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Abstract: Numerous studies have been conducted to investigate the potential effect of educational
robots, but what appears to be missing is an up-to-date and thorough review of the learning effec-
tiveness of educational robots and the various influencing factors. In this study, a meta-analysis
was conducted to systematically synthesize studies’ findings on the effects of educational robots
on students’ learning outcomes. After searching for randomized studies describing educational
robots interventions to improve learning outcomes, 34 effect sizes described in 17 articles met the
selection criteria. The results of our work evidence a moderate but significantly positive effect of
educational robots on learning outcomes (g = 0.57, 95% CI [0.49, 0.65], p < 0.00001). Moreover,
moderator analyses were conducted to investigate important factors relating to the variation of the
impact, including educational level and assessment type. Based on the findings of this study, we
provide researchers and practitioners with insights into what characteristics of educational robot
interventions appear to benefit students’ learning outcomes and how pedagogical approaches can be
applied in various educational settings to guide the design of future educational robot interventions.

Keywords: educational robots; effectiveness; learning outcomes; meta-analysis

1. Introduction

Technological advancements have fundamentally transformed how people, society,
and environments inter-relate. Mobilizing digital technology, such as robotics, could signif-
icantly facilitate the achievement of the Sustainable Development Goals (SDGs) [1]. As one
of the great creative inventions in the 20th century, robots are playing an increasingly im-
portant role in industrial intelligent manufacturing, mass production, and public services.
Robotics are likely to alter how the SDG are achieved, through replacing and supporting
human activities and fostering innovation [2]. In the 1970s, the first educational robot was
created in an artificial intelligence laboratory at the Massachusetts Institute of Technol-
ogy [3]. Early research on educational robots focused on the educational functions of robot
kits, including simple kits designed for the purpose of teaching a single function (such as
response to sound) as well as complex ones such as Lego Mindstroms that allowed users
to build and program [4]. In general, robotic kits are computer-programmed automated
machines that are able to perform a series of actions [5]. As more and more social assis-
tance robots (SARs)/social assistance humanoid robots (SAHRs) become available, users
will be able to interact with them using actions such as gestures, voice recognition, and
emotional expression. SARs are treated as pet animals, toys, or human beings in the form
of robots. Given the “uncanny valley” problem [6]. SAHRs are robots with non-threatening
appearance, such as Pepper and its precursor, NAO. Because of the ability to talk and show
facial expressions, these robots are able to participate in social interactions. For example,
they can be used to teach language courses and can even interact with students [7]. Studies
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concerning the appearance of education robots have examined the user’s perception and
the physical attributes of the robot (e.g., facial features) [8,9].

With the continuous improvement of robotics technology, educational robots have
received great attention from the educational community globally. For example, robotic
tutors with empathy have been used to assist elementary school students with learning
tasks [10,11]. In South Australia, two schools introduced NAO robots developed and pro-
duced by Aldebaran Robotics in France to assist teachers and students [12]. The motivation
behind these efforts is that robots can be used to address a variety of challenges faced with
education including teacher shortage [13] and teacher workload [14].

The application of educational robots is consistent with several contemporary learning
theories such as principles of active learning [15], social constructivism [16], and Papert’s
constructionism theory [17]. Some evidence is available that the use of robotics in education
has a positive impact on student behavior and development, especially in problem-solving
skills [18], collaboration [19], learning motivation [20], participation [21], and enjoyment
and engagement in the classroom [22,23].These studies drew mixed conclusions about the
effectiveness of robotics in education.

Researchers have been actively exploring the use of educational robots in a wide
range of courses [24,25]. For example, Hong and colleagues [26] reported that the use
of educational robots was beneficial for English learning. Similarly, Toh et al. [27] found
that the use of robots helped improve the knowledge of mathematical concepts. McDon-
ald and Howell [28] showed that educational robots could enhance students’ interest
in engineering and help them gain a better understanding of scientific processes. More
broadly, Mathers et al. [29] reported a study that the use of robots enhances knowledge of
physics-related topics.

Furthermore, review of literature shows that educational robots are a constantly evolv-
ing field with the potential to be implemented in education at all levels from kindergarten
to university. Chin et al. [30] indicated that educational robots can provide primary school
teachers with tools to increase student achievement. Chang et al. [31] regarded the educa-
tional robot as a tool to assist elementary school language teachers. Specifically, educational
robots (e.g., NAO) can assist staff in kindergarten by going through a nine-phase proce-
dure [32]. Moreover, NAO and Robovie have also been used to teach children language [33].
Benitti’s [34] study reported that the Lego robotics kit is recommended for children age 7
and up. Similarly, Nugent et al. [35] stated that educational robots can teach middle-school
students robot activities related to science and engineering processes by giving relatively
specific guidance.

Previous systematic review studies have reported the potential contribution of ed-
ucational robots in schools (e.g., Benitti [34]; Papadopoulos et al., [5]; Spolaôr and Woo
et al. [36]; Woo et al. [37]). However, there is a growing criticism from the robotics commu-
nity in recent years over the lack of empirical research on how robotics can be employed to
improve student academic performance [5]. In an earlier study, Benitti’s [34] result suggests
that few of the empirical studies reviewed support the significance of using educational
robots in classroom. Likewise, Woo et al. [37] systematically reviewed studies exploring
the possibility of using social robots in naturalistic school settings and identified multiple
technical and procedural problems that might affect the successful implementation of
such tools. Yet, when examining the overall effectiveness and parameters of successful
intervention aimed at the use of educational robots in schools, the above studies are not
without limits. For this reason, a meta-analysis was conducted to explore the effectiveness
of educational robots in formal learning environments in order to inform, motivate, and
guide the use of such tools in future projects. In particular, the study aims to answer the
following questions:

Q1. Does the use of educational robots in the classroom improve student learning outcomes?
Q2. Does the effect vary by

(a) The educational level (pre-school, primary school, secondary school, higher
education)?
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(b) The subject area (social science and humanities, science)?
(c) The treatment duration (0–4 weeks, 4–8 weeks, above 8 weeks)?
(d) The type of assessment (exam mark, skill-based measure, attitude)?
(e) The robotic type (robotic kits, zoomorphic social robot, humanoid robot)?

2. Method
2.1. Literature Search and Inclusion Criteria

The procedure for selecting studies was based on the Preferred Reporting Items for
Systematic reviews and Meta-Analysis (PRISMA) statement [38]. Our search process
included two parts. We first consulted the databases of Web of Science and Scopus by using
the following search parameters in titles and abstracts of the documents from 2005 to 2023:
(robot* OR educational robot*) AND (learning outcome* OR learning achievement* OR
academic performance*) AND (student* OR children* OR learner*). Then, we manually
screened Google Scholar and additional records identified through citation checking. A
study that qualifies for inclusion must examine the use of educational robots and meet the
following additional criteria: (1) investigate the effect of an educational robot on student
learning; (2) adopt a randomized experimental or quasi-experimental design; (3) include a
control group; (4) provide sufficient statistical information for calculating the effect size;
(5) be published in a peer-reviewed English language journal; (6) use courses enrolled in
a kindergarten, primary school, secondary school, and university or college; and (7) be
conducted in a natural school setting.

2.2. Coding Procedure

All records were uploaded to Mendeley. Two researchers independently coded the
studies and the following information was extracted for both the experimental group and
the control group: the descriptive statistics (i.e., mean, standard deviation, and sample size)
of each outcome, the courses involved, sample size, educational levels, robot types, type of
assessment, and length of intervention. The inter-coder agreement was evaluated based
on both Cohen’s Kappa [39] and Gwet’s benchmark [40]. All differences in codes were
discussed until a consensus was reached. Data were standardized before it was analyzed.
First, if studies provide only the p-values, sample size and means, Borenstein et al.’s [41]
methods were adopted to estimate standard deviations (SD). Second, in studies where pre-
test and post-test means were reported, data were combined to generate aggregated means.

When more than one effect size was reported in a study, dependent effect sizes in
the meta-analysis were processed according to the characteristic of its dependency to
avoid misestimation of standard errors. Various solutions have been proposed in the
meta-analysis literature to deal with effect size dependency (e.g., Hedges et al. [42]). For
example, one possible solution might be randomly choosing an effect size or taking a
mean effect size. However, one problem with this method is that it could result in the loss
of data and statistical power [43]. Another problem is that these outcome measures are
conceptually different and they may be statistically unrelated [44]. Therefore, if multiple
post-test results are reported according to different dimensions in a study, each effect size is
considered individually. If several independent sample groups are used, the effect size of
each sample group is separately included. In a similar way, in studies involving comparing
multiple controls against a single experimental group, the estimated effect size for each
pair was separately included. Finally, studies were subgrouped to investigate the possible
influence of moderating variables (e.g., the length of intervention). Following previous
research, random effects models were applied to investigate the variability of the results of
different studies [41].

2.3. Quality Assessment

After preliminary screening of the obtained documents and elimination of duplicate
documents and documents that do not match the course matter, the quality of these
documents was also examined. The six general sources of bias proposed by Higgins
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et al. [45] were adopted in the quality assessment including adequacy of allocation sequence
generation, allocation concealment, blinding procedures, incomplete result data, selective
result reports, and other sources of bias. These items were obtained from published reports,
and if more information was needed, we contacted the author. The methodological quality
of these items were also checked to determine the level of risk of bias. Low risk of bias is
assigned if specious bias might change the outcome; unclear risk of bias is assigned if some
suspicion arises; high-risk bias is assigned if paradoxical bias severely affected confidence
in the result.

2.4. Statistical Analysis

First, we obtained effect size (ES) data from studies included in the meta-analysis.
For studies with means and SDs, ESs were estimated using Review Manager 5.3 [46].
Following previous research (e.g., Tutal and Yazar [47]), we chose to incorporate all ESs
into the meta-analysis separately. The standardized mean difference index proposed by
Hedges [48] was adopted to calculate ESs: Hedges = M1 − M2/SDpooled, where M1 refers
to the mean score of the treatment group, M2 refers to the mean score of the control group,
and SDpooled refers to the weighted average of the SD value of both groups. ESs were
interpreted based on Cohen’s d, where 0.8 represents a large effect, 0.5 a medium effect, and
0.2 a small effect. A positive ES suggests that the experimental group outperformed the
control group. Since continuous data from different scales were extracted, the standardized
mean difference (SMD) of the effect size was calculated based on the sample size and 95%
confidence interval of each study, and the summary study used analysis of variance. A
significance level of 0.05 was set for all analyses (two tailed).

Following the suggestion of Borenstein et al. [41], in case of no heterogeneity, a fixed-
effect model was chosen to calculate mean effect size; otherwise a random-effect model was
used.To determine what part, if any, of the observed variation was real [41], the I2 index
was used to measure potential heterogeneity [49]. The I2 value of 25% indicates low level
of heterogeneity, 50% indicates moderate level, and 75% indicates high level [50].

2.5. Sensitivity Analysis and Moderator Analyses

The robustness of the results was examined using the leave-one-out method. That is,
if the removal of an individual study results in substantial changes, this is an indication
of poor homogeneity and therefore the results are unreliable [51]. In meta-analysis, het-
erogeneity often exists between studies. When multiple moderators are present, they may
amplify or attenuate each other’s influence on the treatment effectiveness. Hence, mod-
erator analyses were conducted to assess heterogeneity by comparing study subsets [52].
As discussed in the literature review section, several variables could potentially affect the
effectiveness of educational robots on student learning (e.g., educational level, discipline,
and robotic type).

3. Results
3.1. Search Results

As shown in Figure 1, the initial searches yielded 826 relevant articles. The number
was reduced to 269 after duplicates were removed. After examining the title and abstract,
another 223 residual references were removed. Full texts were retrieved for 46 articles. In
total, 17 articles were retained for further analysis.
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Figure 1. Flow diagram of included studies.

3.2. Characteristics of Included Studies

Table 1 overviews the studies included in the meta-analysis. In one article [53], two
studies were identified for inclusion and treated as separate studies. One article [54] had
two independent control groups and one experimental group with multiple outcomes, and
thus four effect sizes were computed. Four articles reported learning outcomes according
to different language skills including listening, speaking, reading, and writing, and thus
the effect size for each dimension was treated separately. Final coding led to the inclusion
of 34 (k = 34) independent effect sizes from 17 articles.

Table 1. Characteristics of the intervention for each study included in the review.

Study (Year) Sample Size (E/C) Discipline Educational
Level

Treatment
Duration Assessment Robotic Type

Ajlouni (2023)
[55] 25/25 Science Primary

education 8 weeks Intrinsic
motivation

LEGO WeDo
2.0 robotic

Alemi et al.
(2015) [56] 30/16 English Secondary

education 5 weeks Anxiety scores Humanoid
robot

Al Hakim et al.
(2020) [57] 24/26 Theater Secondary

education 6 weeks Official drama
performance Social robot

Casad and
Jawaharlal
(2012) [53]

174/86 Robotics
program

Primary
education 25 weeks

General
academic

performance

STEM robotic
kits

65/66 Robotics
program

Primary
education 6 months Attitudes

toward math
STEM robotic

kits

Chen et al.
(2013) [58] 30/30 English Primary

education 50 min Learning
achievement Social robot

Han et al. (2008)
[54] 30/30 English Primary

education 40 min Post-test only
achievement IROBI

30/30 English Primary
education 40 min Interest IROBI
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Table 1. Cont.

Study (Year) Sample Size (E/C) Discipline Educational
Level

Treatment
Duration Assessment Robotic Type

30/30 English Primary
education 40 min Learning

achievement IROBI

30/30 English Primary
education 40 min Interest IROBI

Hong et al.
(2016) [26] 25/27 English Primary

education 2 h Listening Humanoid
robot

25/27 English Primary
education 2 h Speaking Humanoid

robot

25/27 English Primary
education 2 h Reading Humanoid

robot

25/27 English Primary
education 2 h Writing Humanoid

robot

25/27 English Primary
education 2 h Learning

motivation
Humanoid

robot

Hsiao et al.
(2015) [59] 30/27 Chinese Pre-school

education 8 weeks Reading
literacy

Social robot
iRobiQ

Hsieh et al.
(2022) [60] 35/35 Computer

concepts
Higher

education 8 weeks
Computational

thinking
capabilities

Humanoid
robot

Hyun et al.
(2008) [61] 17/17

Korea
linguistic

ability

Pre-school
education 7 weeks Story making Social robot

iRobiQ

17/17
Korea

linguistic
ability

Pre-school
education 7 weeks Story

understanding
Social robot

iRobiQ

17/17
Korea

linguistic
ability

Pre-school
education 7 weeks Vocabulary Social robot

iRobiQ

17/17
Korea

linguistic
ability

Pre-school
education 7 weeks Word

recognition
Social robot

iRobiQ

Julià and Antolí
(2016) [62] 9/12 Mathematics Primary

education 8 weeks Spatial ability
average scores Lego

Korkmaz (2016)
[63] 27/26

Computer
program-

ming

Higher
education 8 weeks

Academic
achievement

test

Lego
Mindstorms

Ev3

La Paglia et al.
(2011) [64] 15/15 Mathematics Secondary

education 10 weeks Metacognitive
control Robotic kits

Lindh and
Holgersson
(2007) [65]

170/161
Programmable

construc-
tion

Primary
education 12 months Mathematical

problems Lego

184/160
Programmable

construc-
tion

Primary
education 12 months Logical

problems Lego
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Table 1. Cont.

Study (Year) Sample Size (E/C) Discipline Educational
Level

Treatment
Duration Assessment Robotic Type

Ortiz et al.
(2017) [66] 33/27

Computer
program-

ming

Higher
education 16 weeks

The structure of
the vehicle and
its components

Robotic kits

Wu et al. (2015)
[67] 31/33 English Primary

education 4 lecture hours Learning
outcomes

Humanoid
robot

31/33 English Primary
education 4 lecture hours

Learning
motivation and

interest

Humanoid
robot

Yang et al.
(2023) [68] 41/34

Information
manage-

ment

Higher
education 5 weeks Academic

achievement AR Bot

41/34
Information

manage-
ment

Higher
education 5 weeks Enjoyment AR Bot

41/34
Information

manage-
ment

Higher
education 5 weeks

Problem
decomposition

skill
AR Bot

41/34
Information

manage-
ment

Higher
education 5 weeks Algorithm

design skill AR Bot

41/34
Information

manage-
ment

Higher
education 5 weeks Algorithm

efficiency skill AR Bot

Studies examined the learning effectiveness of educational robots in different courses
of two broad categories. Nine articles investigated the use of educational robots in science,
technology, engineering, and math (STEM) courses (e.g., C programming) and eight articles
analyzed social science courses (e.g., English). Eight articles involved primary children, and
three studies had secondary school participants. Two studies had pre-school children and
four studies involved students in higher education respectively. The length of intervention
differed greatly, ranging from less than 1 h to 25 weeks. The selection included 11 effect sizes
for theoretical examination scores, 16 effect sizes for skill examination scores, and 7 effect
sizes for attitude towards the course. Seven articles measured the learning effectiveness
of robotic kits, five articles examined the learning effectiveness of humanoid robots, and
another five articles focused on the learning effectiveness of social robots.

3.3. Study Quality

The results of the risk bias assessment in Figure 2 show that most of the included
studies obtain satisfactory scores on the six areas, indicating a low risk of bias. Most
studies mentioned that a cluster randomized sampling was used or simply stated that
“randomization” was used. Selective reporting bias was also examined. Except for one
study with missing data, all the other studies fully reported study results.

3.4. Random-Effect Model Meta-Analysis
3.4.1. Main Effect

The primary goal of this study is to understand the nature of the effect of educational
robots on student learning. Figure 3 displays a forest plot of the included studies. The
forest plot shows the 95% CIs of the ESs of individual studies. Given a high heterogeneity
(I2 = 82%, p < 0.00001), a random-effects model was applied. A significant overall effect size
(g = 0.57, 95% CI [0.49, 0.65], p < 0.00001) indicates that teaching methods incorporating
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educational robots are conducive to learning outcomes. In general, teaching methods using
educational robots can improve learning outcomes by 0.57 SD, a moderate but significantly
positive effect according to Cohen and Lee [69]. In addition, the sensitivity analysis showed
the results were robust, and the effect size did not vary considerably when the leave-one-out
method was used. Regarding sensitivity analysis, the effect size did not vary considerably
neither when results were computed by using the leave-one-out method.
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The funnel plot is a common method for qualitatively measuring publication bias,
and it is based on the hypothetical design that the accuracy of the estimation of the effect
of intervention measures increases with the increase in the sample size. Figure 4 shows
the result of the funnel plot for the 17 articles (k = 34) and it suggests no significant
publication bias.
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3.4.2. Moderator Analyses

We conducted moderator analyses to determine the possible explanations for the high
heterogeneity among studies. The random-effect mode was chosen to explore the effect of
potential moderator variables identified in this study, including educational level, subject
area, treatment duration, assessment type, and robotic type.

Table 2 shows that the SMD of each subset was positive and exclusive of zero, indicat-
ing that students who used educational robots achieved higher learning effectiveness than
those who did not. In addition, educational level and assessment type were significantly
related to the variability in the learning effectiveness. However, three moderators were
not significant: the subject area, treatment duration, and the robotic type. The following
sections present the results for each moderator.

To examine if the influence of educational robot-based classroom instruction varies
across educational levels, studies were divided into four subsets based on research setting:
pre-school setting, primary school setting, secondary school setting, and higher education
setting. As indicated in Table 2, educational robots were found to have positive effects on
student learning at all educational levels. In terms of the strength of the effect, educational
robots had quite a strong effect on student learning at secondary school level (g = 1.69)
and higher education level (g = 1.42), and had a less strong effect at primary school level
(g = 0.78) and pre-school level (g = 0.55).
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Table 2. Results for the moderator analyses.

Moderator Variables k SMD Z I2 (%) p

Educational level 73.5 0.01 *
1. Pre-school 5 0.55 2.64
2. Primary school 18 0.78 5.13
3. Secondary school 3 1.69 2.14
4. Higher education 8 1.42 6.76

Subject area 0 0.69
1. Social science and
humanities 19 0.80 7.05

2. Science 15 0.87 3.46

Treatment duration 0 0.57
1. 0–4 weeks 12 0.92 6.17
2. 4–8 weeks 13 0.72 5.01
3. Above 8 weeks 9 0.79 3.43

Type of assessment 83.7 0.046 *
1. Exam mark 11 0.97 4.84
2. Skill-based measure 16 0.49 3.56
3. Attitude 7 1.23 8.08

Robotic type 0 0.54
1. Robotic kits 9 0.88 3.56
2. Zoomorphic social robot 11 0.71 5.36
3. Humanoid robot 14 0.91 4.53

Note: * p < 0.05.

The included studies involved a diverse range of courses. To examine whether the
use of educational robots in classroom instruction is more beneficial for some courses than
for others, we separated the courses into science courses (e.g., mathematics and computer
programming) and non-science courses (e.g., English and theater). Eligible studies were
equally distributed between the two subsets. We also compared the treatment duration
using moderator analysis. The results suggested that subject area (I2 = 0%, p > 0.05) and
treatment duration (I2 = 0%, p > 0.05) had no significant moderating influence on the
relationship between the use of educational robots and learning outcomes. In other words,
the effects of educational robots used in different disciplines were not different, and the
effects of implementing robotics-based educational tools from less than an hour to above
eight weeks were not significant.

The learning outcomes of educational robot-assisted learning were often assessed
using an examination score or some skill-based measure. Further, self-report questionnaires
were also used to elicit student attitudes toward the course. It was found that the effects
of educational robots in the classroom were totally different according to the type of
assessment (I2 = 83.7%, p < 0.05). The results show that the implementation of educational
robots in student attitudes (g = 1.23) were significantly better than in exam mark (g = 0.97)
or tests of skill (g = 0.49). Further, no significant heterogeneity value was found within each
robotic type (I2 = 0%, p > 0.05). The ESs produced by studies implementing robotic kits,
social robots, and humanoid robots were +0.88, +0.71, and +0.91, respectively.

4. Discussion
4.1. The Learning Effectiveness of Educational Robots

This study meta-analyzed 17 articles that examined the learning effectiveness of
educational robots. Educational robots were found to have a moderate but significantly
positive effect on student learning outcomes. This finding suggests that educational robot-
based classroom instruction tends to produce better learning outcomes than traditional
lecture-style teaching. This finding corroborates the positive results reported in previous
review studies [5,34,37]. Several possible explanations might contribute to why students
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who received robot-based classroom instruction had better learning outcomes than those
who were taught by traditional teaching methods.

First, some advantageous features of educational robots including the possibility
of performing repetitive tasks precisely [31] can be leveraged for teaching purposes if
they match the instructional goals. Woo et al. [37] found that social assistance humanoid
robots (e.g., Pepper and NAO) have been used to support classroom teaching by reducing
time-consuming and tedious repetitive activities. As a teaching tool, the repeatability of
educational robots would provide more in-class time for collaborative learning activities.
Thus, teachers are allowed more time to monitor student learning progress and provide
timely assistance when problems occur.

Another explanation for this finding may be that educational robots can facilitate
learning [70]. The use of educational robots can help to inspire curiosity and an enjoyable
learning environment via interesting activities and practical experiences [23]. In addition,
Alemi et al. [56] argued that the pleasure of the robot brought interesting interactions
and lowered students’ anxiety during the learning activities. The robot’s friendly attitude
towards children added an element of non-judgment and comfort to the interaction while
learning, which in turn lowered the fear of making mistakes.

Third, previous reviews (e.g., Cheung and Slavin [71]) suggested that a sample size of
250 or fewer can be treated as small. Small sample size is a common concern for nearly all
studied in the meta-analysis. Compared with those with large sample sizes, studies with
small sample sizes tend to be more strictly controlled and thus there is a higher chance of
obtaining positive results [72]. In addition, the file-drawer effect is more likely to occur in
studies with small sample sizes where null effects are found.

4.2. Moderators for Educational Robots on Learning Effectiveness

Five factors were included in the moderator analysis. With regard to the factor of
the educational level, results showed that the difference between the summated ESs of
educational levels was found to be statistically significant; however, given the small number
of studies included, interpretation of the ESs must be carried out with caution [73]. There
were quite strong effects for secondary school students (note that k = 3) and higher education
students (note k = 8), moderately strong effect for pre-school children, and strong effect
for primary school students. These divergent findings might not be easily interpreted
by a discerning pattern. However, one might tentatively speculate that robots are still
limited in their capacities to perceive the human world [74]. Moreover, robots are typically
used in situations where the lessons are short and well-structured, and delivered with
little adaptation to the needs of an individual learner or a curriculum [75]. Therefore,
the small effect of educational robots on student learning might be attributed to factors
such as the learning content, activity format, or course requirements at the pre-school and
primary levels.

In addition, Fernández-Llamas et al. [76] noted that younger students were more
familiar with robots and were also more likely to believe that robots could think [77].
However, findings of some studies suggest otherwise. For example, Serholt [78] found
that children expected that a robot could understand their intentions like a human teacher
does. When the robot failed to do so, children would perform the task on their own or
stop interacting with the robot. The study also pointed out that it is paradoxical to see that
robots with a humanoid appearance actively participated in a learning activity but they
were deficient in social interaction and cooperation skills were non-existent. Together, these
findings suggest that the adoption of educational robots at the pre-school and primary
levels requires a more careful instructional design. Moreover, looking ahead, we hope
that robots someday reach an adequate level of humanlike perception and communication
abilities to play such a role in interpreting their intentions, much like human teachers do.

Second, with regard to the type of assessment, the difference between the summated
ESs of the groups was found to be statistically significant. The meta-analysis revealed that
educational robots had a stronger impact on student attitude and were slightly weaker
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in improving theoretical and skill examination scores. Chin et al.’s [30] study found that
students’ attitude toward the educational robot was positive. In another study, Benitti [34]
reported that the young people with different interests could potentially benefit from
educational robot-based instruction. It is possible that interaction with robots can increase
student motivation, engagement, and attitude towards education. Given these findings,
future research on the application of educational robots should consider exploring how
these tools in school environments can be better employed to promote the learning of
knowledge and skills.

Third, statistically significant differences were not found among the moderators of
subject area and robotics type. This seems to be an unsurprising result. The effectiveness
of educational robots depends on various factors, and they must be adaptable in real
time [7]. In general, there appears to be no discrepancy in learning outcomes if the robot
chosen is suitable for the specific discipline. Prior studies showed that educational robots
can help improve student learning outcomes in mathematics and science courses [27,79].
Chang et al. [31] reported that socially assistive robots can promote English language skills.
However, to meet the learning purposes of incorporating robots in classroom settings,
they must be deployed and studied in the context of their primary use. For example, it is
unreasonable to use complex robots with pre-school children in a classroom setting. As
such, future research has a responsibility to explore the use of different of robotics in terms
of different learning activities.

Finally, the three categories of treatment duration are proved to be insignificant. This
finding is in line with results of recent reviews (e.g., Cheung and Slavin [71]) which have
consistently found that technology has no effect in improving student learning in the long
run. Moreover, another factor for the nonsignificant result might be learning intensity
because not every study reviewed in this meta-analysis indicated if students spent an equal
amount of time using educational robots.

5. Conclusions

Undoubtedly, educational robots will be expected to take on a more vital role in schools
in the future. Therefore, how educational robots can be best integrated into classroom
instruction is a question that deserves greater attention. Despite the proposed advantages
of incorporating educational robots in student learning [5,23,34,80], currently researchers
have not given particular attention to the overall effectiveness and parameters of successful
intervention aiming at the use of educational robots in school settings. To address this
gap, this study, therefore, conducted a meta-analysis of the effects of educational robots in
the classroom.

This study found supporting evidence for the positive effects of educational robot-
based interventions on student learning (mean ES = +0.57), suggesting that educational
robots can be leveraged to facilitate student learning. Moreover, the homogeneity test
indicated that there was a high level of heterogeneity among the effect sizes of the studies
reviewed in this meta-analysis. To further investigate this heterogeneity, five factors
including course type, education level, treatment duration, assessment type, and robot type
were quantitatively assessed using the moderator analysis. Our findings partially support
and enrich the existing research in various ways. Some of the findings provide guidance and
direction for the process of educational robot operation. In terms of treatment duration, the
usefulness of robotics-based instruction remains stable as the duration of implementation
is extended. What is clear from investigating the moderator effect of subject area and
treatment duration is that the choice of robot usually depends on practical considerations.

Overall, course designers and teachers can use these results in course design and
facilitation of learning to improve student’s learning in educational robot-based courses
as well as differentiating their practices according to course level (e.g., children and un-
dergraduate students), discipline, and robotic type. Finally, we hope that the results of
this study can further advance our understanding of implementing educational robots in
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formal learning settings, and enhance the quality of education for students engaged in
robot-based learning.

6. Limitations and Future Research

A first limitation was that this study only focused on several factors that might
affect the effects of educational robot interventions. It did not consider other factors
such as gender differences or socio-economic status which might also influence student
learning outcomes. Future research should consider how these and other factors might
be related to students’ academic performance involving the use of robotic technology in
education settings.

Another limitation was that most randomized-controlled studies included in the meta-
analysis were conducted with children aged 8 to 12 years old. Further research should be
conducted to explore how these findings can be applied to different age groups.

Finally, although it is central to analyze specific characteristics of the intervention’s
influence on the effect of educational robots in formal learning environments, in the future
it will be valuable to explore interaction effects among moderators, which can provide
valuable information to answer questions such as “do these intervention components
amplify or attenuate each other’s effectiveness?”
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