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Abstract: Many countries around the world are rapidly advancing sustainable development (SD)
through the exploitation of clean energy sources such as solar and wind energy, which are becoming
the core of the sustainable energy transition. In recent years, the continuous advancement of Earth
system models (ESMs) has facilitated numerous studies utilizing them to predict long-term and
large-scale meteorological elements, consequently enabling forecasts of wind and solar energy. These
forecasts provide critical guidance for formulating national renewable energy policies. Nevertheless,
the current literature on ESMs predicting wind and solar energy lacks sufficient integration. Hence,
to comprehend the focal points and future research prospects, we conducted this systematic review,
employing four academic search tools to comprehensively analyze the relevant literature from the
past five years. We summarized the general analytical process and compared the content and
conclusions of the literature. The study reveals that future photovoltaic (PV) potential for electricity
generation may increase in certain regions but decrease in others, while the global potential for
concentrated solar power (CSP) may diminish, influenced by diverse factors and displaying significant
regional disparities. In addition, wind resource trends vary in different regions, and forecasts exhibit
considerable uncertainty. Therefore, many studies have corrected wind speeds prior to predicting
wind energy. Subsequent research endeavors should concentrate on optimizing ESMs, investigating
the impacts of technological innovation, and enhancing the prediction and analysis of extreme
weather events.

Keywords: earth system model; projection; solar energy; wind energy

1. Introduction

The Millennium Development Goals (MDGs) constituted a set of time-bound targets
and indicators established by the United Nations in 2000 to steer global endeavors in
eradicating poverty, hunger, and other issues from 2000 to 2015. In 2015, upon the expi-
ration of the MDGs, the United Nations proposed the Sustainable Development Goals
(SDGs), comprising 17 new development objectives aimed at comprehensively addressing
challenges in SD across society, the economy, and the environment from 2015 to 2030. This
global initiative aims to advance SD, reflecting its prominent status as a key global concern.
To achieve these goals, countries worldwide have implemented relevant policies tailored to
their national contexts. In September 2020, China set the goal of reaching “Carbon Peak
(CP)” by 2030 and achieving “Carbon Neutrality (CN)” by 2060. CP refers to the stage
where carbon dioxide emissions reach their peak and begin to decrease, while CN refers to
offsetting or balancing carbon emissions through various measures to achieve a net-zero
carbon emissions status. The CP goal and the CN goal are collectively referred to as the
“Dual Carbon (DN)” goal, which requires accelerating carbon reduction, adjusting energy
and industrial structures, vigorously developing clean energy, and gradually replacing
traditional energy sources. Similarly, the United States is endeavoring to decrease reliance
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on fossil fuels by promoting the development of clean energy. The Reduce Inflation Act [1],
introduced in 2022, serves as an effective policy supporting the transition to sustainable
energy. In Europe, the European Union (EU) announced the “REPowerEU” plan, a col-
lective initiative by EU member states aimed at promoting renewable energy usage and
diminishing dependence on fossil fuels, with the intention of facilitating energy transition
and ending reliance on fossil fuels by 2030 [2]. These recent policy initiatives underscore
the global emphasis on energy transition and the development of clean energy. Among
various clean energies, wind and solar energy have emerged as pivotal options owing to
their mature technologies and lower generation costs. As shown in Figure 1, the number of
installed wind and solar power plants has grown globally over the past decade [3]. Hence,
studying the future utilization of these clean energy sources and predicting changes in
energy potential is of significant importance.
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Considering the significance of forecasting future changes in clean energy sources,
researchers have employed various methods in recent years. Various algorithms have
been utilized for short-term wind energy potential and power generation prediction [4–8],
demonstrating high precision and accuracy. Additionally, methods such as the Weibull
and Rayleigh distribution functions [9–12], nonparametric copula models [13,14], basic
statistical prediction methods like the fast filtering algorithm and variational modal de-
composition [15], the autoregressive error-compensated hybrid wind power prediction
model [16], and multi-model hybrid methods [17–19] are commonly employed for wind
speed and wind energy prediction. For predicting solar energy, methods based on Geo-
graphic Information System (GIS) technology [13] and empirical models utilizing insolation
data [20] are prevalent. However, most of these methods are limited to short-term forecasts,
typically spanning a few hours, owing to technical constraints.

To address global climate change and support the aforementioned goals and policies,
long-term energy use projections are imperative for timely policy adjustments. Near-
surface wind speed and surface shortwave radiation significantly influence the potential
for solar and wind energy. Therefore, the accurate prediction of wind speed and near-
surface shortwave radiation is crucial for exploring future changes in wind and solar
potential. In climate change research, meteorological elements such as near-surface wind
speed and shortwave radiation are primarily simulated and predicted using Earth system
models (ESMs).

ESMs serve as mathematical tools for simulating and describing interactions among
various components of the Earth’s climate system, encompassing the atmosphere, oceans,
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land, and ice, across past, present, and future climate scenarios [21,22]. ESMs are com-
monly categorized into global climate models (GCMs) and regional climate models (RCMs),
differing in the scale of analysis. GCMs simulate climate change scenarios globally but
are hindered by low resolution and limited computational resources, leading to inaccu-
racies in simulation results, particularly in atmospheric processes such as clouds and
convection [23,24]. Conversely, RCMs provide higher resolution and more precise climatic
information by detailing topography, land, and sea features [25,26]. In recent years, ESMs
have undergone refinement, yielding several excellent models. To assess GCM perfor-
mance, the World Climate Research Program (WGCM) conducted six model comparison
programs, including the ongoing Coupled Model Intercomparison Project Phase 6 (CMIP6),
proposed in 2013 [27]. CMIP6 builds upon previous comparison programs to enhance
understanding of climate variability and advance climate model simulations, assessments,
and attributions of climate change [28]. Data from all participating models in CMIP6 are
openly available for global scientific research, including studies on renewable energy. How-
ever, the low resolution of GCMs poses challenges for targeted responses to climate change
and adaptation strategies, demanding more precise predictions at regional levels. Down-
scaling techniques bridge this gap by converting coarse GCM data into high-resolution
regional data [29,30]. Currently, three prevalent downscaling methods are commonly
utilized: dynamical downscaling, statistical downscaling, and combined dynamical and
statistical downscaling methods [31–33]. The most widely used downscaled dataset is
the Coordinated Regional Downscaling Experiment (CORDEX) dataset. The utilization of
ESM outputs for assessing renewable energy potential is gaining traction, supported by
ongoing ESM advancements, international programs (e.g., CMIP and the CORDEX) for
model improvements, and advances in downscaling techniques.

To identify current research focuses and guide future studies, this paper systematically
reviews and synthesizes research conducted over the past five years on wind and solar
energy prediction utilizing ESMs. It outlines the methodologies employed, analyzes the
results, identifies commonalities and differences in predictive outcomes, and explores the
underlying reasons behind these similarities and disparities. The structure of this article
is as follows: Section 2 presents the sources of the articles studied. Section 3 organizes
the analysis process of the literature. Section 4 analyzes and organizes the content of the
literature, explains the reasons for the errors in model predictions, and proposes future
research prospects. Finally, in Section 5, a summary of this paper is provided.

2. Materials and Methods

The objective of this article is to present an updated overview of solar and wind
energy projections based on results derived from ESMs. The review will encompass
articles that provide projections directly derived from various ESM outputs, as well as
those utilizing data from the CMIP or CORDEX programs. Literature acquisition involved
utilizing four primary academic search tools: Web of Science, Google Scholar, ScienceDirect,
and Scopus. Searches were conducted using a combination of keywords such as “wind
energy”, “wind potential”, “wind generation”, “solar energy”, “solar potential”, “solar
generation”, “photovoltaic”, “concentrated solar power”, “CMIP”, “CORDEX”, and “earth
system model”. Preliminary screening was conducted to ensure relevance to the review’s
topic, with the final inclusion criteria as follows:

1. Simulation results from ESMs were used.
2. Analysis of future projections related to solar and wind energy. Previous articles

employed representative concentration pathways (RCPs) for projection scenarios,
while recent articles utilize shared socioeconomic pathways (SSPs). RCPs are based
on varying levels of radiative forcing due to anthropogenic greenhouse gas and
aerosol concentrations, categorized into four levels: RCP2.6, RCP4.5, RCP6.0, and
RCP8.5, with RCP8.5 representing the highest emission scenario [34]. SSPs, on the
other hand, are based on the current actual situation of countries and regions, as
well as development plans to obtain specific socioeconomic development scenarios.
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SSP1 to SSP5 represent five representative scenarios, combined with RCPs to form the
RCP-SSP framework, with SSP585 representing a highly carbon-emitting scenario [35].

3. Publications between 2019 and 2023 were included. The start date of 2019 was chosen
to focus on recent studies and understand the latest research trends and priorities.

A total of 99 studies meeting these criteria were analyzed, and the specific list of
references is provided in Table 1. The number of papers has notably increased over the last
five years, indicating a rising trend in the use of ESMs for solar and wind energy forecasting.
Notably, there is a larger quantity of the literature on wind energy prediction compared to
that on solar energy, potentially due to the higher uncertainty associated with wind energy
prediction. This underscores the necessity for further research to enhance the accuracy of
wind energy forecasting and the reliability of wind energy generation systems.

Table 1. Studies meeting the criteria and being analyzed.

Study Geographic Area Model Data Source

Solar resource

World

[36] World CMIP6
[37] World CMIP5
[38] World CMIP5 And CMIP6
[39] World CMIP6
[40] World CMIP5
[41] World CMIP5

Asia

[42] China CMIP6
[43] China CORDEX
[44] China CMIP6
[45] China CMIP6
[46] China CMIP6
[47] China CMIP5
[48] China CMIP6
[49] Fukushima, Japan Model coupled crop–meteorological database Ver.2
[50] Iraq Community Climate System Model (CCSM)

Europe

[51] Europe CORDEX
[52] Europe CMIP5
[53] Europe CMIP6
[54] Greece Weather Research and Forecasting Model (WRF)
[55] Italy CORDEX
[56] French CORDEX
[57] the Canary Islands, Spain CMIP5

Africa

[58] Africa CORDEX
[59] Africa CORDEX
[60] West Africa CMIP6
[61] West Africa CORDEX
[62] Zambia CORDEX

South America

[63] South America CORDEX

[64] Southwestern Colombia CORDEX
[65] Brazil CMIP6

[66] the Atacama Desert,
Chile and Peru CORDEX
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Table 1. Cont.

Study Geographic Area Model Data Source

Solar resource

North America

[67] North America CMIP6

Oceania

[68] Australia
New South Wales/Australian Capital Territory

Regional Climate Modelling regional projections
(NARCliM)

[69] Australia CORDEX

Wind resource

World

[70] world Community Earth System Model (CESM)
[71] Northern Hemisphere CMIP5 and CMIP6

Asia

[72] East Asia CORDEX
[73] South Asia CORDEX
[74] India CORDEX
[75] China CORDEX
[76] China CORDEX
[77] China MPI-ESM-LR, CNRM-CM5, CSIRO-Mk-3.6.0

[78] China CORDEX, Providing Regional Climates for Impacts
Studies (PRECIS)

[79] South China Sea regional climate model, Version 4.7 (RegCM4.7)
[80] Hong Kong, China CMIP6
[81] Vietnam’s tropical area RegCM4

Europe

[82] Europe CMIP6
[83] Europe CORDEX
[84] Northern Europe CMIP6
[85] Ireland CMIP6
[86] Italy CORDEX
[87] Ireland CORDEX
[88] Germany CORDEX
[89] Greece WRF

[90] Greece Rossby Centre Regional Atmospheric Model, Version 4
(RCA4)

[91] Spain CORDEX
[92] Portugal CORDEX
[93] Iberian Peninsula, Spain and Portugal CORDEX

[94] Republic of Serbia
Erdemli-Basin-Uni Oslo–Physical Oceanography

Model (EBU-POM), Nonhydrostatic Multiscale Model
on B-grid (NMMB)

[95] Lithuania MPI-ESM-LR, IPSL-CM5A-M

Africa

[96] Northwestern Africa CORDEX
[97] West Africa CMIP6
[98] West Africa CORDEX
[99] West Africa CORDEX

[100] Southwestern Africa CORDEX
[101] Zambia CORDEX
[102] Morocco CORDEX
[103] Egypt CMIP6
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Table 1. Cont.

Study Geographic Area Model Data Source

Solar resource

South America

[104] South America CMIP6
[105] Suriname CMIP5

North America

[106] North America CORDEX
[107] North America CMIP6

[108] North America Canadian Centre for Climate Modelling and Analysis
(CCCma)

[109] Canada WRF
[110] United States CORDEX
[111] Alaska’s Offshore Regions WRF

Others and seas

[112] Australasia and Southeast Asia CMIP6
[113] Arctic and Subarctic RCA4
[114] Caribbean CORDEX
[115] Black Sea RCA4
[116] Northwest Passage CMIP6
[117] Black Sea RCA4
[118] Baltic Sea RCA4
[119] North Sea RCA5
[120] Persian Gulf CORDEX
[121] North Sea and Irish Sea CORDEX

Solar and wind resource

[122] China WRF, RegCM4
[123] Europe CMIP5
[124] Europe CORDEX
[125] Portugal WRF
[126] Portugal CORDEX

[127] Iberian Peninsula,
Spain and Portugal CORDEX

[128] Africa RegCM4
[129] West Africa CORDEX
[130] Brazil CMIP5
[131] Texas, United States WRF, RegCM4
[132] Texas, United States WRF, RegCM4
[133] Latin America ISIMIP2
[134] Arab countries RegCM, ECHAM5-MPIQM

3. The Main Process of Literature Analysis

Forecasts of wind and solar energy typically involve two main aspects: potential
forecast and actual production forecast. The potential forecast involves assessing the
availability of wind and solar energy, while the actual production forecast pertains to
predicting electricity generation from these renewable sources. It is important to recognize
that an increase in energy potential in a region may not necessarily lead to a corresponding
increase in actual power generation if the installed capacity does not keep pace. Therefore,
forecasting changes in the proportion of renewable energy in power generation production
is crucial for formulating sustainable energy policies and plans. This necessitates forecasting
not only potential but also electricity production, accounting for installed capacity and
power generation technology development.

ESM outputs provide meteorological elements such as solar radiation, wind speed,
and air temperature, among others. The conversion from these meteorological elements
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to metrics of energy potential or power generation production for resource assessment
involves the following steps:

1. Bias correction of model results. Due to the limitations of model outputs, discrep-
ancies between model results and actual observations may occur. Therefore, some
studies perform bias correction on model results before making predictions to enhance
forecast accuracy.

2. Assessing the accuracy of model outputs or the corrected model results. Various
assessment indicators such as deviation, root-mean-square error, and other metrics are
employed using meteorological data from the model’s historical time series and actual
observational data or reanalysis data (e.g., ERA5, etc.) in the study area. Analyses are
conducted using various indicators to evaluate the quality of the model’s results and
enhance the credibility of the prediction outcomes.

3. Calculating energy potential indicators. For predicting solar energy potential, two
main types are considered: photovoltaic (PV) potential and concentrating solar power
(CSP) potential. Most of the literature utilizes the calculation method proposed by
Crook et al., 2011 [135], where solar radiation reaching the surface, surface wind speed,
and surface air temperature are considered for PV potential. For CSP potential, the
primary consideration is the capacity of parabolic trough collector (PTC) technology
for power generation, accounting for surface air temperature and solar radiation
reaching the surface. For predicting wind energy potential, a wind power density of
100 m is typically used since the hub height of commonly used turbines is around
100 m from the surface, with adjustments made based on turbine specifications in
the area.

4. Estimating power generation. Power generation can be calculated using tools like
the Global Solar Energy Estimator (GSEE) or the open-source PVLIB Python toolkit
for modeling PV energy systems [39,44,52,64,67,74]. Based on the capacity of power
generation units installed in the study area or commonly available installations on
the market and combined with assumptions such as fixed-tilt or single-axis tracking
and loss efficiency, the power generation output under corresponding meteorological
factor data is calculated [125,131,133]. Some of the literature characterizes power
generation using the capacity factor, reflecting the effective utilization of the installa-
tion [44,132,133].

The flowchart of the literature analysis process is shown in Figure 2. Different stud-
ies choose to predict potential or power generation based on their research purpose
and significance.
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4. Discussion
4.1. Forecasts of Solar and Wind Energy

According to the information listed in Table 1, the CMIP program is favored by the
majority of studies due to the datasets covering long time scales and various future climate
scenarios and variables. Additionally, the CORDEX program dataset is influential in
regional investigations because of its focus on regional climate simulations, offering data
with relatively high spatial resolution. Researchers often utilize RCMs such as the Weather
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Research and Forecasting (WRF) model to further refine their analyses. Notably, among
regional-scale studies, Africa appears as a focal point of extensive research, closely followed
by China and Europe.

4.1.1. Solar Energy
Future Changes in Solar Energy

From a global scale analysis, multiple GCMs resulting from CMIP5 and CMIP6 have
been predominantly utilized to forecast solar energy [36,40]. Notably, several studies
have focused on analyzing the worst-case scenario (RCP8.5 and SSP585). These studies
have found significant future increases in photovoltaic (PV) power generation potential in
regions such as Europe, northern South America, and Central China, while declines are
predominant in regions like North Africa, the Tibetan Plateau, South Asia, and northern
North America. However, South Africa exhibits an opposite trend, possibly due to the
better statistical significance and inter-model consistency of CMIP6 meteorological element
indicators [38]. In the case of CSP, a decrease is expected globally. Regarding power
generation, under the SSP585 scenario, electricity generation is projected to increase in
Europe, northern South America, and East Asia, in line with the changes in photovoltaic
potential. However, South Asia experiences a slight increase in photovoltaic potential [39].
For regions like Europe and Asia, where solar potential and power generation production
vary significantly, there is considerable disparity between different SSPs. Given the strong
correlation between solar energy and sunshine hours, seasonal analysis has been conducted
in numerous studies. Findings reveal that under different SSPs, the PV potential of South
Asia decreases during September–October–November (SON), while it rises in northern
South America and Europe, decreases in Europe during December–January–February (DJF),
decreases in Southern Africa during June–July–August (JJA), and does not vary significantly
across the globe during March–April–May (MAM) [36,39]. Additionally, climate change
may lead to decreased solar power output due to an increase in the frequency of extreme
weather [37]. Thus, the vulnerability of solar energy supply will continue to increase in the
future without intervention in fossil fuel development.

From a regional scale perspective, utilizing GCM-driven RCMs in EURO-CORDEX
reveals that the future PV potential in Europe will decrease. The inconsistency of this
change with the global-scale analysis may be due to the fact that the aerosol forcing in the
CORDEX simulation does not evolve over time, thus affecting the simulation performance
of variables such as solar radiation [51]. The choice of different RCMs can also have an
impact on projections, which may have a greater effect over time than the impact of long-
term climate change [122]. Thus, the simulation performance of the ESMs for the study area
must be taken into account when making projections. An analysis of South America using
CORDEX-CORE results indicates that solar PV potential predictions are almost the same as
those global-scale analyses, while the analysis of electricity production indicates that PV
production will not be significantly affected in most regions [63]. A detailed study of the
Chinese region also demonstrates that PV potential is growing in Central China [42,46,47].
Similarly, a regional study of Africa utilizing CORDEX-AFRICA data finds that the PV
potential of North Africa is decreasing in the future [58,59]. For CSP, fewer studies carried
out examinations from a regional scale perspective and will not be discussed here.

Factors Influencing Solar Energy

Factors affecting future changes in solar energy have been analyzed in several articles.
The pathways of various factors influencing solar energy can be referred to in Figure 3.
Surface solar radiation, near-surface air temperature, and wind speed are among the
most crucial factors impacting solar energy potential and power generation. Surface
solar radiation directly determines the amount of solar energy captured by solar panels,
while wind speed and near-surface air temperature affect solar energy by influencing the
performance of power generation equipment.



Sustainability 2024, 16, 3339 9 of 19
Sustainability 2024, 16, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 3. Factors affecting future changes in solar energy. 

4.1.2. Wind Energy 
Future Changes in Wind Energy 

With global climate change, there is an overall increasing trend in wind resources 
globally. However, when analyzed at a regional level, the impacts of climate change ex-
hibit geographical variations. Consequently, most of the surveyed literature conducts sim-
ulation analyses on specific areas, distinguishing wind energy prediction from solar en-
ergy prediction. Moreover, the installation of offshore wind farms worldwide offers nu-
merous advantages, including vast sea areas available for installation, higher potential 
power generation capacity compared to that of inland wind farms, and more stable wind 
speeds on coasts and shores. Consequently, the total installed capacity of both onshore 
and offshore wind power has continued to increase in recent years [110]. In the surveyed 
literature, studies on coastal and offshore wind resource prediction and assessment com-
prise the majority of research efforts in this field. 

In the Asian region, wind resources along the Black Sea coast are predicted to in-
crease in the future. Analysis of the coefficient of variation indicates that wind resources 
along the Black Sea coast will become more stable and less volatile in the future [115,117]. 
Several studies in China have been analyzed in detail, revealing a general decrease in wind 
resources across the country [76,78], with some exceptions. An increase may occur in the 
northern part of the South China Sea. However, predictions for southeastern China vary 
depending on the models used [78,122]. Similarly, a slight decrease in wind power has 
been found in the wind-rich Tibetan Plateau [75], while a study of the entirety of East Asia 
by Li, D. et al., 2020 [72], predicts an increase in wind resources in this region. Differences 
also exist in the analysis of wind resources in Vietnam. One study found that wind re-
sources in most areas of Vietnam will increase in the future [112], while another study 
indicated a decrease in wind resources in Vietnam�s tropical seas [81]. In Europe, the anal-
ysis of the entire European region shows that wind resources in Northern Europe and the 
Central Mediterranean decrease significantly under the SSP585 and SSP245 scenarios. 
Changes in wind energy resources in most other regions primarily depend on the selec-
tion of future scenarios. Under the highest emissions scenario (SSP585), Europe is fore-
casted to experience an overall reduction in wind resources [82]. Additionally, the capac-
ity factor exhibits a weak decreasing trend in the future [83]. A regional analysis of Europe 
reveals a significant weakening of wind resources in some regions, such as the Iberian 
Peninsula, Serbia, Ireland, and Italy [85–87,93,94], while some areas show an increasing 
trend, such as the Baltic Sea and the North Sea in Spain [91,118,119]. In the African region, 

Figure 3. Factors affecting future changes in solar energy.

Changes in solar radiation are primarily influenced by cloud cover and aerosol emis-
sions, so there are some studies directly investigating the effects of these factors on solar
energy [39,45,65]. Findings suggest that increased aerosols and cloud cover caused by
climate change will lead to a decrease in solar energy potential. Furthermore, climate
change will lead to an elevation in the frequency of both high temperatures and increased
cloud cover in the future. These changes will result in a reduction in photovoltaic power
generation in summer [37]. Some studies have shown that higher wind speeds can help in
the convective cooling of solar panels [39], generally boosting the efficiency of PV power
generation [50]. However, excessively high wind speeds may cause panel damage, leading
to decreased generation efficiency [136]. There are studies analyzed by Spearman’s rank
correlation coefficient revealing a negative correlation between wind speed and PV out-
put [122]. Regarding the effect of air temperature, high temperatures lead to a decrease
in the number of thermally excited electrons, reducing the open-circuit voltage, which
leads to a decrease in the efficiency of solar panels [42,55,61]. The rate of global warming is
amplified with increasing latitude and altitude [137], so high latitudes will be more sus-
ceptible to the impacts of rising temperatures on solar power generation. Simultaneously,
temperatures in low latitudes will become increasingly extreme in the future, resulting in
reduced photovoltaic power generation output [37]. Solar panels in urban areas will be
more susceptible to the adverse effects of temperature compared to those in rural areas
due to the urban heat island effect [42]. It is worth noting that as technology advances,
the influence of external factors on panel power generation efficiency diminishes. Thus,
considering revolutionary updates of panels aids in more accurately predicting the impact
of temperature and wind speed on solar power generation.

The contributions of these meteorological factors to the impact of solar energy vary
across different regions. In the archipelagos of Northwest Africa and South America, pho-
tovoltaic power generation is primarily influenced by increased solar irradiance [57,64],
whereas in West Africa, Australia, and China, it is mainly affected by changes in tempera-
ture [44,61,68]. Furthermore, as climate change leads to variations in all three factors—solar
radiation, wind speed, and temperature—in some areas, the increase in solar radiation may
be offset by rising temperatures, resulting in little to no net increase or even a decrease in
photovoltaic power generation [50,64,65]. Therefore, when considering the impact of meteo-
rological elements on the future distribution of solar energy, it is essential to comprehensively
assess the effects of multiple meteorological factors.

Additionally, the extent to which surface solar radiation can be received depends on
the tilt angle and orientation of the PV panels, so there are also several studies delving
into this factor [59]. Moreover, consideration must be given to both direct and diffuse
solar irradiance reaching the PV panels to accurately determine their ultimate conversion
efficiency. Studies have also explored the impact of snow on PV systems, particularly in
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high-latitude regions where snow accumulation can significantly affect system efficiency.
Climate change has been found to reduce snowfall losses from PV systems in certain
regions, highlighting the importance of understanding how changing climate patterns may
alter the performance of solar energy systems [67]. This research underscores the need
to account for various environmental factors, including snow cover, when assessing the
overall efficiency and effectiveness of solar panel installations.

4.1.2. Wind Energy
Future Changes in Wind Energy

With global climate change, there is an overall increasing trend in wind resources
globally. However, when analyzed at a regional level, the impacts of climate change exhibit
geographical variations. Consequently, most of the surveyed literature conducts simula-
tion analyses on specific areas, distinguishing wind energy prediction from solar energy
prediction. Moreover, the installation of offshore wind farms worldwide offers numerous
advantages, including vast sea areas available for installation, higher potential power gen-
eration capacity compared to that of inland wind farms, and more stable wind speeds on
coasts and shores. Consequently, the total installed capacity of both onshore and offshore
wind power has continued to increase in recent years [110]. In the surveyed literature,
studies on coastal and offshore wind resource prediction and assessment comprise the
majority of research efforts in this field.

In the Asian region, wind resources along the Black Sea coast are predicted to increase
in the future. Analysis of the coefficient of variation indicates that wind resources along
the Black Sea coast will become more stable and less volatile in the future [115,117]. Sev-
eral studies in China have been analyzed in detail, revealing a general decrease in wind
resources across the country [76,78], with some exceptions. An increase may occur in
the northern part of the South China Sea. However, predictions for southeastern China
vary depending on the models used [78,122]. Similarly, a slight decrease in wind power
has been found in the wind-rich Tibetan Plateau [75], while a study of the entirety of
East Asia by Li, D. et al., 2020 [72], predicts an increase in wind resources in this region.
Differences also exist in the analysis of wind resources in Vietnam. One study found that
wind resources in most areas of Vietnam will increase in the future [112], while another
study indicated a decrease in wind resources in Vietnam’s tropical seas [81]. In Europe, the
analysis of the entire European region shows that wind resources in Northern Europe and
the Central Mediterranean decrease significantly under the SSP585 and SSP245 scenarios.
Changes in wind energy resources in most other regions primarily depend on the selection
of future scenarios. Under the highest emissions scenario (SSP585), Europe is forecasted to
experience an overall reduction in wind resources [82]. Additionally, the capacity factor
exhibits a weak decreasing trend in the future [83]. A regional analysis of Europe reveals a
significant weakening of wind resources in some regions, such as the Iberian Peninsula,
Serbia, Ireland, and Italy [85–87,93,94], while some areas show an increasing trend, such as
the Baltic Sea and the North Sea in Spain [91,118,119]. In the African region, studies focus
on the West African region, where wind energy is expected to continue increasing in the
future, especially from June to August [97], and the magnitude of the increase will increase
according to the increased emission level [99], but there may be a pronounced downward
trend in the winter [98]. In the Americas region, the analysis of the entire South American
region reveals a significant increase in wind energy density in the future [104], but its
variability on hourly and monthly scales is high, potentially leading to increased volatility
in wind power output [133]. Similarly, an analysis of North America found that, like
Europe, there is no clear demarcation between areas of increase and decrease, with some
areas experiencing growth while others decline, and this trend varies across seasons [99].
For example, the west coast of the United States boasts abundant wind resources, while
the east coast will experience a decrease [106,110], and most areas in Canada will also see
a reduction [109]. Additionally, similarly to South America, an increase in variability is
expected in the future [82].
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The selection of models and future scenarios may result in inconsistent changes in
wind resource predictions in specific areas. Furthermore, model simulations may deviate,
resulting in diverse prediction outcomes.

The Variability of Wind Energy

Significant variations at the hourly temporal scale cause discontinuous changes in
wind resource prediction, resulting in notable instability in wind power generation. Con-
sequently, several studies have utilized the coefficient of variation to analyze variability
across different regions and temporal scales. In North America, influenced by temperate
cyclones, certain areas demonstrate greater variability compared to neighboring regions,
with the coefficient of variation potentially being positive or negative across diverse re-
gions [107]. Investigations in Australia and Southeast Asia reveal that while Australia’s
wind power remains relatively stable, significant differences in variability exist among
regions in Southeast Asia. Studies on the temporal variability of wind energy potential in
East Asia and Europe indicate that the interannual and intra-annual variability in most
regions of both continents will increase in the future, with the increase toward the end of
the century being more significant compared to the near term. However, the increase in
variability in the Nordic region is significant only under the SSP585 scenario [72,82,84]. Re-
search identifies differences in the temporal variability of wind resources among emission
scenarios, with higher emission scenarios leading to notably greater variability compared
to lower emission scenarios [84]. Overall, future variability in wind resources is expected
to increase. In analyzing the future wind energy variability in Egypt, it was found that the
interannual variability of wind power potential is highest in the Gulf of Suez region under
different future scenarios [103]. The variability of wind resources significantly impacts the
planning and investment costs of wind farms, underscoring the importance of studying
future changes in wind resource variability.

Bias Correction in Wind Energy Forecasting

In comparison to solar resource forecasts, the accuracy of wind resource predictions
relies heavily on the precision of wind speeds, which are more challenging to accurately
simulate in ESMs. The accuracy of ESMs’ output results largely depends on the spatial and
temporal resolution during the simulation process. The primary assessment index for wind
energy is wind power density, which is directly proportional to the cube of wind speed.
Therefore, even slight deviations in wind speed can significantly impact wind energy assess-
ments. Since wind speeds can vary significantly over small scales, such as near mountain
ranges [82], it is essential to model wind speeds with sufficiently fine resolution to achieve
better simulation results [138] and thus more accurately predict future wind resource
variability. Consequently, some of the literature will bias-correct wind speed before wind re-
source prediction. One widely employed bias correction method for future climate analysis
is quantile mapping (QM), which effectively reduces the bias of simulated wind speeds by
aligning them more closely with the wind speed distribution function of the validation data
(e.g., reanalysis data or observation data) [81,93,104,121]. However, this technique cannot
correct wind direction, and it has shown robustness in correcting wind speeds in some
areas [139,140]. Besides this technique, some literature has also employed other approaches
to correct and thereby enhance the accuracy of wind resource prediction. For instance, a
study utilizes the multivariate bias adjustment method [72]. Alternatively, to select the
ESMs with the best simulation in the study area, a multi-criteria decision-making method
is employed for screening and ranking. Subsequently, the simulated wind speed data are
processed using the Copula method to obtain enhanced predictions [85]. Additionally, the
model output results can be adjusted using the Global Wind Atlas (GWA2) [83].

4.2. Reasons for Model Prediction Errors

The simulation of RCMs relies on initial field and boundary conditions, which inher-
ently contain biases and uncertainties [141]. Consequently, RCMs may exhibit systematic



Sustainability 2024, 16, 3339 12 of 19

biases originating from the inherited biases of the driving fields [142]. Since models
cannot fully capture the complexities of the climate system in reality [81], simplifying
assumptions in the simulation of meteorological elements such as solar radiation, tempera-
ture, and wind speed can introduce biases in simulations of physical phenomena such as
clouds and precipitation, thereby affecting relevant meteorological elements. For instance,
changes in aerosols can influence ground-reaching meteorological elements through cloud
changes, subsequently affecting the radiation reaching the surface [143]. Some current
models lack comprehensive consideration of the radiative effects of aerosols, such as the
CORDEX simulation, which excludes the radiative impacts of both natural and anthro-
pogenic aerosols [127], potentially introducing bias into solar radiation predictions. The
nonlinear combination of these biases with unpredictable natural variability further ex-
acerbates the simulation results, leading to deviations from reality [144]. Moreover, the
coarse resolution of GCMs causes the model results to not be directly applicable at the
point scale [105], leading to significant analytical errors. For wind speed simulations, a
finer resolution of 2–10 km is needed to better characterize the details of wind variability
in mesoscale circulations such as sea breezes and mountain winds [138]. Most studies
indicate that increasing model resolution enhances the performance of model simulations,
but some studies show that an increase in resolution does not necessarily correlate with
a reduction in model bias [145]. Another study demonstrates that the effect of spatial
discretization may vary depending on model parameters and the spatial scale of the sim-
ulation [146]. Importantly, the systematic biases mentioned earlier cannot be mitigated
by increasing the resolution of ESMs [145]. Furthermore, running ESMs requires a large
amount of computational resources, which may also contribute to bias due to resource
limitations [93,147].

4.3. Future Research Prospects

Based on the research gaps and prospects outlined in the literature, we have identified
three main issues and proposed corresponding solutions, with the expectation that these
measures will enhance the accuracy of ESMs in predicting future wind and solar energy.

Several studies indicate the presence of errors in model simulations [99], leading to
biases in future predictions, particularly in the assessment of wind resources [82]. Models
exhibit significant discrepancies in simulating wind speeds. Given the reasons for the
simulation errors mentioned earlier, addressing this issue involves continuously optimiz-
ing the construction of climate models to enhance the accuracy of model outputs [38,61].
Additionally, countries need to construct wind and solar power plants and adjust renew-
able energy supply configurations based on local terrain and atmospheric conditions [102],
which require improvements in resolution to simulate small-scale variations. Increasing
spatial resolution aids in more accurately simulating atmospheric processes such as precip-
itation and cloud formation [122], thus improving the accuracy of meteorological element
simulations. Furthermore, assessing wind and solar energy resources in specific regions
can provide valuable references for the site selection of power plants and selection of wind
turbines [79,114]. Increasing temporal resolution facilitates planning optimal strategies and
studying supply demand balances on daily or even hourly scales.

Many current studies overlook advancements in solar energy generation technologies
when predicting future solar resources, primarily concentrating on the conversion efficiency
of monocrystalline silicon solar panels, the prevailing technology at present. However,
earlier research indicates that improving the efficiency of solar panels enhances photovoltaic
power generation [148]. Over the past decade, significant advancements have been made
in solar energy generation technologies and materials [149], with new materials exhibiting
different responses to external factors such as temperature. Similarly, there is a lack of
consideration for advancements in wind energy conversion technologies [82,105]. In recent
years, the power conversion capacity of offshore wind turbines has been continuously
increasing [78], and the hub heights of wind turbines have also been changing [100,150,151].
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Therefore, future research should consider advancements in conversion technologies to
more accurately predict future wind and solar resources.

According to the Intergovernmental Panel on Climate Change (IPCC) report, extreme
weather events resulting from climate change are expected to increase [152]. Several studies
have indicated that extreme high temperatures can lead to a decrease in the conversion
efficiency of solar panels [46,48,68]. Strong winds do not necessarily enhance the output
of wind turbines, and weak winds cannot allow wind turbines to operate [153]. Extreme
weather events, such as extreme wind speeds and extreme high temperatures, affect the
structural reliability and safety of wind turbines and solar panels [90,104], as well as
production stability, leading to decreased accuracy in predicting renewable energy [125].
While many studies have focused on the frequency and intensity of extreme weather events,
there is a lack of targeted research on extreme weather events affecting the efficiency of
wind turbines and solar panels. Therefore, future research should analyze and predict
the frequency and intensity of extreme weather events affecting wind turbines and solar
panels [109,119].

5. Conclusions

Many countries around the world are actively striving to achieve SDGs, with wind and
solar energy emerging as increasingly crucial clean energy sources and pivotal drivers of the
transition to sustainable energy. With the global demand for renewable energy continuing
to surge, the focus on future changes in wind and solar energy is also intensifying. In
recent years, the development of ESMs has played a crucial role in predicting changes
in wind and solar energy, offering indispensable data and methodological support for
associated research endeavors. These models not only simulate and forecast future climate
change trends but also provide dependable predictions concerning the potential and power
generation of wind and solar energy. Consequently, the research field employing ESMs for
forecasting solar and wind energy is expanding and deepening. However, there is currently
a lack of a systematic review of the literature in this field. Therefore, to comprehensively
grasp the latest developments and research trends in this domain and to identify future
research directions, this review has compiled the relevant literature from the past five
years and compared the research conclusions. It outlines the general analysis process and
presents the main findings and discussion points as follows:

• In the future, an increase in PV power generation potential is anticipated in Europe,
northern South America, and Central China, while a decrease is expected in North
Africa, the Tibetan Plateau, South Asia, and northern North America. Globally, CSP
potential is anticipated to decrease. The changes in solar resources are influenced
by cloud cover, aerosols, temperature, and wind speed, with the impact varying
by region.

• Wind resources are projected to increase on a global scale in the future. However,
disparities in changes exist across various regions, with some studies yielding in-
consistent results within the same region. Uncertainty in wind resource forecasts
necessitates many studies to conduct bias correction on wind speeds before forecasting
wind resources.

• Based on the limitations of the current analysis, future research in this field should
explore various aspects to enhance the accuracy and reliability of predictions. Firstly,
ESMs should be optimized, which requires further improvement of the physical and
chemical processes within the models, coupled with increasing resolution. Secondly,
considering the ongoing advancements in wind and solar power generation technolo-
gies, future studies should place greater emphasis on the impact of these technological
innovations on the distribution of future energy resources. Additionally, since extreme
weather events significantly affect wind turbines and solar panels, it is imperative for
future research to enhance the prediction and analysis of such events. By conducting
comprehensive research in these areas, we can improve our understanding and predic-
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tion of the distribution and trends of future wind and solar energy resources, thereby
providing stronger support for the SD of renewable energy.
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