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Abstract: We propose a method to identify the congestion driver sources contributing to the major
traffic congestion of a regional (Hunan province) freeway network. The results indicate that the
congestion driver sources are mostly observed during heavy traffic periods and mainly distributed
in the regions surrounding Changsha (the capital of Hunan province) and the regions adjacent to
other provinces and freeway interconnecting hubs. Moreover, we develop a method to analyze
the major driver sources of a local freeway section. Using the method, the trips affected by traffic
accidents or road maintenance works can be identified well. Our findings and the proposed methods
could facilitate the deployment of effective traffic control countermeasures and the development of
sustainable regional transportation.
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1. Introduction

Freeways are characterized by good features of high speed and large capacity [1,2].
Many countries in the world have built well-connected freeway networks [3]. Over the
past 10 years, the freeway transportation infrastructure of China has experienced rapid
development, with the total length of freeway increases from 96,200 km in 2012 to nearly
180,000 km in 2022 [4,5]. Given its fast speed, wide coverage, and good connection, the
freeway has become a more favorable transportation mode for many travelers [6]. Taking
Hunan (i.e., a southern province of China) freeway as an example, the annual average daily
traffic volume has increased from 25,725 in 2017 to 29,283 in 2022 [7,8]. The rapidly growing
travel demand [9] poses great pressure to freeway infrastructures, which inevitably causes
frequent, and sometimes severe, traffic congestions. Traffic congestion not only downgrades
the freeways’ level of service [10] but also increases the accidental risks [11], posing a great
challenge to the development of sustainable freeway transportation.

The effective implementation of various freeway traffic control approaches (e.g., on-
ramp control, variable speed limit, route guidance) [12–14] relies on an in-depth under-
standing of the traffic congestion pattern in freeways [15]. To this end, many researchers
have investigated freeway traffic congestion patterns. Chen et al. [16] used floating car data
to uncover the spatiotemporal distribution of traffic congestion in the east fourth ring of the
Beijing urban freeway. Yang et al. [17] found that traffic congestion was more likely to occur
at the segments connecting the main roads, the segments located upstream of on-ramps or
off-ramps, and the segments with oversaturated traffic volumes. Sarvi et al. [18] studied
the patterns of traffic congestion in the Tokyo freeway. Fernando [19] analyzed the location
and duration of traffic congestion caused by mass events. Pei et al. [20] employed density
clustering algorithms to analyze the spatiotemporal distribution of traffic congestion in cold
weather. Ren et al. [21] identified the congested segments when there were traffic accidents.
Ghosh et al. [22] employed a delay time index to analyze the traffic congestion patterns
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when a road was under construction. In addition, traffic congestion can be detected by
predicting the travel demand [23–25].

Despite the extensive investigations into traffic congestion patterns, we are still lacking
a comprehensive understanding of which vehicles or drivers contribute to major traffic
congestion in freeways. In the freeway transportation context, driver sources include the
toll stations which a large number of vehicles pass through, creating congested freeway
sections [26,27]. Moreover, researchers have developed on-ramp control methods and
route guidance methods based on driver source information [27–29], finding that driver
source information can improve the congestion mitigation effect and reduce the difficulty of
implementing traffic control schemes [27–29]. Yet, the spatiotemporal patterns of freeway
driver sources, which are crucial for deploying effective traffic control countermeasures
and developing sustainable regional transportation systems, are still not well understood.

In this study, we use the travel demand data of Hunan freeway to identify the network-
wide congestion driver sources and the local section major driver sources. Firstly, we
identify the congestion driver sources (CDSs) which contribute to major traffic congestion
in the Hunan freeway network and analyze their spatiotemporal patterns. Secondly, we
analyze the major driver sources (MDSs) of local freeway sections. The trips affected by
traffic accidents or road maintenance works can be effectively identified. The discovered
spatiotemporal patterns of CDSs and MDSs can be used to assist freeway congestion
mitigation and freeway emergency responses.

The remainder of this paper is organized as follows. Section 2 introduces the data used
in the present study. Section 3 introduces the methods for assigning the travel demand
and identifying the driver sources. Section 4 analyzes the spatiotemporal patterns of con-
gestion driver sources in the Hunan freeway network. Section 5 analyzes the major driver
sources of two local freeway sections affected by a traffic accident and road maintenance
work. Section 6 discusses the correlation between the number of driver sources and the
travel demand and explores whether the spatial distribution of CDSs is related to their
topological importance. Section 7 concludes the research findings and discusses future
research directions.

2. Data
2.1. Geographic Information Data of the Freeway Network

The Hunan freeway network data were provided by the Hunan Communications
Research Institute Co., Ltd. (Changsha, China) and the Baidu Map Open Platform (Beijing,
China). The data included the freeway ID, the freeway section ID, the origin toll station
ID, and the destination toll station ID of each freeway section. The data also included the
coordinates of each toll station and the length of each freeway section. The speed limit
information and information on the number of lanes of each freeway section were collected
from Baidu Map and the official website of the China freeway (https://www.chinahighway.
com/ (accessed on 28 February 2024)). The capacity of each freeway section was estimated
according to the standard formulated by the Ministry of Transportation of the People’s
Republic of China (Table 1). A total of 449 toll stations and 1100 freeway sections were
recorded in the dataset. The spatial distribution of the toll stations is shown in Figure 1a,
where the administrative zone of each county is also depicted. The Hunan freeway network
is shown in Figure 1b.

Table 1. The standards for estimating the capacity of a freeway section.

Road Classification Designed Speed/(km·h−1) Basic Capacity/[pcu·(h·ln)−1]

Freeway
120 2200
100 2100
80 2000

https://www.chinahighway.com/
https://www.chinahighway.com/
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Figure 1. The geographic information data of the Hunan freeway network. (a) The spatial distribu-
tion of freeway toll stations in Hunan province and (b) the Hunan freeway network. The color of a 
section indicates its speed limit, whereas the width of a section indicates the number of lanes. 
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2019. We mainly analyzed the data collected during an ordinary week from 11 March to 
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weather). We calculated the average number of freeway trips during each time window. 
As shown in Figure 2a, there was only one morning peak time window (9:00 a.m.–10:00 
a.m.) on weekdays and the travel demand remained relatively large throughout the whole 
afternoon. However, on weekend days, there was a morning peak time window (9:00 
a.m.–10:00 a.m.) and an afternoon peak time window (14:00 p.m.–15:00 p.m.). Interest-
ingly, the freeway rush hours are different from those observed in urban transportation 
[30,31], highlighting the different mobility patterns of freeway travelers and city travelers. 

Figure 1. The geographic information data of the Hunan freeway network. (a) The spatial distribution
of freeway toll stations in Hunan province and (b) the Hunan freeway network. The color of a section
indicates its speed limit, whereas the width of a section indicates the number of lanes.

2.2. Freeway Travel Demand Data

The Hunan freeway travel demand data were also provided by the Hunan Communi-
cations Research Institute Co., Ltd. The travel demand data included the number of trips
between each pair of toll stations during each one-hour time window in March and April
2019. We mainly analyzed the data collected during an ordinary week from 11 March to 17
March (no events occurred, e.g., traffic accidents, festivals, epidemics, or extreme weather).
We calculated the average number of freeway trips during each time window. As shown
in Figure 2a, there was only one morning peak time window (9:00 a.m.–10:00 a.m.) on
weekdays and the travel demand remained relatively large throughout the whole afternoon.
However, on weekend days, there was a morning peak time window (9:00 a.m.–10:00 a.m.)
and an afternoon peak time window (14:00 p.m.–15:00 p.m.). Interestingly, the freeway
rush hours are different from those observed in urban transportation [30,31], highlighting
the different mobility patterns of freeway travelers and city travelers.
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week’s average daily travel demand 𝑇ை஽ for each O-D pair. We found that 𝑇ை஽ can be 
well approximated by a power law distribution 𝑃(𝑇ை஽)~𝑇ை஽ିଵ.ଽ଻ , implying that travel 

Figure 2. The average number of freeway trips during each one-hour time window from 11 March
2019 to 17 March 2019. The error bars represent the standard deviations in the number of freeway
trips during each one-hour time window.

As shown in Figure 3, the spatial distribution of freeway travel demand is pretty
stable across different time windows. Most origin–destination (O–D) pairs are featured
with small travel demands. However, large travel demands are observed among a few toll



Sustainability 2024, 16, 3344 4 of 16

stations located at the southern and northern border areas, which could be attributed to
the long-distance trips occurring which pass through Hunan province. In addition, many
O-D pairs with their origins or destinations located in Changsha are featured with large
travel demands, which is not surprising because Changsha is the capital of Hunan province.
Finally, a few O-D pairs around the cities of Changde, Huaihua, and Hengyang are also
characterized by large traffic volumes, which could be caused by the strong attraction of
cities to mobility flows.
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Figure 3. The spatial distribution of freeway travel demands across different time windows. The
color of each directed line illustrates the travel demand posed on the O-D pair.

Heterogeneity indicates that the values of a quantity have a wide span and show
significant differences. To analyze the heterogeneity of travel demand, we calculated a
week’s average daily travel demand TOD for each O-D pair. We found that TOD can be
well approximated by a power law distribution P(TOD) ∼ TOD

−1.97, implying that travel
demands are heterogeneously distributed (Figure 4). The heterogeneously distributed
travel demand determines the unevenly distributed traffic flow on the freeway network,
suggesting that some freeway sections may suffer severe traffic congestion.
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3. Methodology

In this section, we introduce the method for assigning the travel demand to the freeway
network, the method for estimating the extra travel times of vehicles, O-D pairs, and toll
stations, and the method for identifying the congestion driver sources of the freeway
network and the major driver sources of local freeway sections. Figure 5 illustrates the
flowchart of the proposed methodology.
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Figure 5. Flowchart of the proposed methodology.

3.1. Inferring the Vehicle Path and Estimating the Traffic Flow

In this study, we employed the incremental traffic assignment (ITA) method to assign
the travel demand to the freeway network. The ITA method was selected because it can
approximate equilibrium traffic assignment and has a low computation cost [32]. When
applying the ITA method, the O-D matrix was first split into four sub-OD matrices, which,
respectively, contained 40%, 30%, 20%, and 10% of the trips randomly selected from the
travel demand data. Next, the trips in the first sub-OD matrix were assigned to the freeway
network using the Dijkstra algorithm [33]. The travel cost of each freeway section was
updated using the BPR function (Equation (1)). This process continued until all trips in the
sub-OD matrices had been assigned.

ta(i) =

(
1 + α

(
V(i)
C(i)

)β
)

t f (i), i ∈ L (1)

In Equation (1), C(i) is the capacity of a freeway section i; V(i) is the traffic flow of i; L
is the set of freeway sections; t f (i) is the free-flow travel time of i; and the coefficients α
and β are set to 0.5668 and 1.4331 according to practical measurements [34,35].

Volume over capacity VOC(i) was used to quantify the level of traffic congestion:

VOC(i) = V(i)/C(i), i ∈ L (2)
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We further calculated the average daily VOC of the Hunan freeway network in a week:

VOCave = ∑
i

Vave(i)
C(i) ∗ h

/∑
i

l(i) (3)

where Vave(i) is the weekly average traffic flow of freeway section i; l(i) is the length of
i; and h is the number of one-hour time windows within a day (i.e., 24). We used the
travel demand data collected from 11 March to 17 March 2019 to calculate the week’s
average daily VOC, finding that the VOCave was only 0.055, which is much smaller than
that reported by the Department of Transportation of Hunan province (i.e., 0.386). To
solve this, we up-scaled the travel demand between each pair of toll stations by 7 times to
simulate the actual traffic condition.

3.2. Identifying the Congestion Driver Sources of the Hunan Freeway Network

We defined the congestion driver sources of the freeway network by first calculating
the total extra travel time of all vehicles entering the freeway from each toll station i during
each time window t. Next, a threshold was determined for the total extra travel time tS

e
using the K-PSO algorithm. The toll stations with a tS

e longer than the threshold were
identified as the congestion driver sources (CDSs).

Firstly, the total extra travel time of a toll station tS
e (i, t) was calculated based on the

extra travel time of each vehicle tv
e (i, j, t) and the total extra travel time of each O-D pair

tOD
e (i, j, t):

tv
e (i, j, t) = ta(i, j, t)− t f (i, j, t) (4)

tOD
e (i, j) =

V

∑
v

tv
e (i, j) (5)

tS
e (i, t) =

N

∑
j

tOD
e (i, j) (6)

where ta(i, j) and t f (i, j) are the actual travel time and the free-flow travel time of a vehicle
entering origin toll station i during time window t and exiting destination toll station j, V
is the set of vehicles entering i and exiting j during t, and N is the set of destination toll
stations of trips entering i during t.

Secondly, the threshold of tS
e was determined using the K-PSO algorithm, which

combines the advantages of K-means clustering and Particle Swarm Optimization (PSO).
We used the K-PSO algorithm to cluster the total extra travel times of toll stations. The
upper limit of the cluster with the smallest tS

e was determined as the threshold of tS
e . More

details of the K-PSO algorithm are elaborated upon as follows [36]:
Step 1: initialize the number of clusters K, the learning factor (µ1, µ2), the inertia

weight (wmin, wmax), and the number of particles N in the particle swarm.
Step 2: Initialize the particle n(n = 1, 2, . . . , N) in the population. The particle posi-

tion is defined as Xn = (xn1, xn2, . . . , xnD) and the velocity of the particle is defined as
Vn = (vn1, vn2, . . . , vnD), where D represents the dimension of ts

e. Each element in Xn and
Vn is randomly generated and ranges from 0 to 1. We used the K-means algorithm to
split the extra travel times ts

e into K clusters and calculate the centroid of each cluster. The
fitness f (Xn) was evaluated using the sum of squared distances between Xn and the cluster
centroid. The particle swarm POP containing N particles was generated:

POP =


x11, x12, · · · , x1D, v11, v12, · · · , v1D, f (X1)
x21, x22, · · · , x2D, v21, v22, · · · , v2D, f (X2)

...
xN1, xN2, · · · , xND, vN1, vN2, · · · , vND, f (XN)

 (7)



Sustainability 2024, 16, 3344 7 of 16

Step 3: Calculate the individual optimal position Pn of each particle and the optimal
position Pg of the population. Pn = Xn for each particle and Pg is equal to the position of
the particle with the smallest fitness value.

Step 4: update the velocity and position of each particle using Equations (8) and (9).

vnd = wvnd + µ1r1(pi − xnd) + µ2r2
(

pg − xnd
)

(8)

xnd = xnd + vnd (9)

where d = 1, 2, . . . , D.
Step 5: Perform K-means clustering using the updated positions of particles and the

current centroids. Reassign particles to the nearest cluster centroid based on their positions
and calculate the fitness value.

Step 6: For each particle n, the fitness value of its current position Xn is compared
with the fitness value of the particle’s historical optimal position Pn. Set Pn = Xn if
f (Xn) < f (Pn). Similarly, for each particle n, the fitness value of its optimal position Pn
is compared with the fitness value of the optimal position Pg of the particle swarm. Set
Pg = Pn if f (Pn) < f

(
Pg
)
.

Step 7: stop the algorithm when the maximum number of iterations is reached and
output the clustering results; otherwise, repeat steps 4–6.

Step 8: Change the number of clusters K and repeat steps 1–7. Use the Davies–Bouldin
index to evaluate the effectiveness of clustering. The optimal K value is determined when
the Davies–Bouldin index reaches the smallest value.

3.3. Identifying the Major Driver Sources of Local Freeway Sections

We analyzed the number of vehicles departing from each toll station x (i.e., driver
source) and passing a freeway section i. Next, we calculated the proportion of traffic flow
contributed by each driver source P(x, i) and ranked the driver sources in descending
order according to P(x, i). We defined the major driver sources (MDSs) of a local freeway
section as the top-ranking sources that cumulatively contribute a certain portion (exceeding
a threshold) of the section’s traffic flow. The threshold portion was determined using the
K-PSO algorithm. Specifically, we used the K-PSO algorithm to cluster the proportion of
traffic flow contributed by each driver source P(x, i), and the upper limit of the cluster with
the smallest P(x, i) was determined as the threshold proportion of traffic flow contribution
P_c(i). The driver sources contributing a portion of traffic flow P(x, i) > P_c(i) were
identified as the MDSs of the freeway section.

Using the Davies–Bouldin index would have generated too many clusters and the
upper limit of the cluster with the smallest P(x, i) could have been very small; furthermore,
most driver sources were identified as MDSs. Given that the motivation for identifying
MDSs was to target the driver sources contributing the majority of traffic flow of the freeway
section, the Davies–Bouldin index was not used. When identifying the MDSs, we used the
sum of squared errors (SSE) to determine the cluster number K and the optimal K value
was determined using the elbow method.

4. Spatiotemporal Patterns of Congestion Driver Sources
4.1. Spatiotemporal Patterns of Extra Travel Times

To understand the emergence of congestion driver sources, we first analyzed the
spatiotemporal patterns of extra travel times. We calculated the total extra travel time

on the freeway network during each one-hour time window tN
e (t) =

N
∑
i

tS
e (i, t) (Figure 6).

We found that the network-wide extra travel time tN
e (t) showed a morning peak and an

afternoon peak, which is consistent with the temporal patterns of travel demand. This
is not surprising because large travel demand is the fundamental driving force of traffic
congestion and longer travel time. As shown in Figure 6, the largest extra travel time was
observed on Sunday afternoon, which is when many travelers return to their workplace or
home from their weekend journeys.



Sustainability 2024, 16, 3344 8 of 16

Sustainability 2024, 16, 3344 8 of 17 
 

contribution 𝑃_𝑐(𝑖) . The driver sources contributing a portion of traffic flow 𝑃(𝑥, 𝑖) ൐𝑃_𝑐(𝑖) were identified as the MDSs of the freeway section. 
Using the Davies–Bouldin index would have generated too many clusters and the 

upper limit of the cluster with the smallest 𝑃(𝑥, 𝑖) could have been very small; further-
more, most driver sources were identified as MDSs. Given that the motivation for identi-
fying MDSs was to target the driver sources contributing the majority of traffic flow of the 
freeway section, the Davies–Bouldin index was not used. When identifying the MDSs, we 
used the sum of squared errors (SSE) to determine the cluster number 𝐾 and the optimal 𝐾 value was determined using the elbow method. 

4. Spatiotemporal Patterns of Congestion Driver Sources 
4.1. Spatiotemporal Patterns of Extra Travel Times 

To understand the emergence of congestion driver sources, we first analyzed the spa-
tiotemporal patterns of extra travel times. We calculated the total extra travel time on the 
freeway network during each one-hour time window 𝑡௘ே(𝑡) = ∑ 𝑡௘ௌ(𝑖, 𝑡)ே௜  (Figure 6). We 
found that the network-wide extra travel time 𝑡௘ே(𝑡) showed a morning peak and an af-
ternoon peak, which is consistent with the temporal patterns of travel demand. This is not 
surprising because large travel demand is the fundamental driving force of traffic conges-
tion and longer travel time. As shown in Figure 6, the largest extra travel time was ob-
served on Sunday afternoon, which is when many travelers return to their workplace or 
home from their weekend journeys. 

 
Figure 6. The temporal distribution of extra travel time of the freeway network. 

As shown in Figure 7, the O-D pairs with large extra travel times 𝑡௘ை஽(𝑖, 𝑗) are mainly 
distributed on the G5513 Changsha–Zhangjiajie freeway, implying that the freeway capac-
ity cannot accommodate the large travel demand well. In addition, large extra travel times 
are also observed between some toll stations near the border of Hunan province. This is 
consistent with our intuition that trips on these O-D pairs are long-distance trips passing 
through many congested freeway sections. Finally, some O-D pairs with their origins or 
destinations located in Changsha are characterized by large extra travel times. Interest-
ingly, the extra travel times of some O-D pairs show tidal pattern. For example, the extra 
travel time from Changshaxi toll station to Taizimiao toll station is longer during the 
morning peak hour, whereas the extra travel time is longer in the opposite direction dur-
ing the afternoon peak hour (Figure 7). 

Figure 6. The temporal distribution of extra travel time of the freeway network.

As shown in Figure 7, the O-D pairs with large extra travel times tOD
e (i, j) are mainly

distributed on the G5513 Changsha–Zhangjiajie freeway, implying that the freeway capacity
cannot accommodate the large travel demand well. In addition, large extra travel times
are also observed between some toll stations near the border of Hunan province. This is
consistent with our intuition that trips on these O-D pairs are long-distance trips passing
through many congested freeway sections. Finally, some O-D pairs with their origins or
destinations located in Changsha are characterized by large extra travel times. Interestingly,
the extra travel times of some O-D pairs show tidal pattern. For example, the extra travel
time from Changshaxi toll station to Taizimiao toll station is longer during the morning
peak hour, whereas the extra travel time is longer in the opposite direction during the
afternoon peak hour (Figure 7).
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As shown in Figure 8, both the extra travel times of O-D pairs tOD
e and the extra travel

times of toll stations tS
e follow power law distributions. The heterogeneously distributed

extra travel time originates from the heterogeneously distributed travel demand. This
finding implies that drivers from most driver sources enjoy a relatively high level of service,
while drivers from a few driver sources suffer large extra travel time and contribute to
major traffic congestion. The heterogeneously distributed extra travel time also suggests
that we can pinpoint a small number of CDSs that cause major traffic congestion.

Sustainability 2024, 16, 3344 9 of 17 
 

 
Figure 7. The average extra travel times of O-D pairs in four time windows (7:00 a.m.–8:00 a.m., 9:00 
a.m.–10:00 a.m., 13:00 p.m.–14:00 p.m., and 19:00 p.m.–20:00 p.m.) from March 11th to 17 March 
2019. 

As shown in Figure 8, both the extra travel times of O-D pairs 𝑡௘ை஽  and the extra 
travel times of toll stations 𝑡௘ௌ follow power law distributions. The heterogeneously dis-
tributed extra travel time originates from the heterogeneously distributed travel demand. 
This finding implies that drivers from most driver sources enjoy a relatively high level of 
service, while drivers from a few driver sources suffer large extra travel time and contrib-
ute to major traffic congestion. The heterogeneously distributed extra travel time also sug-
gests that we can pinpoint a small number of CDSs that cause major traffic congestion. 

 
Figure 8. Distribution of the average extra travel times of (a) O-D pairs and (b) toll stations in four 
time windows. 

  

Figure 8. Distribution of the average extra travel times of (a) O-D pairs and (b) toll stations in
four time windows.

4.2. Spatiotemporal Patterns of Congestion Driver Sources

We used the method proposed in Section 3.2 to identify the congestion driver sources
(CDSs) during each one-hour time window from 11 March 2019 to 17 March 2019. We
observed similar temporal patterns of CDSs across the five weekdays and the two weekend
days (Figure 9). The number of CDSs had two peaks in the morning and afternoon,
respectively, which is consistent with the temporal patterns of travel demand and extra
travel time. During a weekday, a toll station is identified as a CDS for an average of 1.15 h.
In particular, the number of CDSs exhibits a prominent increase on Friday evening, which
could have been generated by the early weekday journeys (Figure 9a). During a weekend
day, a toll station is identified as a CDS for an average of 1.32 h. There are more CDSs on
Saturday morning, which could be caused by the weekday journeys (Figure 9b). Compared
with the weekday afternoons, there are more CDSs on Sunday afternoon, which could have
been generated by the weekend returning trips.
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We further analyzed the spatial distribution of congestion driver sources (CDSs)
(Figure 10). We found that during off-peak hours, the CDSs were mainly distributed at
the toll stations located at the border of Hunan province and some toll stations located at
the peripheral area of Changsha (Figure 10a,d). Alternatively, during peak hours, CDSs
were additionally observed at some toll stations near the freeway interconnecting hubs
(see the orange circles in Figure 10b,c). The CDSs located at the province border were
generated by the long-distance trips passing through many congested freeway sections.
The average travel time of vehicles from the provincial boundary toll stations (152 min) was
much longer than the network-wide average value (51 min). The CDSs around Changsha
were caused by the strong attraction of the core city to travelers from other cities in Hunan
province. The CDSs located near the freeway interconnecting hubs were caused by the large
merging traffic flows of different freeways. Importantly, the spatial distribution of CDSs
was pretty stable during the peak hours and off-peak hours, suggesting that transportation
agencies can focus on a small number of CDSs and deploy targeted traffic control strategies
to mitigate traffic congestion [27,28].
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5. Major Driver Sources of Local Freeway Sections

Identifying the major driver sources of a local freeway section also provides useful
information for traffic control and transportation management. For example, if a free-
way section is the bottleneck of the freeway network, which often suffers severe traffic
congestion, locating its major driver sources (MDSs) can facilitate travel demand control
upstream. Similarly, identifying the MDSs of a freeway section where traffic accidents or
road maintenance works occur (usually reducing the capacity of the section) can pinpoint
the drivers whose trips will be influenced. Transportation agencies can suggest alternative
routes to potentially affected drivers [37], send an alert to them [38], or postpone their
entering onto the freeway [39]. In the following, we identify the MDSs of two case study
freeway sections.



Sustainability 2024, 16, 3344 11 of 16

5.1. Major Driver Sources of a Freeway Section with a Traffic Accident

At about 20:00 p.m., 22 March 2019, a severe traffic accident occurred on a freeway
section near the Taizimiao toll station on the west-to-east direction of the G5513 Changsha–
Zhangjiajie freeway. During the time window from 20:00 p.m. to 21:00 p.m., the MDSs
of the freeway section were mainly distributed at the toll stations on the G55 Erenhot–
Guangzhou freeway and G5513 Changsha–Zhangjiajie freeway (Figure 11). Among the
identified MDSs, the Changdedong and Deshan toll stations together contribute 38% of
the traffic flow of the freeway section. However, the transportation agency implemented
temporary traffic control at the Xingfuqu, Yingfengqiao, Junshanpu, Taizimiao, Xiejiapu,
and Deshan toll stations, most of which were not the MDSs of the freeway section and were
located downstream of the accident. The vehicles passing through the accidental location
were not controlled due to the lack of MDS information. This highlights the importance of
identifying the MDSs of local freeway sections.
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Figure 11. The MDSs of the freeway section where a traffic accident occurred on 22 March 2019. Red
dots represent the major driver sources.

5.2. Major Driver Sources of a Freeway Section under Maintenance Work

From 9 April 2019 to 30 April 2019, the S71 Nanxian–Yiyang freeway from Yingfengqiao
toll station to Yuanjiangnan toll station was closed for maintenance. During this period,
the Yuanjiangnan toll station only allowed vehicles that were entering but did not allow
vehicles that were exiting. Figure 12 illustrates the MDSs of the freeway section under
maintenance during the time window from 13:00 p.m. to 14:00 p.m. on April 15. Six toll
stations were identified as the MDSs, in which Changshaxi toll station was the driver
source contributing the most traffic flow (26%). Interestingly, the identified MDSs were not
distributed in the vicinity of the studied freeway section, and some driver sources were far
from the freeway section. Identifying MDSs can help to locate the travelers whose trips
will be influenced by freeway maintenance work and help them to plan alternative routes.
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6. Discussion

An interesting question is whether the spatial distribution of CDSs is consistent with
the topological importance of toll stations. Here, we used three typical centrality measures
(i.e., betweenness centrality, closeness centrality, and degree centrality) to analyze the
topological importance of nodes (including the 449 toll stations) in the studied freeway
network. Specifically, the betweenness centrality of a node denotes the number of shortest
paths passing through the node, the closeness centrality denotes the average distance
from the node to the other nodes, and the degree centrality denotes the number of edges
connected to the node [40,41]. As shown in Figure 13, the spatial distributions of CDSs
have no obvious correlation with their topological importance, highlighting the important
role of travel demand in determining the spatial distribution of CDSs.
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Next, we explored the temporal correlation between the number of CDSs and MDSs
and the travel demand. We found that the number of CDSs changed with the travel
demand accordingly (Figure 14). The strong correlation between the number of CDSs
and the travel demand was further validated by measuring the Pearson and Spearman
correlation coefficients between them (Table 2). To analyze the temporal patterns of MDSs,
we used the G0421 Xuchang–Guangzhou freeway from Shebu toll station to Huilongqiao
toll station as a case study freeway section. However, the correlation between the number
of MDSs and the freeway travel demand was much weaker (Figure 15, Table 3).
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Table 2. Pearson and Spearman correlation coefficients between the number of CDSs and the
travel demand.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Pearson 0.944 0.953 0.947 0.953 0.950 0.951 0.906
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Table 3. Pearson and Spearman correlation coefficients between the number of MDSs and the
travel demand.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Pearson 0.175 0.356 0.208 0.232 0.339 0.365 0.570
Spearman 0.262 0.302 0.148 0.331 0.433 0.305 0.601

7. Conclusions

In this study, we have proposed a new K-PSO-algorithm-based method to identify
the congestion driver sources (CDSs) of the freeway network and the major driver sources
(MDSs) of local freeway sections. Using freeway travel demand data, we analyzed the
spatiotemporal patterns of CDSs and MDSs. Locating the CDSs can assist transporta-
tion agencies in identifying the major origins of traffic congestion. The results indicate
that the congestion driver sources are mostly observed during heavy traffic periods and
mainly distributed in the regions surrounding Changsha and the regions adjacent to other
provinces and freeway interconnecting hubs. Locating the MDSs of local freeway sections
can help transportation agencies to identify the travelers whose trips could be potentially
affected by traffic accidents or road maintenance works, facilitating the development of
effective countermeasures. The proposed method and the discovered spatiotemporal pat-
terns of CDSs and MDSs contribute to both freeway congestion mitigation and freeway
emergency responses, both of which are crucial for the development of sustainable regional
transportation systems.

The present study has some limitations, which calls for future investigations. We only
analyzed the spatiotemporal patterns of CDSs and MDSs under regular traffic conditions
based on relatively coarse travel demand data. In future studies, the spatiotemporal
distributions of CDSs and MDSs during holidays and bad weather can be further analyzed.
Moreover, vehicle trajectory data can be used to simulate real-time traffic flow and locate
the CDSs and MDSs at a higher temporal resolution. Finally, the obtained CDS and MDS
information can assist transportation agencies in deploying more targeted traffic control
strategies, which could improve the congestion mitigation effect and reduce the cost of
implementing traffic control schemes.
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