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Abstract: Accurate estimations of actual evapotranspiration (ETa) are essential to various environ-
mental issues. Artificial intelligence-based models are a promising alternative to the most common
direct ETa estimation techniques and indirect methods by remote sensing (RS)-based surface energy
balance models. Artificial Neural Networks (ANNs) are proven to be suitable for predicting reference
evapotranspiration (ETo) and ETa based on RS data. This study aims to develop a methodology
based on ANNs for estimating daily ETa values using NDVI and land surface temperature, coupled
with limited site-specific climatic variables in a large irrigation catchment. The ANN model has been
applied to the two different scenarios. Data from only the 38 days of satellite overpass dates was
selected in Scenario I, while in Scenario II all datasets, i.e., the 769-day data were used. An irrigation
scheme, located in the Mediterranean region of Turkiye, was selected, and a total of 38 Landsat
images and local climatic data collected in 2021 and 2022 were used in the ANN model. The ETa
results by the ANN model for Scenarios I and II showed that the R2 values for training (0.79 and 0.86),
testing (0.75 and 0.81), and the entire dataset (0.76 and 0.84) were all remarkably high. Moreover, the
results of the new ANN model in two scenarios showed an acceptable agreement with ETa-METRIC
values. The proposed ANN model demonstrated the potential for obtaining daily ETa using limited
climatic data and RS imagery. As a result, the suggested ANN model for daily ETa computation offers
a trustworthy way to determine crop water usage in real time for sustainable water management in
agriculture. It may also be used to assess how crop evapotranspiration in drought-prone areas will be
affected by climate change in the 21st century.

Keywords: evapotranspiration; artificial neural networks (ANNs); remote sensing (RS); METRIC
model; climate change; sustainability

1. Introduction

Scientists, as well as practitioners, have been seeking appropriate, integrated, and
sustainable approaches to determine reference and actual evapotranspiration amounts in
both irrigation and rainfed catchments. Actual evapotranspiration (ETa) measurements
in the field or estimation by any respective conventional method [1] are needed to ensure
the sustainability of irrigation water management and irrigation scheduling at large-scale
irrigation schemes, as well as in farmyards, water-balance works in hydrologic studies,
accurate designs of hydraulic structures related to irrigation schemes, etc. By introducing
a two-step procedure [2], ETa, in other words, crop evapotranspiration ETc, is estimated
under standard conditions [2], i.e., well-watered and optimal agronomic conditions. On
the other hand, ETa is an essential component of the water budget, hydrological modeling,
and irrigation water management in arid and semi-arid regions of the world. Nevertheless,
it is not an easy task to acquire a representative ETa value for it can be determined directly
using either a lysimeter or water-balance work/approach which are rather labor-intensive,
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time-consuming, and very expensive, thereby threatening the sustainability of freshwater
resources. As stated clearly by Allen et al. [2], Rawat et al. [3], Gharbia et al. [4], and
Alsenjar et al. [5], among others, ETa describes the physical processes of the amount of
water that can occur either through evaporation or transpiration according to climatic
conditions, crop types, and soil status. Since direct methods of ETa calculation focus only
on one point or parcel, they have limitations in showing the variation in ETa spatially
and temporally at a large scale [6], particularly in areas with large irrigation schemes of
>100,000 ha as in Turkiye. Therefore, accurately estimating ETa is of the utmost importance,
as well as a critical issue in water-balance methods and agricultural water management at
the irrigation scheme level. In this regard, the remote sensing (RS)-based surface energy
balance models are one of the indirect methods to estimate spatially ETa over large-scale
irrigation catchments with a high spatial and temporal resolution [7].

Several researchers have estimated ETa based on the RS-based surface energy bal-
ance models, such as the “Surface Energy Balance Algorithm for Land” (SEBAL) [8,9],
“Mapping EvapoTranspiration at High Resolution and with Internalized Calibration”, i.e.,
METRIC [10,11], and “Surface Energy Balance System” (SEBS) [12]. These models normally
use Landsat satellite imagery or Moderate Resolution Imaging Spectroradiometer (MODIS)
which include more required RS data alongside weather parameters [7,10], among others.
However, as pointed out by Bachour et al. [13], among others, RS technology has some
limitations. Therefore, some of these data cannot be provided due to cloud cover and
the unavailability of all relevant climatic data. For example, the implemented METRIC
model to estimate ETa requires more of the input parameters of Landsat satellite data (net
radiation flux (Rn), soil heat flux (G), sensible heat flux (H), latent heat flux (LE), leaf area
index (LAI), land surface temperature (LST), surface albedo (α), and normalized difference
vegetation index (NDVI), to name but a few).

In addition, H calculation in the METRIC model is based on the anchoring pixels, i.e.,
hot and cold, so there are complexities involved in sensitivity selecting anchor pixels for
improved estimation of H and LE fluxes [14]. Moreover, Landsat satellite data with a 30 m
by 30 m spatial resolution are normally available every 16 days for satellite scenes [7]. As
such, the methodology obtained by Allen et al. [10] has been used to estimate ETa based on
the METRIC model for each pixel during the satellite image overpass date. In this regard,
to determine ETa values based on the METRIC model for a predetermined period, i.e.,
month or season, Allen et al. [10] applied the procedure by making the interpolation of
daily reference evapotranspiration fraction (ETrF) or crop coefficient (Kc) values between
two satellite images and multiplying by reference evapotranspiration, i.e., ETo, for each
day and then integrated for a given or specific period. However, the accepted method
by Allen et al. [10] has some gaps or limitations in showing the effect of precipitation
or irrigation practices precisely on the daily growth stages and NDVI of crops between
two satellite image overpasses. As known, both ETa and ETo have a nonlinear character
in nature [15], and in turn, is a complex phenomenon. Therefore, more nonlinearity
exists in the evapotranspiration process due to its stochastic behavior [16]. Thus, over the
past few decades, artificial neural networks (ANNs) have been successfully utilized in
modeling reference evapotranspiration, i.e., ETo [1,15,16]. As such, the idea of artificial
neural networks usage in engineering applications goes back to the 1940s [15]. Due to these
reasons, it has been widely used in hydrological practices, particularly in the estimations
of reference evapotranspiration, since the early nineties. Contrary to this, the literature
review revealed that there have been hardly any studies on estimating METRIC-based
actual evapotranspiration values by ANN models.

The most significant merit of the ANN models is to solve complex problems using
fewer inputs by adjusting the weights to be able to predict the correct output of the
input parameters. Recently, the ANN algorithm has been applied to estimate reference
evapotranspiration (ETo) and crop evapotranspiration (ETc) for wheat, maize, and potato
in different regions of the world [17–23]. As for ANN-based ET estimation, studies rarely
used land surface parameters calculated from RS data, including but not limited to land
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surface temperature, vegetation indices, etc. and limited meteorological parameters as
inputs in the ANN model [24].

ETa estimation by the ANN model can be beneficial and powerful for using it as an
input factor in water-balance calculations at large-scale irrigation catchments since, as
claimed by Kumar et al. [1], theoretically, ANN is expected to produce better results than
a regression model for the same data length. The novelty of this study is to establish a
new methodology for generating daily actual evapotranspiration (ETa) series based on the
ANN model using some of the parameters of MODIS data coupled with availably daily
moderate spatial and less input of weather variables as compared to the existing methods
of ETa-based surface energy balance models estimation. Therefore, this study aims to use
an artificial neural network (ANN) approach to estimate daily ETa values in large-scale
irrigation catchments using two parameters of MODIS data, i.e., NDVI and LST, coupled
with limited site-specific climatic variables at a large-scale irrigation scheme located in
the Lower Seyhan Plain irrigation project area with >210,000 ha of land [7]. Furthermore,
this paper is the first attempt to generate a new model using the ANN algorithm as an
alternative to the existing methods of actual evapotranspiration estimation in a large-
scale irrigation district in the Eastern Mediterranean Region of Turkiye. Moreover, this
methodology can be generalized for estimating daily ETa using the ANN model to different
climate regions and zones of the world.

2. Materials and Methods
2.1. Study Area and Its Characteristics

The research area that has gained popularity under the name Akarsu Irrigation District
(hereafter, AID, A = 9495 ha ≈ 95 km2, Figure 1) in the studies carried out so far is located
in the Lower Seyhan Plain (LSP) in the southeastern part of the Mediterranean region
of Turkiye. The LSP shows typical characteristics of a deltaic plain with a rather flat
topography (a slope of 1% or less) and a large-scale irrigation and drainage network [5,7].
The Mediterranean climate, characterized by warm and rainy in the winter season, whereas
dry and hot in the summer season, prevails utterly in the LSP and, in turn, in the study
area. The average annual precipitation of the basin is approximately 650 mm [5]. In the LSP
of Turkiye, there is a very remarkable difference in temperature and evaporation values in
the irrigation season, i.e., in July and August in particular, compared to those in the winter
season, i.e., in December, January, and February [5,7]. As reported by Cetin et al. [7], due to
meteorological and geographical factors, the definition of the water year, i.e., hydrological
year, varies from region to region. It has been defined as the period, with a length of 365
days, between 1 October of one year and 30 September of the next, as late September to
early October is the time for many drainage areas or catchments in Turkiye to have the
lowest stream flows and consistent groundwater levels.

2.2. Remote Sensing Data Used
2.2.1. Landsat Satellite Imagery

To run the METRIC model and for the actual evapotranspiration (ETa) estimations,
a total of 38 clear-sky Landsat satellite images were downloaded from the USGS website
(http://earthexplorer.usgs.gov, accessed on 16 February 2023) (path 175, row 34) and used
in this research (Table 1). These images are Landsat 7, Landsat 8, and Landsat 9 with 30 m
by 30 m spatial resolution. General characteristics of the Landsat satellite images are given
in Table 1. The “Environment for Visualizing Images (ENVIs 5.3)” software program was
applied to perform a cloud mask for one satellite image on 1 May 2022, i.e., DOY 121, of
grayscale fill, as shown in Table 1. Scan Lines Error for Landsat 7 ETM+ was corrected
and/or the gaps were filled before using this data through the implementation of Quantum
Geographic Information System (QGIS 3.24.3) and Landsat toolbox by ArcGIS 10.4.1.

http://earthexplorer.usgs.gov
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Figure 1. The study area is located in the southeastern Mediterranean region of Turkiye. Dotted
lines, red and black arrows represent the drainage canals, and water flow directions, respectively.
Meteorological stations are located at L8 and Cotlu. Irrigation water is diverted from L6 and L9
locations into the AID; L2 and L11 stand for drainage water inputs and L4 is the drainage outlet of
the catchment.

Table 1. Availability of Landsat 7, Landsat 8, and Landsat 9 scene information in the 2021 and 2022
water years: names of scenes, acquisition dates, and overpass time.

Image Day of the Year
(DOY) Landsat Scene-ID Satellite Type Cloud Cover (%) Acquisition Dates Overpass Local

Time (AM)

1 260 LC81750342020260LGN00 Landsat 8 1 16 September 2020 11:15:56.5028510

2 300 LE71750342020300SG100 Landsat 7 8 26 October 2020 10:38:56.1154274

3 316 LE71750342020316NPA00 Landsat 7 3 11 November 2020 10:37:51.0228172

4 364 LE71750342020364NPA00 Landsat 7 1 29 December 2020 10:34:21.8153233

5 22 LC81750342021022LGN00 Landsat 8 9 22 January 2021 11:15:49.9861710

6 54 LC81750342021054LGN00 Landsat 8 7 23 February 2021 11:15:43.2139690

7 79 LE71750342021078SG100 Landsat 7 5 19 March 2020 10:28:24.8443048

8 118 LC81750342021118LGN00 Landsat 8 8 28 April 2021 11:15:15.8809360

9 134 LC81750342021134LGN00 Landsat 8 1 14 May 2021 11:15:15.9098560

10 158 LE71750342021158SG100 Landsat 7 1 7 June 2021 10:21:43.6865663

11 182 LC81750342021182LGN00 Landsat 8 4 1 July 2021 11:15:35.1871370

12 190 LE71750342021190SG100 Landsat 7 3 9 July 2021 10:19:04.5579664

13 198 LC81750342021198LGN00 Landsat 8 5 17 July 2021 11:15:36.9021800

14 214 LC81750342021214LGN00 Landsat 8 0 2 August 2021 11:15:45.3409259

15 230 LC81750342021230LGN00 Landsat 8 2 18 August 2021 11:15:51.0643500

16 262 LC81750342021262LGN00 Landsat 8 9 19 September 2021 11:15:59.0216650

17 278 LC81750342021278LGN00 Landsat 8 1 5 October 2021 11:16:04.4435930

18 294 LC81750342021294LGN00 Landsat8 0 21 October 2021 11:16:07.4309270

19 326 LC81750342021326LGN00 Landsat 8 6 22 November 2021 11:16:02.0432969

20 358 LC81750342021358LGN00 Landsat 8 4 24 December 2021 11:15:59.4307040

21 001 LE71750342022001NPA00 Landsat 7 13 1 January 2022 10:03:01.7753300

22 017 LE71750342022017NPA00 Landsat 7 3 17 January 2022 10:01:30.1854341

23 049 LE71750342022049NPA00 Landsat 7 6 18 February 2022 09:58:18.1083401

24 081 LE71750342022081NPA00 Landsat 7 19 22 March 2022 09:55:10.7155745

25 089 LC81750342022089LGN00 Landsat 8 7 30 March 2022 11:15:25.6965150

26 113 LC91750342022113LGN00 Landsat 9 2 23 April 2022 11:15:26.7327310

27 121 LC81750342022121LGN00 Landsat 8 60 1 May 2022 11:15:28.7371250
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Table 1. Cont.

Image Day of the Year
(DOY) Landsat Scene-ID Satellite Type Cloud Cover (%) Acquisition Dates Overpass Local

Time (AM)

28 140 LE71750342022140SG100 Landsat 7 12 20 May 2022 09:50:56.6332014

29 157 LE71750342022157SG100 Landsat 7 23 6 June 2022 09:50:06.2292853

30 169 LC81750342022169LGN00 Landsat 8 1 18 June 2022 11:15:53.3072380

31 186 LE71750342022186SG100 Landsat 7 0 5 July 2022 09:42:29.8002719

32 201 LC81750342022201LGN00 Landsat 8 1 20 July 2022 11:15:58.6410700

33 209 LC91750342022209LGN00 Landsat 9 0 28 July 2022 11:15:42.4933480

34 220 LE71750342022220SG100 Landsat 7 29 8 August 2022 09:39:50.3921524

35 237 LE71750342022237SG100 Landsat 7 9 25 August 2022 09:38:18.9640686

36 249 LC81750342022249LGN00 Landsat 8 8 06 September 2022 11:16:15.2109079

37 271 LE71750342022271SG100 Landsat 7 3 28 September 2022 09:34:51.9536731

38 297 LC81750342022297LGN00 Landsat 8 0 24 October 2022 11:16:18.0041120

2.2.2. Moderate Resolution Imaging Spectroradiometer (MODIS) Products

Two parameters of MODIS data, i.e., normalized difference vegetation index (NDVI)
and land surface temperature (LST) were downloaded by the Google Earth engine (‘MODIS/
MOD09GA_006_NDVI’; ‘MODIS/061/MOD11A1_LST’) to apply the artificial neural net-
work (ANN) for estimating daily ETa values for the entire study area. Typical characteristics
of MODIS data are illustrated in Table 2 along with the spatial and temporal resolutions.

Table 2. MODIS data used in the research area.

MODIS Standard Products Parameter Spatial Resolution Temporal Resolution

MOD09GA-Terra NDVI 500 m by 500 m Daily

MOD11A1.061-Terra LST 1000 m by 1000 m Daily

Daily NDVI and LST datasets were used as casual variables in the modeling practice
since NDVI and LST by Landsat or Sentinel-2 are not available daily [5,7] due to the revisit
period of the satellites. However, NDVI and LST by MODIS products are available as daily
time series even though they have low spatial resolutions. Furthermore, these indices by
MODIS data can be used to monitor daily crop development, surface temperature, and
spatial distribution over the study area if compared to other remote sensing data which
revisit the time of satellite every 3–5 days for Sentinel-2 and 8–16 days for Landsat. These
remote sensing data, however, require an interpolation process to fill the gaps of NDVI and
LST between two overpass satellite dates to obtain a daily dataset.

2.3. In Situ Meteorological Observations

In this research, hourly and daily climatic variables (minimum and maximum tem-
peratures (Tmin, Tmax), wind speed (U), solar radiation (Rs), minimum and maximum
relative humidity values (RHmin and RHmax), and precipitation (P)) acquired from two
meteorological stations, i.e., L8 and Cotlu meteorological stations established in the AID
(Figure 1), were used in calculations. Before using any climatic data observed in L8 and
Cotlu meteorological stations, quality controls, i.e., QC (gaps in the data, outliers, constant
values, jumps, etc.) were checked thoroughly. No consistency was found in the meteorolog-
ical datasets. Climatic datasets cover from 16 September 2020 to 24 October 2022, i.e., 769
daily datasets.

2.4. Reference Evapotranspiration (ETo) Estimation

Reference evapotranspiration (ETo in mm day−1 unit) is defined and computed using
the standard FAO–Penman–Monteith approach given by Allen et al. [2]. Equation (1) was
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developed for short grass; the albedo was 0.23, whilst the aerodynamic resistance was
70 s m−1.

ETo =
0.408∆(Rn − G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(1)

where ETo is the reference evapotranspiration (mm day−1), Rn is the net radiation at the
crop surface (MJ m−2 day−1), G is the soil heat flux density (MJ m−2 day−1), T is the mean
daily air temperature at 2 m height (◦C), u2 is the wind speed at 2 m height (m s−1), es is
the saturation vapor pressure (kPa), ea is the actual vapor pressure (kPa), es − ea is the
saturation vapor pressure deficit (kPa), ∆ slope (kPa ◦C−1) is the vapor pressure curve, and
γ the psychrometric constant (kPa ◦C−1).

2.5. METRIC Model

The METRIC model was applied to estimate the following: (a) surface energy balance
components (SEBs), i.e., latent heat (LE), net radiation (Rn), sensible heat (H), and soil heat
flux (G) in Equation (2), (b) ETa for each pixel, and the whole study area by using Landsat
satellite imagery and meteorological stations, i.e., L8 and Cotlu at the time of satellite
overpass, primarily based on Allen et al. [10,11] through R-METRIC model using a water
package in the R program [25] and LandMOD ET mapper-MATLAB [26].

LE = Rn − G − H (2)

All the energy fluxes are in the unit of watt per meter square (i.e., W m−2). Further
information on the METRIC model and its associated equations, i.e., step-by-step ETa
calculation, as well as the FAO–Penman–Monteith approach, is given by Allen et al. [10].

2.6. Developing an ANN Model for Actual Evapotranspiration (ETa) Estimation

Artificial Neural Networks (ANNs) are mathematical models that resemble biological
neural networks. ANNs can learn from examples and adapt solutions over time by recog-
nizing patterns in data, along with rapidly processing information [27]. In essence, ANNs
are tools to mimic the underlying likely relationship between input and output variables in
the hand adequately.

Water resources and hydrological processes are often complex, multivariable, and
nonlinear. ANNs exhibit a flexible structure to address these complex relationships, making
them capable of learning and integrating complex relationships by using various input
data. Therefore, in recent times, ANNs have been increasingly utilized in hydrology and
water resource management. ANNs might be considered flexible modeling tools and can
theoretically model any type of relationship with good accuracy. With ANNs, there is
no need to make specific assumptions about the models and the underlying probability
distributions or relationships; the underlying relationship is determined solely through
data mining procedures.

This data-driven approach is one of the most significant advantages of ANNs in
solving various complex real-world prediction problems. ANNs have been used in a whole
range of hydrological applications, including reference evapotranspiration estimations
and predicting groundwater levels [28,29], flood forecasting simulations [30], rainfall and
streamflow modeling [31], and aquifer parameter estimations [32].

Models for calculating ETo and plant water requirements involve a myriad of variables
such as meteorological data, soil properties, plant type, and climate conditions. ANNs
have a significant advantage in handling these complexities due to their ability to use
a large amount of data. In particular, when trained with large datasets, these networks
have a better capacity to learn complex relationships and patterns for making logical
predictions. Predicting future changes in water resources and plant water requirements due
to climate change is becoming increasingly important. In ET modeling, machine learning
algorithms are being used more and more as alternatives to traditional methods [33,34].
These algorithms can be used as alternatives to traditional equations for ETc and/or ETo



Sustainability 2024, 16, 2481 7 of 17

predictions. They also provide insights into how ET behaves over time and space [35,36].
ANNs can be trained and adapted to be used in different geographical areas, allowing for
customized predictions based on different plant species and climatic conditions.

Despite their mentioned advantages, ANNs have some important disadvantages.
They require a significant amount of data to learn complex relationships and to determine
the optimal network architecture [37]. To create the network structure, the number of
hidden layers in the model and the optimal number of neurons in each layer need to be
determined. In most of the ANN studies in the literature, a trial-and-error procedure is
used to determine the network architecture, which is a time-consuming process. According
to Maier and Dandy [38], in most water resources problems, using a single hidden layer is
sufficient. Therefore, in this study, a single hidden layer is used in ETa estimation.

To determine the optimal number of neurons in the hidden layer, 80% of the data was
used for training the network, and 20% was used for testing. This process was repeated for
100 different randomly selected training and testing datasets, and the Mean Squared Error
(MSE) value was calculated. This process was repeated in a loop from 1 to the maximum
number of neurons, which is 30 in this study, and the number of neurons that yielded the
minimum MSE value was selected as the optimal number of neurons, and the analyses
were conducted accordingly [37]. Figure 2 illustrates the typical structure of multi-layer
ANNs. The input layer consists of 4 nodes, 2 parameters acquired by the two meteorological
stations (Figure 1) installed in the study area, and two variables downloaded from MODIS
satellite data. In situ climatic observations are solar radiation (Rs), extraterrestrial radiation
(Ra), wind speed (u2) at 2 m height, and the reference evapotranspiration values, i.e.,
ETo, were calculated by the standard FAO–Penman–Monteith approach through following
Allen et al. [2]. The connections between the input layers and 30 hidden layers take different
weights and are trained depending on the required output of daily ETa.
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3. Results
3.1. Implementation of the ANN Model

The ANN model has been applied to two different scenarios. In the training of Scenario
I, data from only the 38 days of satellite observations listed in Table 1 were used, while
the data, which were acquired from the interpolation procedure by Allen et al. [10] from
the other days were used as test data. In Scenario II, 80% of the total dataset was used for
training, and the remaining 20% was used for testing.

For both scenarios, firstly, the network architecture was created, and the change in the
MSE value concerning the number of neurons is presented in Figure 3a for Scenario I and
Figure 3b for Scenario II. As seen in Figure 3, the optimum number of neurons obtained for
Scenario I and II is 5 and 15, respectively.
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3.1.1. Scenario I

The developed model was applied to Scenario I, and the model results are summarized
in Figure 4. As seen in Figure 4, even though the data used in the model training accounts
for approximately 5% (N = 38) of the total data, the R-squared value is 0.7547 for the test
data (N = 731) and 0.7561 for the total data (N = 769). This indicates that the performance
of the developed model is quite good concerning the learning stage and prediction ability;
however, it also shows an increased error rate in predicting high ETa values. This result is a
natural consequence of the need for a substantial amount of data for ANN models to learn
complex relationships in complex problems, as mentioned above. In the following section,
this situation will be evaluated in more detail.

Sustainability 2024, 16, x FOR PEER REVIEW 10 of 19 
 

 

 

 

Figure 4. Model results for Scenario I. Figure 4. Model results for Scenario I.



Sustainability 2024, 16, 2481 10 of 17

3.1.2. Scenario II

Figure 5 shows the model results of the developed model for Scenario II. As seen in
Figure 5, the number of data points used in the model training is 615, which constitutes 80%
of the total data. During the training phase, the R-squared value is 0.8496, while R-squared
values are 0.8055 and 0.8411 for the test data and total data, respectively. These results
indicate that the developed model has a very good learning and prediction ability.
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4. Discussion

The primary objective of this study was to develop a methodology for estimating
daily ETa values for large irrigation areas based on artificial neural networks using some
parameters of MODIS data and in situ climatic data with ETo values. It is important to
highlight that ETo estimations will be an easy task, provided that in situ climatic data
required by the standard FAO–Penman–Monteith approach [2,39–44] are available at the
study site. In our study, there are two meteorological stations for collecting data. However,
the problem is that Landsat satellite images are available with a 16-day repeat cycle.
Therefore, ETa values for the days of no satellite overpass need to be estimated by using an
appropriate methodology such as ANNs. To this end, the developed methodology consists
of two main parts. In the first stage of the methodology, daily ETo values calculated using
the standard FAO–Penman–Monteith approach detailed in Allen et al. [2] are combined
with MODIS data to create the input data for the proposed ANN model. These values
are based on observations from a meteorological station established in the study area.
Additionally, observed ETa values are calculated based on Allen et al. [10,11] using L8 and
Cotlu meteorological station data for each pixel at satellite overpass times and other times.
This completes the dataset required for the training and testing stages of the developed
ANN model.

After completing the dataset, calculations are performed in two different scenarios.
In Scenario I, only data acquired for the days with satellite imagery are used for model
training, while a randomly selected 80% portion of the total dataset is used in Scenario II. It
should be noted that the input and output layers of both scenarios are the same, as shown
in Figure 2. As can be seen in Figure 3, the optimal number of neurons in the hidden layer is
determined to be 5 for Scenario I and 15 for Scenario II. After determining the appropriate
network architecture, detailed analyses were conducted for both scenarios.

In the model training, the goal was to minimize the MSE values as the objective
function, and the results obtained for training, testing, and the entire datasets were provided
graphically in the previous section. In the relevant graphs, the number of data points used,
the R2 value, and the regression relationships between predicted values and observed
values are presented.

As seen in Figure 4, in Scenario I, even though approximately 5% of the total dataset
was used for model training, high R2 values of 0.7855 (N = 38), 0.7547 (N = 731), and
0.7561 (N = 769) were achieved for training, testing, and the entire datasets, respectively.
However, it can be observed from the relevant graphs that despite the overall high model
performance, the model’s prediction ability in Scenario I decreases unexpectedly if the ETa
values are approximately 4 mm day−1 or greater, indicating conspicuous underestimates
of high actual evapotranspiration rates. The underestimation behavior of the model in
Scenario I indicates evidently that the model fails to mimic the actual evapotranspiration
of 4 mm day−1 or greater. This behavior can be seen more clearly in Figure 6, where the
model results are presented graphically for both scenarios in comparison with ETa values
calculated based on Allen et al. [10,11,42,43]. As clearly visible in the respective Figure,
although the general trend is captured in both scenarios, it is noteworthy that the error
rate in predicting values, especially those greater than four, increases in Scenario I. It is
believed that this is due to the low number of satellite observations (only 38 daily data with
very few extreme values) available for training the ANN model. Scatter plots provided in
Figure 5 for Scenario II, as well as the temporal ETa values presented in Figure 6, support
our postulate. Most studies in the literature also support this argument by allocating 80% of
the total dataset for training and the remaining 20% for testing when training ANN models.

However, there are some challenges encountered in both the provision of Landsat
satellite data and the implementation of the procedure suggested by Allen et al. [10]. These
issues of Landsat satellite data belong to the availability of satellite images every 8–16 days,
and cloud coverage, especially for the rainy seasons. Furthermore, using the METRIC
model, as suggested by Allen and other scholars, requires well-trained experts with a
strong background in handling RS data and choosing the anchor pixels, i.e., hot and cold
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pixels. Therefore, in order to determine the optimal dataset to be used in training the ANN
model, ratios of different training data used to the total data (TRNRatio) were employed,
and the change in model performance is presented in Figure 7. As seen clearly from
Figure 7, the optimal TRNRatio value was 0.20. Although the model performance, i.e.,
R-squared values for training, testing, and all datasets, increases, to some extent, up to
this value, there is a significant decrease in test performance for larger TRNRatio values,
indicating overfitting. Consequently, the model becomes more and more dependent on the
data, which is considered a weakness of the ANN models. This situation can be observed
from the scatter plots provided in Figure 8. After evaluating the analysis results given in
Figures 7 and 8, it can be concluded that a TRNRatio value of 0.10 can yield ETa values
that are quite satisfactory from a practical perspective without increasing the number of
satellite data.
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In this study, ETo by FAO–Penman–Monteith method was calculated using the meteo-
rological parameters from two ground-based observations (L8 and Cotlu meteorological
stations shown in Figure 1) established in the AID. In addition, the estimated ETa by the
ANN model for two scenarios was validated to the reference ET by using a simple linear
regression approach (ETa = a + b*ETo) over the AID. As can be seen in Figure 8, the results
demonstrate that the R2 value is 0.9161 for Scenario I if we use the whole dataset (N = 769)
for training. On the other hand, in Scenario II with TRNRatios of 0.05 and 0.10, R2 values
reach 0.9289 and 0.9414, respectively. In the Cukurova region, where our study is based,
several studies have been conducted to estimate ETa by direct methods [7]. For example,
Cetin et al. [7] compared the estimated ETa-METRIC of the second crop of soybean to the
ETa-lysimeter. They concluded that the ETa-METRIC values were more closely aligned
with the lysimeter observations. Additionally, as indicated by the findings reported by
Cetin et al. [7], there is a good agreement between ETc values for the crops of citrus, wheat,
potato, lettuce, first-crop corn, and peanut, as well as second-crop soybean, and ETa by
the MERIC model during 2021 water year. All these could lead us to conclude that the
estimated ETa results by the METRIC model, as well as the proposed ANN model, were
consistent with the ETa values by direct and indirect techniques in the same study region
in both this research and prior studies.

5. Conclusions

This study presents a novel approach that allows daily ETa estimation using a new
ANN model in a large-scale irrigation scheme using limited climatic data and MODIS satel-
lite data. The study demonstrated that the daily ETa predicted values are comparable with
the ETa which is estimated by the RS-based surface energy balance models. Furthermore,
this methodology is the first attempt to generate a new model using the ANN algorithm as
an alternative to the existing methods of ETa estimation in a large-scale irrigation district
in the Eastern Mediterranean Region of Turkiye. The daily ETa estimation results of the
ANN model in the two implemented scenarios showed a reasonable degree of agreement
with ETa values computed by the METRIC model. Thus, this work can be considered a
significant contribution to obtaining reliable ETa results without the need for lengthy and
labor-intensive processes for complex equations, as in RS-based surface energy balance
models. This study revealed that the proposed ANN model is a powerful tool for estimating
daily ETa values in large-scale irrigation schemes using limited meteorological observations
and some of the parameters of remote sensing in arid and semi-arid regions, as well as in
different climate regions and zones of the world. Moreover, the proposed methodology in
this research may help water authorities, practitioners, and end users estimate actual evap-
otranspiration for sustainable water management, especially in Mediterranean countries,
where freshwater resources are scarce in an increasingly globalized world.
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