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Abstract: Red clay with features of high liquid (plastic) limit, low permeability, medium-low com-
pressibility and high strength is widely used in anti-seepage projects including roadbed, earth dam,
tailings and landfill cover. This study investigates the hydraulic conductivity and propagation of
desiccation cracks of compacted red clay in Dalian, China, considering the effect of freeze-thaw (F-T)
cycles and saline intrusion. A series of compacted specimens were subjected to different F-T cycles at
various controlled salt concentration of 0.2% and 4%. The surface cracking initiation and propagation
process of compacted specimens under wetting-drying (W-D) cycles were monitored by Digital Image
Correlation technique. The results indicated that permeability coefficient of compacted specimens
increased significantly after the first F-T cycle regardless of specimens with variable dry density and
salt concentration. The relationship between the number of F-D cycles and permeability coefficient
can be expressed as the exponential function for Dalin red clay. Dry density and Saline inhibits the
desiccation cracks of compacted specimens under W-D cycles. However, the F-T cycles have a modest
promoting effect on crack propagation on the surface of saturated red clay. This study analyzes the
underlying formation mechanisms of desiccation cracking-inducing geohazards and provides some
guidance for the long-term performance of infrastructures upon saline intrusion and F-T cycles for
red clay.

Keywords: red clay; freeze-thaw; wetting-drying; permeability behavior; desiccation cracking; digital
image correlation

1. Introduction

Red clay with features of high liquid (plastic) limit, low permeability, medium-low
compressibility and high strength is widely distributed in the tropical and subtropical
regions including the south of China, and partially on the Qinghai-Tibet Plateau, as well
as the northeastern coastal regions of China [1,2]. This high plasticity lateritic soil derived
from carbonate rocks after long-term complex physical and chemical weathering is usually
subjected to periodical freeze-thaw (F-T) cycles along with the destructive actions on infras-
tructure in seasonally frozen regions [3]. Cracking of the structure surface and excessive
settlement upon spring thaw are the common damages caused by F-T cycles [4]. These
damages associated with F-T cycling action are attributed to the numerous hydrophilic
clay minerals [5]. The formation of ice crystals modifying the soil structure on the micro
and macro-scale will weaken the strength and stiffness and increase the permeability of
soils under F-T cycles [6–9]. Furthermore, the compacted clayed soils in geotechnical
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engineering applications often come in contact with brine solution. The intrusion of saline
from seawater poses severe influence on the hydro-mechanical properties of compacted
clay in coastal areas, which alter the engineering behavior of soils owing to the interactions
between clay particles and saline [10–13].

It is of great concern to investigate the effect of F-T cycles on the hydro-mechanical
properties of clayed soils in frozen regions [14,15]. Regarding the variation of physical
and mechanical properties, it is universally accepted that the void ratio of dense soils
increases with F-T cycles and permeability coefficient always increases, without considering
the volumetric changes. Regarding loose soils, the void ratio and strength obviously
decline, which has been verified by many studies under experimental conditions [16–18].
The influencing factors of hydraulic conductivity include plasticity index [19], number
of freeze-thaw cycles [20], initial hydraulic conductivity [21], temperature gradient and
stress states [22]. The increase of permeability for clayed soils under freeze-thaw cycles is
attributed to the occurrence of desiccation cracks and increasing pores.

Due to saline intrusion, an aggregated and densely stacked structure may be formed
from the initial compacted structure of the clayed soil. This phenomenon is attributed
to the suppression of the adsorption water file with the increase of the ion concentration,
based on the electric double layer theory [23–27]. The effects of saline intrusion on clays’
volumetric behaviors can be illustrated by two explanations: osmotic consolidation due to
variation of electrostatic stresses between clay particles and osmotically-induced consol-
idation associated with the drainage of the pore fluid triggered by the osmotic pressure
gradient [10,28]. However, research on the hydro-mechanical behaviors of red clay intruded
by saline solutions is comparatively less reported in the literature.

The desiccation cracking behaviors of clayed soils have been studied under wetting-
drying (W-D) cycles via laboratory tests, numerical simulation, digital image correlation
method and field observation [29,30]. It is widely recognized that the desiccation cracks in
the soil surface increase significantly in the first three W-D cycles and tend to be stable with
increase in the number of W-D cycles [31]. The occurrence of desiccation cracks results in
the increase of hydraulic conductivity, sometimes up to several orders of magnitude [32,33].
Li et al. (2011) [34] proposed that the propagation of desiccation cracks in clayed soil
is comprised of the initial stage, the primary stage and the steady-state stage. Lu et al.
(2016) [4] found that the geometrical morphology of the crack network slowly evolves from
an irregularly rectilinear pattern towards a polygonal or quasi-hexagonal one for compacted
clayed soil under freeze-thaw cycles. In general, Lakshmikantha et al. (2012) [35] indicated
that the propagation of desiccation cracks can be restrained by means of decreasing the
boundary condition, liquid limit and clay content or increasing soil strength and specimen
thickness. Costa et al. (2018) [36] developed a theoretical solution to predict the spacing-
to-depth ratio of parallel desiccation cracks in long desiccating soil layers based on stress
relief and energy balance methods. Pouya et al. (2019) [37] proposed an energy approach
to investigate soil desiccation cracking as a complement to the stress approach. It is noted
that the simple model with limited parameters fails to characterize the desiccation cracking
process precisely due to the complexity of soils [38,39].

The aforementioned studies revealed the separate effects of several climatic variables
(e.g., freeze-thaw cycles, wetting-drying and saline intrusion) on the clayed soil. However,
less attention has been paid to the permeability of clayed soil upon saline intrusion and
freeze-thaw cycles, especially for red clay. Meanwhile, the soil cracking process of red clay
under varying freeze-thaw cycles and wetting-drying cycles remains poorly understood.
For this reason, in this paper, a series of freeze-thaw and wetting-drying tests for Dalin red
clay in China were conducted to investigate the permeability behaviors and desiccation
cracking of compacted red clay taking into account saline intrusion at different dry densities.
By means of a Digital Image Correlation (DIC) technique, the evolution of desiccation cracks
induced by W-D cycles was monitored in relation to soil evaporation activities.
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2. Materials and Methods
2.1. Materials

The soil tested in this study was collected from a subgrade site located in Dalian
Jinzhouwan International Airport, Liaoning Province, China, and was a type of red clay,
which typically exhibits poor engineering performance particularly when saturated, after
marine corrosion and under freeze-thaw conditions. The mechanical and physical proper-
ties of red clay as per ASTM D2487-11 (2011) [40] are listed in Table 1. The Atterbery limits
were tested by the fall cone method. The grain size characteristic of red clay was measured
by sieving and densimeter methods, and is shown in Figure 1. The specific gravity values
of red clay were obtained according to ASTM D854-10 (2010) [41]. Sodium chloride (NaCl)
with 99% content and relative molecular weight of 58.44 was used to consider marine
corrosion of red clay.

Table 1. Mechanical and physical properties of red clay.

Property Values

Unit weight, γ (kN/m3) 16.0
Specific gravity, Gs 2.72
Initial water content, (%) 15.5
Liquid limit, wL (%) 39.73
Plastic limit, wP (%) 22.3
Optimum water content, (%) 19.7
Grain size distribution (%) -

Clay (<0.005 mm) 1.6
Silt (0.005–0.075 mm) 39.8
Sand (>0.075 mm) 58.6

Uniformity coefficient, Cu 4.3
Maximum dry density, ρ(g/cm3) 1.55
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Figure 1. Gradation curve of red clay.

2.2. Specimen Preparation

Several steps for preparing specimens were conducted as shown in Figure 2.
Two batches of specimens were compacted: (i) 36 disc specimens with diameter of 61.8 mm
and height of 40 mm for measuring permeability coefficient and (ii) 9 disc specimens
with diameter of 61.8 mm and height of 20 mm for observing the cracking characteristic.
Three influencing factors were considered: dry density (ρd), salt concentration (Tsalt) and
number of freeze-thaw cycles (NF-T). Since dry density affects the permeability and cracking
development of red clay, ρd of 1.35 g/cm3, 1.45 g/cm3 and1.55 g/cm3 are adopted based
on natural dry density of 1.385 g/cm3. Since the average salt concentration in seawater
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is generally 3.5%, the salt concentration in seawater closer to the coastline is affected by
freshwater from land, resulting in Tsalt of 1.2% during the dry season in winter and Tsalt
of 0.25% during the summer flood season. Therefore, the adopted Tsalt in this study are 0,
2% and 4%. The soil was mixed with saline water to prepare the specimens with designed
Tsalt. Subsequently, the specimens were saturated by pumping in the saturated saline
solution with the same salt concentration as the compacted specimens. The upper and
lower surfaces of the specimens were padded with a filter paper slightly larger than the
area of the ring knife to prevent the loss of soil particles. The permeable stones were
placed on both surfaces of the specimens and fixed on the saturator. Then the specimen
saturator was placed in a waterless autoclave for pumping saturation. After pumping
close to atmospheric pressure and continuing for 1 h, saline solution was slowly injected
into the autoclave. A stable vacuum was maintained in the autoclave until the saline
solution completely submerged in the saturator. Subsequently, the autoclave vacuum was
discharged to keep the specimens under saline solution for 12 h. However, it is a pity
that the water content and degree of saturation at the saturated state of the specimen
was not observed during the tests. Considering the influence of number of F-T cycles on
permeability coefficient before the occurrence of the desiccation cracks, NF-T of 0, 1, 2 and
4 for compacted specimens are adopted in permeability tests. Consequently, 36 groups
of tests were conducted taking account of the aforementioned three influencing factors.
To effectively reduce the number of tests, the orthogonal experiment method was used
to optimize the test scheme for desiccation cracks observation, as shown in Table 2. La-
bel “RC-A-B-C” indicates a red clay compacted specimen with dry density of A and salt
concentration of B subjected to C cycle(s) of freeze-thaw.
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Table 2. Scheme of W-D cycle tests.

Specimen Number Dry Density, ρd
(g/cm3)

Salt Concentration,
Tsalt (%)

Number of
Freeze-Thaw Cycles,

NF-T

RC-1.35-0-0 1.35 0 0
RC-1.35-1-2 1.35 2 1
RC-1.35-2-4 1.35 4 2
RC-1.45-1-0 1.45 0 1
RC-1.45-0-2 1.45 2 0
RC-1.45-4-4 1.45 4 4
RC-1.55-2-0 1.55 0 2
RC-1.55-4-2 1.55 2 4
RC-1.55-0-4 1.55 4 0
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2.3. Testing Procedures
2.3.1. Freeze-Thaw Cycles

Two types of specimens subjected to F-T cycles were carried out according to the F-T
cycling specification stipulated in ASTM D560/D560M-16 (2016) [42]. A complete F-T cycle
consists of freezing the specimens for 12 h and thawing the specimens for another 12 h.
The closed-system F-T cycles during which specimens’ water content remains constant
are employed considering the low permeability of compacted red clay. The temperature
applied in these tests varied from −10°C to 24 °C, referring to the local climate records
in Dalian. The specimens wrapped in preservative film were placed in the Constant
Temperature and Humidity Chamber (CTHC) at a precision of 0.01°C for 12 h of freezing
(see Figure 3a). The adopted time of freezing, 12 h, is considered sufficient to achieve
equilibrium in temperature [3]. Subsequently, compacted specimens were removed from
the CTHC and put into the standard curing chamber for 12 h thawing. This F-T procedure
is repeated to reach the designated number of F-T cycles.
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2.3.2. Wetting-Drying Cycles

The W-D cycle process was used to simulate the effect of rainfall on the shrinkage and
cracking of the red clay. In this study, six W-D cycles were applied to the specimens after
photographic analysis for ten days; then 20 g of distilled water was sprayed on the surface
of the specimen, and the time of the first image capture was recorded after spraying [43,44].
After an interval of 24 h, the spraying operation was repeated and the specimens were
exposed to room conditions to make water evaporate until starting the next cycle.

2.3.3. Permeability Measurement

As shown in Figure 3b, the TST-555 Permeameter was used to measure the permeabil-
ity behavior of red clay specimens subjected to F-T cycles. Stable fluid pressure varying
from -80 kPa~1000 kPa was provided by the Fluid Pressure Controller. The specimens after
F-T cycles were loaded into the Permeameter below the filter paper, permeable stone and
sealing gasket soaked with distilled water, according to the permeability testing specifi-
cations stipulated in GB/T 50123-2019 [45]. Considering the water evaporation during
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the permeability tests, two dry containers were placed under the same conditions, and a
certain amount of water was poured into the container before the permeability tests. The
water evaporation in the container was regarded as the evaporation compensation value
of seepage during permeability tests. Since red clay has a small permeability coefficient
and large seepage damping coefficient, a large seepage force will cause the soil structural
damage and large deviations in the test results [46]. Therefore, a constant head of 30 kPa
was adopted for the tests.

2.3.4. DIC Technology

The basic principle of DIC technology is to analyze the variation of several speckled
patterns between reference and current images [47]. The field of displacement and corre-
sponding strains of two images can be obtained by comparing the grayscale distributions
in the corresponding pixel patterns [48,49]. As shown in Figure 3c, a photographic system
was installed, including three parts: framework, image acquisition and light source. To
ensure that each image was taken from the same direction and distance, the camera was
fixed using fasteners. Two table lamps were prepared to provide stable light source. White
kaolin composed of particle with a diameter of about 5µm was used as a speckle pattern
on the top surfaces of 9 disc specimens. Approximately 10 g of white kaolin was evenly
placed in a 0.15 mm sieve. The white kaolin was evenly spread on the specimen surface
from a certain height by manually vibrating the sieve to form the required scattered spots
for the tests.

Each saturated specimen was photographed for a total of 16 days. The surface shrink-
age of the saturated specimen was observed for the first 10 days of photography. Sub-
sequently, compacted specimens were subjected to W-D cycles from the 11th day. The
spraying method was used to spray 20 g of quantitative distilled water on the specimen
surface and the time of the first image capture after the spraying was recorded. The spray-
ing operation was repeated after an interval of 24 h. The water evaporated naturally in
a conventional room environment during this period. A total of 6 W-D cycles were per-
formed repeatedly to simulate the effect of rainfall on desiccation cracking of the red clay
surface. These obtained images were analyzed by 2D-DIC software-GOM Correlate 2016.
The images were imported to the software and the whole specimen surface was regarded
as the calculation scale, which meant that the diameter of the specimen (61.8 mm) was set
as the point distance to reflect the actual size. Subsequently, the surface component was
created with facet size of 30 pixels.

3. Results and Analyses
3.1. Permeability Characteristic

In order to reduce the influence of initial water content, the saturated specimens
were adopted to investigate permeability characteristics under closed condition. Figure 4
presents the variation curves of permeability coefficient with F-T cycles under constant
ρd. It can be observed that permeability coefficient of specimens increases with NF-T
under the constant ρd. In particular, the permeability coefficient increases significantly
with the growth of 5.52 × 10−5 cm/s after the first F-T cycle, and then increases slightly.
During the freezing process, there will be a temperature gradient from the surface to the
center of the specimens. The unfrozen liquid water and dissolved salt distributed in the
center of the specimens will diffuse and migrate to the soil’s surface. The emerging ice
and salt crystals on the surface of specimens cause the expansion of the soil volume and
alter the pore morphology of the soil structure. The large pores gradually increase due
to the transformation of small and medium-size pores. Conversely, because of the higher
surface temperature of the specimens than that of the center, the melting of ice crystals on
their surface, accompanied by NaCl dissolved in free water, migrate toward the center of
the specimen.
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With the increase of NF-T, the inflation force will be applied to the pores in compacted
specimens due to the repeated migration of pore water and saline. A large number of
pores and micro-cracks will appear, and finally channels for water migration emerge in
the specimens, resulting in their increasing permeability coefficient [50,51]. It should be
noted that the permeability coefficient of compacted specimens increases significantly
after the first F-T cycle regardless of specimens with variable Tsalt and ρd. The reason
is that migration channels have formed by seepage back and forth in the soil structure.
The permeability coefficient increases along with the increase of NF-T, with an obviously
decreasing growth compared to NF-T of 1.

In addition, the exponential function can be used to fit the quantitative relationship
between the number of F-D cycles and the permeability coefficient. The results indicate
that the permeability coefficient of saturated specimens increases exponentially with the
number of F-T cycles and permeability coefficient of compacted specimens without saline
intrusion can improve twice as much as that of specimens without F-T cycling action.
Basically, R2 of all fitted curves is greater than 95%, which proves that exponential function
can be used to predict the permeability coefficient of red clay subjected to F-T cycles.

Figure 5 shows the variation curves of permeability coefficient with F-T cycles under
constant Tsalt. It can be seen from Figure 5 that the permeability coefficient of specimens
presents an overall increasing trend with the increase of NF-T. However, the permeability
coefficient of specimens with constant Tsalt decreases with the increase of ρd. The greater
the dry density, the greater the weight of the specimen under the constant volume of the
cutting ring, so the specimen is in a denser state where soil particles are closely connected
with fewer pores. Due to fewer pores in specimens, the ability of the pore water migration
is weakened under F-D cycles, leading to difficulty in forming channels for pore water and
decrease of the permeability coefficient.

It is worth noting that the permeability coefficient of specimens with Tsalt of 2% and
ρd of 1.35 g /cm3 increases significantly after the first F-T cycle. Regarding the specimens
with small dry density, the quantity and size of pores in the soil are large. Besides, Tsalt of
2% can be completely dissolved in the pore water of the soil. During the period of freezing,
pore water freezes into ice and some sodium chloride crystals are precipitated out due
to the reduced pore water. Ice and sodium chloride crystals promote the change of soil
structure and rearrangement of soil particles to make larger pores in the soil [52]. The
increase in permeability coefficient of specimens is attributed to the original pores and the
larger pores produced during soil freezing. Furthermore, the permeability coefficient of
compacted specimens decreases with the increase of Tsalt under the constant ρd. The reason
is that the high content of sodium chloride cannot dissolve in pore water thoroughly, and
partial sodium chloride in the form of crystal is precipitated and distributed in the soil
pores, which is not conducive to the formation of migration channels.

3.2. Desiccation Cracking
3.2.1. Crack Observation

Figure 6 presents the evolution of desiccation cracks on the surface of specimens
where T is the day of the image collection and T = 1 is the day of the initial image. The
shrinkage rates of specimens can be reflected by the separation time between cutting rings
and specimens. The separation time for specimens with Tsalt of 0.2% and 4% are 1 day,
2 days and 3 days, respectively. This indicates that the evaporation rate of water on the
surface of specimens decreases as Tsalt of specimens increases. However, dry density and
the number of F-T cycles have a limited effect on the dry shrinkage of specimens.

In addition, the length and width of desiccation cracks on the surface of specimens
increase with the increase of NF-T. The development of cracks is mainly due to the evapo-
ration of pore water in specimens. Soil particles are compacted due to the matric suction
resulting from water’s evaporation, which increases the tensile stresses between soil parti-
cles [52,53]. The distribution of tensile stress is not uniform because of the inhomogeneity
of the soil particles. Shrinkage cracks occur when the tensile stress exceeds the matric



Sustainability 2023, 15, 3858 9 of 20

suction of soil particles. Once cracks appear on the surface of the soil specimens and the
rate of water evaporation increases owing to the formation of cracks. In the area where the
cracks have appeared, the cracks expand rapidly and intersect with each other continuously
to form the crack grid. As the water evaporates, the cracks start to bifurcate and derive
more branching cracks, and the divided block area on the surface of specimens tends to
stabilize until there are no more branching cracks.
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Figure 6. Diagrams of desiccation cracks; (a) RC-1.35-0-0; (b) RC-1.35-2-1; (c) RC-1.35-4-2;
(d) RC-1.45-0-1; (e) RC-1.45-2-0; (f) RC-1.45-4-4; (g) RC-1.55-0-2; (h) RC-1.55-2-4; (i) RC-1.55-4-0.

The first W-D cycle was conducted after the occurrence of cracks. Since the water enters
the cracks, the increasing free water in the pores of specimens weakens the constraint effect
of the matrix suction on the water molecules. Due to the shrinkage cracks of specimens,
the larger contact area between the water molecules and the air accelerates the water
evaporation. So the existing cracks on the surface of specimens become wider and longer.
After the second W-D cycle, the width and length of the original cracks are further widened
and lengthened. Subsequently, the cracks tend to be stable with the increase in W-D cycles.
In general, the length and width of cracks increase greatly in the first and second W-D
cycles, and stabilize after ND-W of 6, as shown in Figure 7.
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3.2.2. Effect of Dry Density on Cracks of Saturated Red Clay

The deformation behaviors of compacted specimens are analyzed by the strains of the
selected random points on the surface of specimens in the direction of X at different times.
The settings of the coordinate axes are shown in Figure 8. In following analysis, the strain
direction is not considered, but only the amount of strain change.

Figure 9 presents variation curves of radial strain with time on the surface of RC-1.35-0-0.
It can be seen from Figure 9 that the variation values of radial strain vary uniformly with
a maximum value of 17.63% as the time within ten days increases. The variation range of
strain value is from -20% to 20%. The radial strain of the specimen subjected to the first W-D
cycle increases significantly with a maximum value of 34.01%. The maximum increment of
the radial strain is 20.54% after the second W-D cycle. Subsequently, the increase of radial
strain tends to level off in the following cycles.
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The variation curves of radial strain with time on the surface of RC-1.45-0-1 are shown
in Figure 10. The trend of the radial strain variation throughout the drying shrinkage
process was similar to that of the RC-1.35-0-0, but the strain varied from 5% to 10%. Besides,
the radial strain of the specimen rises obviously with a maximum value of 9.30% after the
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2nd and 3rd drying shrinkage. In the W-D cycle test, the evolution trend of the radial strain
is the same as that of RC-1.35-0-0, where the variation of radial strain is more considerable,
with a maximum value of 11.53% after the 1st and 2nd W-D cycles.

As for RC-1.55-0-2, the overall development pattern of radial strain is similar to that of
RC-1.35-0-0 and RC-1.45-0-1, but the strain variation fluctuated in the range of 2% to 10%
(see Figure 11), which was smaller than that of the aforementioned two specimens. The
radial strain on the surface of specimens both varied significantly in the first two days of the
dry shrinkage and W-D cycles tests, with maximum values of 8.17% and 8.04%, respectively.
This illustrated that the variation values of the radial strain decreases with the increase
of ρd. The number of desiccation cracks on the RC-1.45-0-1 surface is significantly more
than that on RC-1.35-0-0 and RC-1.55-0-2 surfaces, indicating that the cracks propagation
of specimens was inhibited with the increase of ρd, as shown in Figures 12–14.
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The free water in the pores of specimens reduces due to the water evaporation. A type
of curved liquid surface is formed between the free water surface and the soil particles
and the surface tension of the curved liquid surface has a reordering effect on the soil
particles. Regarding specimens with large dry density, the cohesive strength between
the soil particles is relatively large. The matrix suction attributed to the reduction of
free water fails to exceed the cohesive strength between the soil particles. Therefore, the
unbroken connection between soil particles reflects the slight variation of radial strain at
the macroscopic level [50,54]. Meanwhile, the decreasing pores in specimens lead to the
increasing resistance of water molecules migrating from the interior of specimens to their
surfaces. The rate of water evaporation will decrease as the dry density increases, which is
the main reason for crack propagation in compacted specimens under unloaded conditions.
Therefore, the increase of dry density has a certain inhibitory effect on the desiccation
cracking of specimens under W-D cycles.

It can been seen from Figures 9–11 that radial strain of RC-1.35-0-0 with kv of
6.381 × 10−6 cm/s is much larger than those of RC-1.45-0-1 with kv of 9.065 × 10−6

cm/s and RC-1.55-0-2 with kv of 6.476 × 10−6 cm/s. This indicates that dry density has the
more apparent influence on the desiccation cracking than salt concentration and F-T cycle
to some extent for red clay.

3.2.3. Effect of Freeze-Thaw Cycles on Cracks of Saturated Red Clay

The maximum variation values of radial strains of RC-1.35-0-0, RC-1.45-0-1 and RC-
1.55-0-2 are 34.01%, 11.53%, and 8.04%, respectively, indicating that the maximum variation
strain decreased with the increase of NF-T. Although the aforementioned specimens possess
similar permeability coefficients, the maximum variation values of radial strains have



Sustainability 2023, 15, 3858 16 of 20

great differences. In conclusion, F-T cycles have less effect on the cracking propagation
than dry density of specimens. Meanwhile, it was observed that the separation time
between the edge and the cutting ring of RC-1.35-0-0 (first day) is later than that of RC-
1.45-0-1 and RC-1.55-0-2 (second day), which contradicts the conclusion that the number
of desiccation cracks on the surfaces of compacted specimens decreases with ρd. This
phenomenon is because the F-T cycles promote water migration to form migration channels
in specimens. The larger pores are beneficial in improving the evaporation of pore water
for red clay compacted specimens. The increasing air entering specimens through a large
number of pores can increase the matric suction between soil particles, resulting in the soil
particles being redistributed to enlarge desiccation cracks when the matric suction exceeds
the cohesive strength between soil particles. In summary, the F-T cycles have a modest
promoting effect on crack propagation on the surface of saturated red clay.

3.2.4. Effect of Salt Concentration on Cracks of Saturated Red Clay

Figure 15 illustrates variation curves of radial strain with time on the surface of RC-
1.35-2-1. It can be seen from Figure 15 that the changes of radial strain on the soil surface
vary uniformly with the increase of tested days within 10 days, with a fluctuation range
from 5% to -10%. The variation value of radial strain of the specimen was higher on the
2nd and 3rd days of the test, with a maximum value of 12.66%. Subsequently, the radial
strain of this specimen increased significantly after the first two W-D cycles, with maximum
variation values of 18.13% and 14.28%, respectively. The increase of radial strain varies
uniformly during 3rd to 6th W-D cycles. Compared to RC-1.35-2-1, radial strain values
of RC-1.35-4-2 fluctuate more significantly with a range from 10% to 15% during the dry
shrinkage process, as shown in Figure 16.
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Figures 9, 15 and 16 state that the maximum increment of radial strain for RC-1.35-0-0
with kv of 6.381 × 10−6 cm/s, RC-1.35-2-1 with kv of 1.968 × 10−6 cm/s and RC-1.35-4-2
with kv of 0.568 × 10−6 cm/s in the dry shrinkage tests are 9.63%, 8.66% and 5.96%, respec-
tively. The variation of radial strain on the surface of specimens decreased sequentially with
the increase of Tsalt and NF-T. This indicates that saline inhibits the growth of desiccation
cracks and has a more noticeable effect on cracking behaviors than the F-T cycles. This case
can be divided into two situations for analysis as follows.

(1) The saline precipitated in the pores of specimens with water evaporation on
the condition that Tsalt does not reach saturation state, when air will enter the pores of
specimens. However, less air can enter due to the precipitated salt crystals filling the
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specimens’ pores. The matric suction cannot exceed the cohesive strength between soil
particles and failed to affect their arrangement.

(2) As for specimens with saturated saline, NaCl is simultaneously dissolved in the
free water and distributed in pores before W-D and F-T cycles. The saline crystals in pores
restrain the migration of water molecules to the specimens’ surface for water evaporation
leading to its decreasing rate. Saline is crystalized and filled in pores of specimens along
with the evaporation of free water [52].
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3.3. Discussion

The common treatment approaches for inhibiting shrinkage and desiccation of red
clay comprise the physical method of compaction degree improvement and stabilization
techniques by curing agents. Increasing the initial compaction degree can inhibit water loss
and shrinkage of red clay. The suction of compacted red clay increases after dewatering
and microfracture derivation leads to a decrease in strength due to liquid removal. Lime-
meta-kaolin-treated red clay is a novel treatment method to mitigate shrinkage behavior
through improving moisture sensitivity, in which amorphous silicon and aluminum with
an edge-surface contacted structure in meta-kaolin can capture calcium ions in hydroxide
solution and form cementation hydrates between grains or particles of red clay [55]. In
addition, the nano-silica particles, as environmentally friendly curing agent, are mixed with
red clay to inhibit the shrinkage through filling pores with diameter greater than 0.03µm.
This solidification method can sufficiently alter the physico-mechanical characteristics and
is beneficial in restraining the shrinkage cracking of red clay. However, more attention
should be given to the behavior and mechanism of red clay subjected to W-D cycles without
considering saline intrusion and F-T cycles. Further research on inhibiting shrinkage
cracking of red clay upon F-T cycles and saline intrusion should be carried out and related
treatment methods need to be proposed.

4. Conclusions

In this study, the effects of F-T cycles and saline intrusion on permeability characteris-
tics and desiccation cracking of Dalian red clay in China were investigated via laboratory
tests. The evolution of desiccation cracks of compacted specimens induced by W-D cycles
was monitored using a photographing system and quantified by a Digital Image Correlation
technique. The following conclusions are drawn from the experimental results:

(1) The permeability coefficient of compacted specimens increases with NF-T under
the constant ρd and presents an overall increasing trend with the increase of NF-T under
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constant Tsalt. However, the permeability coefficient of specimens with the constant Tsalt
decreases with the increase of ρd. The greatest increment of permeability coefficient occurs
after the first F-T cycle regardless of specimens with variable Tsalt and ρd.

(2) The quantitative relationship between the number of F-D cycles and the permeabil-
ity coefficient can be expressed by the exponential function. The evaporation rate of water
on the surface of specimens decreases with Tsalt of specimens. Dry density has the more
apparent influence on desiccation cracking than salt concentration and F-T cycle to some
extent for red clay.

(3) The increase of dry density has a certain inhibitory effect on the desiccation cracking
of specimens under W-D cycles. The F-T cycles have a modest promoting effect on crack
propagation on the surface of saturated red clay. Saline inhibits the growth of desiccation
cracks and has a more noticeable effect on cracking behaviors than the F-T cycles.
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