOC was predicted by using CWT in combination with different machine
learning algorithms. The results showed that the combination of CWT and KNN was not
effective, probably because KNN is a more basic and simpler algorithm. It is worth noting
that the model constructed by CWT with SVMR has a significant predictive effect due to the
ability of SVMR to perform a nonlinear mapping to a high-dimensional space using kernel
functions. Therefore, the model is suitable for fitting data with nonlinear relationships. It
can discover hidden relationships between the inputs, indicating that the combination of
CWT and SVMR performs better in predicting SOC.

4.4. Future Work and Perspectives

This study discusses the ability of CWT to extract weak spectral information and
constructs a model for SOC content estimation based on machine learning algorithms. The
combination of CWT and SPA algorithms not only separated the valid information in the
spectral data, but also reduced the redundancy, thus improving the estimation accuracy. It
has been shown that the continuous wavelet transform combined with successive projection
algorithm is feasible in detecting the total acid content of dragon fruit, but the application
of the combination of both to SOC has not been reported [56]. Therefore, in this study, the
continuous wavelet transform combined with the successive projection algorithm is used
to construct the inverse model by machine learning algorithm, so as to achieve the accurate
estimation. In the subsequent study, since the algorithm for selecting feature wavelengths
affects the stability of the model, feature wavelength algorithms and machine learning
algorithms that are more suitable for selecting visible-NIR spectra will be considered.

5. Conclusions

This study collected hyperspectral data of SOC content in the arid zone of Xinjiang,
China. First, the soil spectral data were subjected to a traditional mathematical transfor-
mation and CWT. Subsequently, the correlations between different forms of mathematical
transformation and SOC content were analyzed, and the characteristic wavelengths were
preferentially selected for the spectral data using SPA. Finally, a machine learning-based
SOC content estimation model was developed. The conclusions are as follows. The
correlation between the traditional transformed soil spectral data and SOC content was
insignificant. After CWT decomposition, the correlation was improved in visible and
near-infrared wavelength intervals. The SPA preferred characteristic wavelengths were
mainly at the high decomposition scale (26~29), and most were located in the NIR long
wavelength band (1100–2526 nm), indicating that the NIR long wavelength band better
reflects the weak changes in SOC content. The hyperspectral estimation models of 16 SOC
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contents based on machine learning algorithms were developed, with the models con-
structed by SVMR combined with CWT-R′ presenting the most accurate prediction effects.
In this study, a hyperspectral estimation model of SOC content was constructed using CWT
combined with SPA, which provides theoretical support and reference for hyperspectral
inversion studies and important scientific support for agricultural production activities
in the arid zone of Xinjiang, China. In future studies, new estimation models and feature
band selection methods will be further explored to improve the estimation accuracy of the
SOC content.
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