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Abstract: This study addresses the growing interest in utilizing remote sensing tools for locating
sustainable drainage systems (SuDS) in urban environments. SuDS, recognized as Nature-based
Solutions (NbS), play a crucial role in enhancing urban resilience against climate change. This study
focuses on the calibration process required to establish a correlation between the Topographic Wetness
Index (TWI), derived from high-precision digital elevation models (DEMs), and soil moisture (SM)
data obtained from satellite imaging. This calibration serves as a method to optimize the placement
of sustainable urban drainage system vegetated techniques in urban areas. This study leveraged the
exceptional resolution of PAZ satellite radar data to effectively detect variations in SM, particularly in
grass-type vegetated land. The sensitivity of the X-band radar signal to moisture levels and changes in
ground roughness proved valuable in tracking SM dynamics. The core of the study involved deriving
the TWI from a high-resolution digital terrain model (DTM). The correlation between the TWI and
SM values demonstrates robustness, with an R2 value of 0.77. These findings significantly advance
the calibration of TWI values with SM measurements, enhancing their practicality in identifying
areas prone to water accumulation. The study’s outcomes provide valuable insights for guiding the
strategic placement of SuDS in urban environments, contributing to the effective management of
water-related challenges in the face of urbanization and climate change.

Keywords: hydrology; Low Impact Development (LID); Synthetic Aperture Radar (SAR); Stormwater
Control Measures (SCM); Water-Sensitive Urban Design (WSUD)

1. Introduction

Sustainable drainage systems (SuDS) have been adopted as the main Green Stormwa-
ter Infrastructure (GSI) when considering the Nature-based Solutions (NbS) at the core
of urban regenerative development [1]. Strategic urban planning is key to incorporating
green urban approaches for resilient city designs where GSIs are core [2]. Thus, there is
a growing interest in optimizing the location of these techniques to increase their syner-
getic impact on the holistic water cycle and the creation of better living spaces in urban
environments. Previous studies, such as [3–5], have paved the way for further research in
this area, focusing on the development of multicriteria frameworks and optimal locations.
Additionally, satellite imagery has been successfully utilized in the past to help identify
potential locations to implement SuDS. Its combination with geographical information
systems (GISs) has been explored with green roofs [6].

Sustainability 2024, 16, 598. https://doi.org/10.3390/su16020598 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16020598
https://doi.org/10.3390/su16020598
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-1178-2269
https://orcid.org/0000-0002-8405-8976
https://orcid.org/0000-0002-1532-939X
https://doi.org/10.3390/su16020598
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16020598?type=check_update&version=1


Sustainability 2024, 16, 598 2 of 12

Satellite imagery has also been used to identify land use, aiding in the parametrization
of SuDS in the U.S. Environmental Protection Agency’s Storm Water Management Model
(SWMM) [7,8]. Moreover, remote sensing techniques have been pinpointed by recent
studies as key drivers for future SuDS monitoring [9], opening a new field of application
for further research in exploratory methods based on high-resolution satellite techniques.

It is necessary to consider holistic approaches, including cost–benefit analyses through
evaluation, classification, and selection studies of the most suitable infrastructures to be
implemented in the cities of the future [10,11]. With this aim, the development and optimiza-
tion of design and implementation decisions and strategies related to water management
infrastructures such as SuDS is fundamental, helping in adapting cities to climate change.
In this context, multicriteria schemes are used as tools for planning and decision making,
and are utilized to select the most appropriate strategies and effective solutions [12–14].

The selection of criteria involves evaluating the terrain’s suitability through a set of
analyses that allow for the modeling of the hydrological characteristics of the study area,
identifying zones most prone to flooding, as well as other drainage problems [15]. GISs are
used for collecting, storing, manipulating, analyzing, and presenting geographic data [16].
The integration of GIS and terrain modeling and analysis, coupled with multicriteria de-
cision analysis (MCDA), has garnered significant interest in recent years [17–20]. It can
offer valuable insights for decision making in urban planning by identifying areas that
require special attention due to natural hazards such as flooding. GISs can also determine
the efficiency factors of urban drainage systems and the size of each sub-catchment, aiding
in calculating the volumes of runoff to be managed by constructed urban drainage sys-
tems [21,22]. Generally, when mapping the susceptibility of urban areas to flooding, the
most common factors considered in terrain analysis are elevation, slope, land use, distance
from the river, or distance from the channel, among others [23,24]. However, there are
several challenges related to the use of terrain analysis for urban planning decision making,
with one of them being the uncertainty associated with the data used in terrain analysis.
The accuracy of these data can be affected by various factors, such as the quality of the data
source or the resolution of the technique utilized to register and gather the data [25].

The Topographic Wetness Index (TWI), derived from high-resolution digital elevation
models (DEMs) [26,27], is another parameter from terrain analysis used to identify areas
prone to saturated land surfaces and urban flooding [28]. The TWI assesses relative terrain
wetness based on slope and upstream contributing drainage area per width unit, making it
a useful parameter for comprehending topographical impacts on hydrological processes
and flood-risk-based land use planning [29]. This role is instrumental in strategically
implementing sustainable urban drainage systems (SuDS), especially in urban areas with
soil impermeability issues that could lead to an increased flood risk. The information
derived from the TWI significantly influences decision making in the implementation
of SuDS, guiding their strategic placement and design optimization to address specific
drainage challenges and mitigate risks associated with floods and water accumulation [30].

A high-resolution DEM can be derived from LiDAR point-cloud data by removing
surface features and sampling ground elevation in uniform increments to generate a bare
earth model [31]. LiDAR data are applicable for creating DEMs in hydrological applications
at a basin scale [32–34]. Collected from airborne devices, LiDAR data are employed to
detect reflections of a pulsed laser beam, recording reflections as millions of individual
points that represent the 3D positions of surface objects, including buildings, vegetation,
and the ground [35].

Understanding soil moisture redistribution and infiltration dynamics is crucial for
comprehending the hydrological behavior of urban drainage systems [36]. Soil moisture es-
timations based on remote sensing can analyze spatio-temporal dynamics and distribution
across various scales [37–39], with microwave remote sensing offering higher accuracy [40].
Recent and comprehensive reviews on the application of optical and thermal remote sensing
for SM estimation emphasize the importance of these methods in addressing the limita-
tions of low-resolution large-scale remote sensing products [41]. This approach provides
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a unique opportunity for the direct observation of soil moisture, making it an essential
method for monitoring soil moisture over large areas [42].

The PAZ is a next-generation X-band Synthetic Aperture Radar (SAR) satellite sensor
launched in February 2018 by Hisdesat [43], Spain. It is equipped to capture high-resolution
images (1.25 m) and offers short revisit periods of 11 days. The PAZ mission is part of
the Spanish National Earth Observation Satellite Program (PNOTS) and is a joint effort
between the Spanish Ministries of Defense and Industry [44]. PAZ satellite radar data have
been employed to detect SM, due to the excellent resolution of these data. The X-band radar
signal is sensitive enough to detect changes in SM and monitor it across grass plots [9].

The primary objective of this study was to enhance the identification of optimal loca-
tions for vegetated sustainable urban drainage system techniques in urban areas utilizing
the Topographic Wetness Index (TWI) derived from high-precision digital elevation models
(DEMs). The TWI helps identify areas susceptible to water accumulation, guiding the
strategic placement of SuDS in urban environments. To establish the reliability of the TWI,
we calibrated it with soil moisture (SM) measurements obtained through high-resolution
satellite radar data from the PAZ satellite. This approach effectively captures variations
in SM, particularly in grassy areas. Our study presents a methodological foundation,
setting the stage for future developments in design and implementation strategies for
SuDS. We present a case study in the city of Gijón, located in northwestern Spain, where
the use of grass-vegetated surfaces aligns with the prevalent practice in various green
implementations involving SuDS.

Through the calibration of TWI values with soil moisture measurements, this study of-
fers a valuable tool for optimizing the placement of sustainable drainage systems [45]. This
contributes significantly to mitigating the impact of climate change in urban areas [46–49].
The innovative integration of high-resolution digital terrain models and radar-based soil
moisture values ensures the accuracy of the TWI, even though the calibration is currently
limited to a specific study area. In future, the development of distinct linear models tailored
to various areas could enhance the coverage and effectiveness of implementation strategies
involving SuDS.

We acknowledge certain limitations in this study that should be considered when
interpreting our results. These limitations include the sensitivity of the X-band radar signal
and its limited depth of penetration (approximately 3 cm into the surface) [50–53]. This
shallow penetration capability primarily captures moisture information from the uppermost
layer of the soil. Additionally, factors such as terrain characteristics and surface roughness
can influence the accuracy of results [54]. While the calibration of the Topographic Wetness
Index (TWI) with soil moisture measurements shows promise, it is vital to recognize the
inherent limitations of the data sources and technology employed. These limitations,
particularly the shallow penetration depth of the radar signal, may affect the accuracy of
soil moisture assessments, especially in areas with varying soil properties and moisture
distributions at greater depths.

2. Materials and Methods
2.1. Study Area

Gijón, the largest city and a prominent urban feature within the Central Metropolitan
Area of the northwestern region of the Principality of Asturias, Spain, boasts a coastal
setting and holds a Cfb climate classification per the Köppen–Geiger system [55]. Marked
by warm temperatures, high humidity, and a balmy summer season, the city maintains
an average temperature of 14 ◦C and receives an annual rainfall volume of approximately
1000 mm.

The selection of this specific location as our study area was based on its alignment
with a referenced article which served as the foundation for choosing the empirical model.
The cited study focused on the eastern side of the city council, which aligns with our study
area, ensuring geographical consistency. Figure 1 illustrates this consistency, enabling a
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meaningful comparison between soil moisture field measurements and backscatter values
from PAZ satellite SAR images.
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2.2. Topographic Wetness Index (TWI)

The Topographic Wetness Index (TWI), a dimensionless parameter representing the
local upslope area draining through a specific point-per-contour unit length divided by the
local slope in radians, was computed using various flow-routing, slope, and contributing
area algorithms. The calculations were performed on a Terrain Digital Model with a
2 m resolution, generated by the National Geographic Institute (IGN) from LiDAR data,
providing a high-resolution representation of the terrain. To ensure accuracy, a digital
terrain model (DTM) with a 2 m resolution, also generated by IGN from LiDAR data,
was utilized. This LiDAR data facilitated a detailed representation of the terrain, with the
removal of land depressions and flat pixels for precise calculations.

The Topographic Wetness Index (TWI) serves as an indicator of the relative wetness
or moisture content of the terrain and is dependent on essential topographic parameters
such as slope and contributing area. It was computed using the System for Automated
Geoscientific Analysis (SAGA) GIS software 7.9.1 Version [56], an open-source tool with a
diverse set of tools for geospatial data analysis and processing. Parameters such as Total
Catchment Area (TCA), Flow Width (FW), and Slope (S) were calculated for each pixel
using the following equation (Equation (1)):

TWI = ln


(

TCA
FW

)
tan(S)

 (1)

When working with the Topographic Wetness Index (TWI), it is common to normalize
the TWI values to a specific range for easier interpretation and comparison. Normalization
helps to standardize the TWI values across different datasets or study areas. The formula
generally involves subtracting the minimum TWI value and dividing by the range of TWI
values, as shown in Equation (2):

TWIn =
TWI − min(TWI)

max(TWI)− min(TWI)
(2)
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The normalized TWI values ranged from 0 to −1, as shown in Figure 2. This nor-
malization facilitates the analysis, visualization, and identification of areas with higher or
lower wetness levels based on the standardized range.
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2.3. Soil Moisture (SM) from Satellite Data

Measuring SM from satellite data is an important remote sensing technique that
provides valuable information about the moisture content in the top layer of the soil.
Several missions have been specifically designed to measure SM using satellites, and they
utilize different microwave frequencies to capture the SM signal.

Microwave radiation is sensitive to the dielectric properties of materials, including
those that form the soil. When microwaves interact with the Earth’s surface, they penetrate
the top layer of the soil. Thus, the amount of energy absorbed and reflected is affected by
the soil moisture content.

The use of PAZ satellite radar data, due to their high-resolution capacity, allows for
the application of remote sensing techniques to be carried out at a project scale in order to
measure soil moisture. The X-band radar signal is sensitive at a level where variations in
soil moisture can be detected, and it can be used to monitor grass-vegetated surfaces from
a zone with homogeneous surface roughness and soil characteristics [9].

The pre-processing steps involved in the analysis included the sequential utilization
of radiometric calibration and filtering techniques using open-source Sentinel Application
Platform (SNAP) 9.0 Version [57] software. Radiometric calibration was chosen as the main
method for this investigation to convert the image’s amplitude values into reflectivity val-
ues, enabling further analysis and interpretations. Subsequently, the radar-backscattering
coefficient (σ0) was calculated as the conventional metric representing the intensity of radar
signals reflected from the surface. The σ0 value exhibits notable variations depending on
factors such as the incidence angle, wavelength, polarization, and the scattering properties
of the surface itself. The pixel backscatter coefficient was transformed into sigma naught in
decibel units (dB) using Equation (3).

σdB = 10·log10·
(
σ0

)
(3)

The acquisition of data with a temporal resolution of 11 days from the PAZ satellite
spanned from 21 September 2020, to 26 July 2021. The data were registered using single
polarization VV (vertical transmit, vertical receive) and had nearly constant incidence
angles ranging from 53.8◦ to 53.95◦ in an ascending orbit. The acquired data were projected
onto the WGS84 reference ellipsoid using the UTM projection. To account for terrain-
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induced distortions, an external DEM was used to correct the images. As a result, the
geocoded products (ECC) achieved a high level of accuracy, with a 1.25 m pixel size.

The backscattering coefficient values of each pixel in the image were converted into
SM values by means of the statistical model that endorsed the highest correlation in the
study [9]. This model included the variables σdB and temperature (T0) for an adjusted R2

of 0.66 and a correlation coefficient of 0.81. The specific equation representing this model is
provided below (Equation (4)).

SM = 145.178 + 3.5196·σ0
dB − 3.2474·T0 (4)

The normalized SM values ranged from 0 to −1, as shown in Figure 3:
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2.4. Meteorological Data

In order to calibrate the TWI values obtained from the previous process, the rainfall
and temperature measurements from the nearest meteorological station included in the
Spanish Meteorological Agency (AEMET) network and located at the Polytechnic School
of Engineering of Gijón (AEMET’s code number 1207U) were utilized. These values are
graphically depicted in the referenced article from which the empirical model used in this
study is derived.

An image captured on 7 December 2020 was the image chosen for this study. The
choice of this specific image, displaying the highest soil moisture values, was based on
considerations of preceding meteorological conditions. Following a six-day consecutive
rainfall event with an average recorded precipitation of 26 mm, this specific date serves as
a critical moment to capture the soil’s response to intense rainfall.

2.5. Study Plots

The study was conducted in a set of 5 plots within the same study area in which the
statistical model described in Equation (4) was derived. These plots have similar surface
roughness and homogeneous characteristics. Figure 4 illustrates the normalized Soil
Moisture (SM), the latest orthophoto available from the National Aerial Orthophotography
Plan of the National Geographic Institute of Spain, and the Topographic Wetness Index
(TWI) values for two of these plots.

The selection of 72 points from within these plots was conducted through random
sampling. These points were used to determine the normalized SM and TWI values.
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3. Results and Analysis

Table 1 shows the descriptive statistical parameters from the sampled points: mean,
standard deviation, and percentiles (0, 25, 50, 75, and 100).

Table 1. Descriptive statistical parameters.

Variable (Units) Mean Std. Dev.
Percentiles (%)

0 25 50 75 100

Soil Moisture 0.623 0.046 0.525 0.606 0.638 0.651 0.709

Topographic Wetness Index 0.876 0.092 0.639 0.829 0.930 0.940 0.950

The resultant linear model correlating the TWI and SM presented an R2 value of 0.77
and a Root Mean Squared Error (RMSE) of 0.37. Figure 5 shows a scatter plot representation
of this model.
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In the context of linear regression, ensuring the accuracy and dependability of analysis
results hinges upon the adherence to two pivotal assumptions: homoscedasticity and the
normal distribution of residuals. Normality evaluation refers to the assumption that the
errors are distributed according to a Gaussian distribution, and homoscedasticity refers to
the assumption that the variance of the errors is constant. These assumptions were subjected
to validation through the Kolmogorov–Smirnov and Breusch–Pagan tests, respectively.
The linear model demonstrated conformity to both assumptions, as evidenced by p-values
exceeding 0.05. The results of the normality test are graphically depicted in Figure 6, along
with a scatter plot of residuals and predicted values.

Sustainability 2024, 16, x FOR PEER REVIEW 8 of 13 
 

 
Figure 5. Scatter plot depicting the linear model relationship between SM and the TWI. 

In the context of linear regression, ensuring the accuracy and dependability of anal-
ysis results hinges upon the adherence to two pivotal assumptions: homoscedasticity and 
the normal distribution of residuals. Normality evaluation refers to the assumption that 
the errors are distributed according to a Gaussian distribution, and homoscedasticity re-
fers to the assumption that the variance of the errors is constant. These assumptions were 
subjected to validation through the Kolmogorov–Smirnov and Breusch–Pagan tests, re-
spectively. The linear model demonstrated conformity to both assumptions, as evidenced 
by p-values exceeding 0.05. The results of the normality test are graphically depicted in 
Figure 6, along with a scatter plot of residuals and predicted values. 

 
Figure 6. (a) Q-Q plot for the standardized residuals; (b) scatter plot of residuals and predicted val-
ues. 

In the context of our analysis, focusing on soil moisture (SM) and the Topographic 
Wetness Index (TWI), our regression model demonstrates robustness, as evidenced by 
both the scatter plot of residuals and the Quantile–Quantile (Q-Q) plot. 

Figure 6. (a) Q-Q plot for the standardized residuals; (b) scatter plot of residuals and predicted values.

In the context of our analysis, focusing on soil moisture (SM) and the Topographic
Wetness Index (TWI), our regression model demonstrates robustness, as evidenced by both
the scatter plot of residuals and the Quantile-Quantile (Q-Q) plot.

The scatter plot of residuals reveals a favorable pattern, showcasing random dispersion
around zero. This pattern indicates the proficiency of our model in capturing the intricate
relationship between soil moisture and the Topographic Wetness Index. The uniform
scattering of residuals, without discernible trends or curvatures, reaffirms the model’s
adherence to key assumptions, including linearity and constant variance. The absence
of pronounced patterns within the residuals further substantiates the model’s suitability
for our dataset, assuring alignment with our analytical objectives and the absence of
unaccounted variables or nonlinear relationships.

Similarly, the Q-Q plot illustrates the notable alignment of data distribution with
the theoretical normal distribution. The points closely follow the diagonal reference line,
signifying a remarkable conformity to normality. This alignment supports a fundamental
assumption in linear regression, enabling the application of parametric statistical tests and
confidence intervals in our analysis. The consistent adherence to a normal distribution
enhances the reliability and interpretability of our statistical inferences, reinforcing the
overall validity and trustworthiness of our regression analysis.

In summary, the alignment of both the scatter plot of residuals and the Q-Q plot
with their respective reference lines underscores the robustness of our model, assuring
adherence to fundamental statistical assumptions. This contributed to the sound statistical
inferences in our analysis of SM and the TWI.

4. Discussion

The X-band radar image’s backscatter coefficient experiences the combined influence
of moisture and ground roughness. Given its shallow penetration capability (approximately
3 cm), it exhibits remarkable sensitivity to the presence of vegetation. The TWI is derived
from a high-resolution DTM previously subjected to a filtering process that eliminates
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buildings, media, and tall vegetation. Consequently, a valid comparison between TWI and
SM values can only be drawn within areas or plots without buildings and similar vegetation
types. For this study, sample points were selected from plots free of medium and high
vegetation and characterized by a comparable surface roughness, akin to those investigated
in [9], which established the linear relationship between the backscatter coefficient and SM
with a correlation of 0.88 within the study area, which implies that SM values are indirect
values. The correlation between TWI and SM values can be considered high, with an R2

value of 0.77, exhibiting a strong relationship despite these limitations.
The results indicate that the lowest and highest TWI values correspondingly signify

regions at the greatest and lowest risk of flooding. The minimum and maximum TWI values
align with the calculated minimum and maximum SM values. Conversely, the intermediary
SM values are notably impacted by the radar signal’s high sensitivity stemming from its
configuration and terrain characteristics. Consequently, these intermediary SM values
exhibit a comparatively diminished correlation with the computed TWI values.

This study provides a baseline model, based upon the TWI, to monitor and analyze
SM content using remote sensing tools in grassed surfaces under a Cfb climate and with the
rainfall and temperature patterns of Gijón, though the model is applicable to other cities
in the European Atlantic Arc. SM is a key driver for the design and operation of SuDS,
affecting physical processes such as evapotranspiration [36] and filtration in vegetated-
based SuDS, as well as infiltration to the subjacent ground when designed for that purpose.
SM also influences water volume retention and wider hydrological modeling [58] and also
has an impact on the growth and maintenance of plant species.

This study is expected to greatly influence implementation strategies for SuDS, offering
the possibility to study large areas of an urban environment where green SuDS could be
incorporated and informing decision makers and designers about the SM characteristics of
the study area.

The results of this study demonstrate innovation in identifying optimal locations for
sustainable urban drainage systems (SuDS) in urban environments using the Topographic
Wetness Index (TWI) and its calibration with soil moisture (SM) measurements through
high-resolution satellite technology. This novel approach represents significant advance-
ments in sustainable urban drainage system planning and holds crucial implications for
water management in flood-prone urban areas.

5. Conclusions

Crucial to our study, our robust linear regression analysis played a pivotal role in
calibrating the Topographic Wetness Index (TWI), assigning significant weight to the
TWI in planning and decision making processes for the optimal placement of sustain-
able drainage systems (SuDS). This calibration process consolidates the usefulness and
efficacy of the TWI, enabling the identification of zones prone to water accumulation.
Consequently, it becomes a decisive criterion for the strategic placement of sustainable
drainage systems—indispensable tools in mitigating the repercussions of climate change
in urban areas. The TWI values are derived from a high-resolution digital terrain model
generated through LiDAR technology. Simultaneously, soil moisture values are computed
from the backscatter values of high-resolution radar images. This calculation employs a
linear model to establish correlations between these values and various field measurements,
including temperature.

The calibration process is confined to a particular study area, preventing its extrapola-
tion to different regions. To establish comparable SM values, the formulation of distinct
models tailored to each area would be imperative. Future research could encompass the cal-
culation of distinct linear models for various areas, facilitating the strategic implementation
of SuDS. By establishing interrelations among these models, a broader scope of calculations
can be achieved to enhance coverage and effectiveness.

The boundaries of the outreach of this study are mainly associated with the revisit
periodicity of the satellite, which provides images every 11 days, which is a shorter time



Sustainability 2024, 16, 598 10 of 12

frame than that of other satellites but still a limitation for the short-term SM monitoring of
sustainable urban drainage system techniques and its coupling with storm events. However,
the proposed method could be of great interest for its application in MCDA, incorporating
remote sensing techniques at a central position to develop accurate decision-making tools
using design variables such as SM.

The determination of the Topographic Wetness Index (TWI) in urban environments
poses unique challenges, necessitating precise data for high-resolution digital surface
models that account for influential urban elements. Our approach underscores the TWI’s
substantial contribution as an additional parameter in multicriteria analyses, guiding the
optimal placement of vegetative sustainable drainage systems in urban settings. The
inclusion of critical factors such as permeability, land use, pavement type, and the urban
drainage network is crucial for enhancing the accuracy of calculations in highly urbanized
areas and allows for adaptability to diverse urban conditions.

Given the scope of our investigation and the findings gleaned from it, it would be
desirable to continue this line of research in the near future by studying dry and bioretention
swales using grassed surfaces or low-growing vegetation, as well as extensive green roofs
using a homogeneous planting scheme, which are the closest sustainable urban drainage
system techniques in which this methodology could be satisfactorily applied.
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14. Ruangpan, L.; Vojinovic, Z.; Plavšić, J.; Doong, D.-J.; Bahlmann, T.; Alves, A.; Tseng, L.-H.; Randelović, A.; Todorović, A.; Kocic, Z.;
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