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Abstract: This Research proposes an intelligent pruning method based on the improved Mask R-
CNN (Mask Region-based Convolutional Neural Network) model to address the shortcomings of
intelligent pruning technology for Sichuan pepper trees. Utilizing ResNeXt-50 as the backbone
network, the algorithm optimizes the anchor boxes in the RPN (Region Proposal Network) layer to
adapt to the complex morphology of pepper tree branches, thereby enhancing target detection and
segmentation performance. Further reducing the quantization error of the RoI (Region of Interest)
Align layer through bilinear interpolation, the algorithm innovatively introduces edge loss (Ledge)
into the loss function to address the issue of blurred edge features caused by the overlap between
retained and pruned branches. Experimental results demonstrate the outstanding performance of
the improved Mask R-CNN model in segmenting and identifying pepper tree branches, achieving
recognition accuracies of 92.2%, 96.3%, and 85.6% for Upright branches, Centripetal branches, and
Competitive branches, respectively, while elevating the recognition accuracy of retained branches
to 94.4%. Compared to the original Mask R-CNN, the enhanced model exhibits a 6.7% increase in
the recognition rate of retained branches and a decrease of 0.12 in loss value, significantly enhancing
recognition effectiveness. The research findings not only provide an effective tool for the precise
pruning of pepper trees but also offer valuable insights for implementing intelligent pruning strategies
for other fruit trees.

Keywords: Sichuan pepper tree pruning; Mask R-CNN; deep learning; pruning branch identification

1. Introduction

Sichuan pepper, as an essential spice, enjoys wide applications in food seasoning and
traditional Chinese medicine. Achieving high-quality Sichuan pepper fruits necessitates
meticulous shaping and pruning techniques. Though proper shaping and pruning, can
not only help the Sichuan pepper tree acquire a robust framework with distinct layers,
but it can also effectively increase the pepper tree’s yield and prolong its lifespan [1]. In
modern agricultural practices, fruit tree pruning has gradually shifted from traditional
reliance on experience towards scientific and intelligent methodologies. Prudent pruning
directly impacts fruit yield and quality, thereby enhancing the overall industry profitability.
However, fruit tree pruning itself is a highly complex and nonlinear process [2], demanding
practitioners to possess not only profound theoretical knowledge but also ample practical
experience. Particularly for Sichuan pepper trees with unique growth habits and tree
structures, existing shaping and pruning techniques still face numerous challenges and
shortcomings. Therefore, continuous exploration and innovation in pruning methods are
necessary to adapt to the growth characteristics of Sichuan pepper trees, thus optimizing
yield and quality.
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Currently, the shaping and pruning techniques for fruit trees are still imperfect [3].
Pruning is one of the most crucial activities in fruit tree production, heavily relying on
manual labor. The shortage of skilled labor has led to increased labor costs, posing a
significant challenge for the fruit tree industry [4]. In the field of fruit tree pruning, some
scholars have begun to explore the use of deep learning techniques to assist in pruning
decisions. Huang Biao was among the first to conduct relevant research on loquat branch
identification technology, proposing algorithms for loquat branch image recognition and
framework extraction. Through experiments, these algorithms were verified to meet
various recognition requirements for branch images. However, further research is needed
to address issues such as dense foliage and branch obstructions [5]. Following this, Bai et al.
utilized two-dimensional laser scanning technology to extract growth parameters of fruit
trees and proposed pruning methods for canopy shaping and main branch management [6].
Ge Ruiting et al. tested the pruning points of Chinese wolfberry using Mask RCNN
and YOLO (You Only Look Once) V3 network models. They proposed an improved
and efficient Mask RCNN algorithm, enhancing the detection speed and accuracy of
pruning points for Chinese wolfberry. This laid the theoretical foundation for Chinese
wolfberry pruning robots [7]. Li Xinxing et al. proposed a method based on tree structure
analysis and artificial intelligence pruning decisions. They introduced a three-dimensional
skeleton extraction method for branches based on local point clouds and a pruning decision
method based on BP (Back Propagation) neural networks. This approach enabled the
digitalization and intelligent pruning of apple trees [8]. P G and colleagues fine-tuned
and tested two different deep neural networks for segmenting dormant grape branches
to be pruned [9]. Xue Huifang et al. developed an optimized YOLOv3 network model
and a Kinect v2 depth camera positioning model. They identified and located pruning
points on young goji berry trees, laying the groundwork for spatial localization of pruning
points [10]. Liang Xifeng et al. proposed an identification method for tomato lateral branch
pruning points based on an improved Mask R-CNN model. This method effectively
addresses the issue of tomato leaf pruning robots being unable to accurately identify
tomato lateral branch pruning points [11]. Liang Kun et al. conducted research on key
algorithms for grape pruning using an improved convolutional neural network. They
further optimized the pruning process for grapes [12]. While the aforementioned studies
have shown promising results in the localization and identification of pruning points,
there hasn’t been the development of an algorithmic model capable of accurately guiding
pruning decisions for Sichuan pepper trees. This is largely due to the unique features of
Sichuan pepper branches, including their spiky branches and slender twigs.

In the process of shaping and pruning Sichuan pepper trees, the presence of interfering
branches competes for the tree’s nutrients and space, ultimately affecting the pepper’s yield.
Based on the degree of interference and its impact, interfering branches can be classified
into two categories: relative interfering branches and absolute interfering branches. The
criteria for judging relative interfering branches are unclear, and their impact on the growth
of Sichuan pepper trees is minimal. In contrast, absolute interfering branches possess
distinct morphological features and are abundant at various stages of branch growth. These
branches severely inhibit the nutrient transport and distribution of Sichuan pepper trees,
making them the key targets for pruning. Therefore, this study focuses on the intelligent
identification of absolute interfering branches in Sichuan pepper trees.

After comparing various instance segmentation models, Mask R-CNN was chosen
as the most suitable algorithm for fine segmentation of Sichuan pepper branches. Con-
sidering the uniqueness of Sichuan pepper branches, this study improved the original
model to achieve accurate segmentation and identification of Sichuan pepper branches,
thereby significantly enhancing overall pruning effectiveness. Experimental results have
demonstrated that this method not only accurately segments and identifies absolute in-
terfering branches in Sichuan pepper trees but also assists in pruning decision-making.
It provides new technical support and solutions for the intelligent pruning decisions of
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Sichuan pepper trees, promoting the continuous development and improvement of the
Sichuan pepper industry.

2. Materials and Methods
2.1. Experimental Image Acquisition and Pre-Processing
2.1.1. Data Collection

The experimental subject of this study is the Laiwu Sichuan pepper, which has a long
history of cultivation. The experimental data was collected from Sichuan pepper trees in
the Niuquan Town of Laiwu District, Jinan City, Shandong Province, during the winter
dormancy period. The image acquisition device used was a Canon EOS 70D DSLR camera
(The equipment was sourced from Canon, located in Tokyo, Japan), with photographs taken
at distances ranging from 40 to 70 cm, between September and November 2023. During
this period, Sichuan pepper trees shed their leaves, making branches clearly visible and
ideal for identifying and segmenting different types of branches.

Winter pruning is a crucial aspect of Sichuan pepper cultivation management. How-
ever, during this time, Sichuan pepper branches closely resemble the color of the soil, and
due to the small spacing between Sichuan pepper plants and the interlacing of branches,
images collected from the natural environment present a complex background, posing
challenges for subsequent image processing. To reduce redundant information in the
images, this study used a background cloth during image acquisition to isolate the subject
for identification, thereby minimizing background interference during image processing.
Meanwhile, considering the different growth statuses of pepper tree branches in various
directions, this study collected 4342 JPG format images of pepper trees from 300 trees using
a multi-view, multi-angle approach. To ensure the quality and quantity of the dataset, this
study manually selected 1350 high-quality images with clearly visible branches and no clut-
tered fine branches as the dataset, as shown in Figure 1. In the figure, this study used all data
types except for the first one (no background cloth) to enhance the model’s adaptability.
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Figure 1. Types of images.

2.1.2. Data Augmentation

Deep neural networks require a large number of training samples to ensure their
performance, as insufficient data can lead to overfitting of the network [13]. Therefore, in
this experiment, image augmentation techniques were utilized to expand the training set
samples to 6904 images by applying mirroring, noise processing, color enhancement, and
blurring to the training set samples. This approach addresses the aforementioned issue
and effectively reduces the model’s dependence on certain attributes, thereby enhancing
the model’s generalization ability [14]. The effect of data augmentation is illustrated
in Figure 2.
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After data augmentation of the Sichuan pepper tree images, To increase the quantity of
the dataset, the study selected 5524 images at a ratio of 8:1:1 as the training set. These images
were used to train the deep neural network model. Additionally, 690 images were allocated
as the testing set to evaluate the performance of the model, while another 690 images were
set aside as the validation set to verify the accuracy of the model during training.

2.2. Research Plan Introduction

Based on previous research and practical experience, absolute interfering branches
mainly include three types: Upright branches, Centripetal branches, and Competitive
branches. Upright branches refer to branches that grow excessively vigorously, are exces-
sively long, and grow upright. These branches consume a large amount of tree nutrients,
leading to poor growth of other branches. Centripetal branches refer to branches whose
growth direction is towards the center of the tree. These branches occupy the central space
of the tree, affecting the ventilation and lighting conditions of the canopy. Branches other
than the absolute interference branches are tentatively designated as retained branches
in the segmentation task. Competitive branches are similar in morphology to retained
branches, but their presence is more conducive to nutrient transport. These branches com-
pete with retained branches for nutrients and space, resulting in poor growth of retained
branches. Among them, Upright branches and Centripetal branches can be indepen-
dently judged based on their respective morphological characteristics without reference to
other branches, while Competitive branches, although similar in morphology to retained
branches, are more conducive to nutrient transport. Therefore, when judging Competitive
branches, it is necessary to compare them with the corresponding retained branches, as
shown in Figure 3.
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2.3. Dataset Labeling

In the task of pepper tree branch segmentation, data annotation is a crucial step that
directly affects the training effectiveness of the model and performance evaluation. Based
on the three types of absolute interfering branches in pepper trees (Upright branches,
Centripetal branches, and Competitive branches), this study meticulously filtered the
collected pepper dataset to ensure the presence of a certain number of interfering branches
in each image. The purpose of this step is to select images that meet the requirements of the
recognition task to ensure the quality and representativeness of the training set. This study
used the Labelme annotation tool and, under the guidance and suggestions of pruning
experts, annotated all interfering branches and retained branches in the dataset. As shown
in Figure 4, in this figure, red represents reserved branches, while the remaining colors
represent different types of interfering branches. This tool provides an intuitive interface
and convenient operation, making the annotation process more efficient and accurate.
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After annotation the dataset using the Labelme tool, corresponding JSON files are auto-
matically generated in the folder. By using the built-in script file “label-me_json_to_dataset.exe”
provided by the Labelme tool, the annotated JSON files can be converted into a folder con-
taining five files. Figure 5 displays the contents of the converted folder, showing detailed
annotation information and the segmentation effect. This not only facilitates subsequent
data processing and model training but also holds significant importance for subsequent
performance evaluation and analysis. With this, the preparation of the dataset for the
Mask R-CNN network model is completed. The rigor and accuracy of this step lay a solid
foundation for the subsequent model training and result analysis.
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2.4. Mask R-CNN Algorithm

The R-CNN (Region-based Convolutional Neural Network) series (R-CNN, Fast R-
CNN, Faster R-CNN) is the pioneer in using deep learning for object detection [15]. Fast
R-CNN and Faster R-CNN both follow the concept of R-CNN. R-CNN stands for Region
with CNN (Convolutional Neural Network) Features, indicating the utilization of CNN
to extract features from Region Proposals, followed by SVM (Support Vector Machine)
classification and bounding box regression. The innovation of Fast R-CNN lies in proposing
the RoI Pooling feature extraction method, effectively addressing the drawback of inputting
Region Proposal areas separately into CNN networks in traditional R-CNN. However, its
limitation lies in the consistent use of the traditional Selective Search method to determine
Region Proposals, consuming a significant amount of time during both training and testing
phases. In contrast, Faster R-CNN innovatively utilizes the RPN network to directly extract
Region Proposals, thereby improving this limitation. It integrates RPN into the overall
network, resulting in significant improvements in comprehensive performance, particularly
in terms of detection speed.

The innovation of Mask R-CNN lies in efficiently detecting objects while simultane-
ously outputting high-quality instance segmentation masks. It is an extension of Faster
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R-CNN, augmenting a branch for predicting segmentation masks in parallel with bounding
box detection. By combining object detection and semantic segmentation, Mask R-CNN
achieves instance segmentation. The algorithm framework of Mask R-CNN is illustrated
in Figure 6.
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Since its introduction, Mask R-CNN has achieved excellent results in both object detec-
tion and instance segmentation [16]. As shown in the above figure. Its backbone network
adopts ResNet (Residual Network) and utilizes the FPN (Feature Pyramid Network) struc-
ture, including both bottom-up and top-down pathways as well as lateral connections. In
particular, 1 × 1 convolutional kernels reduce the number of feature maps without altering
their spatial dimensions. The bottom-up process follows the standard forward propagation
of a neural network, while the top-down process involves upsampling high-level feature
maps and merging them with low-level feature maps. The two layers of lateral connections
have the same spatial dimensions, allowing for the utilization of detailed localization infor-
mation from the bottom layers. This iterative process continues until the final resolution
map is generated. The design philosophy behind FPN is to fuse feature maps from different
hierarchical levels to provide richer contextual information. Such a design is highly benefi-
cial for deep learning applications, as it enhances model performance and robustness. The
combination of ResNet and FPN serves as the feature extraction network [17]. The fusion
of high-level features and low-level features generates feature maps with multidimensional
characteristics, which are then shared with the RPN and the RoI Align layer. The RPN takes
the feature maps as input and produces anchor boxes for Sichuan pepper tree branches
along with their corresponding scores. NMS (Non-Maximum Suppression) is utilized to
remove anchor boxes with lower scores [18].

2.5. Mask R-CNN Model Optimization for Sichuan Pepper Branch Segmentation Application
2.5.1. ResNet Network Improvements

In the field of deep learning, optimizing the structure of neural networks has always
been a research hotspot. For the task of Sichuan pepper tree branch segmentation, consid-
ering the complexity of the planting environment and the mutual interference between
branches, it is necessary to improve the existing Mask R-CNN model to enhance its ac-
curacy in identifying and segmenting Sichuan pepper tree branches. The original Mask
R-CNN model uses ResNet as the backbone network for feature extraction. ResNet was
proposed by He et al. in 2015, and it effectively addresses the problem of degradation in
training deep neural networks by introducing residual learning. The core idea of residual
learning is to shift the network’s learning target from fitting the original layer functions
to fitting residual functions, where the network learns the difference between input and
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output. This simplifies the learning process, enhances training stability, and improves the
network’s performance. The structure is illustrated in Figure 7. The input, with 256 chan-
nels of features, undergoes compression by a 1 × 1 convolution to reduce to 64 channels.
Subsequently, a 3 × 3 convolutional kernel processes the features, and after expanding the
channel number with a 1 × 1 convolution, the residual is connected to the original features
to produce the output.
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However, in the task of Sichuan pepper branch segmentation, the small spacing be-
tween Sichuan pepper plants and the intertwining of branches increase the difficulty of
recognition and segmentation. To enhance the model’s performance, this study considers
replacing the original ResNet structure with the ResNeXt-50 structure as the backbone
network. ResNeXt-50 combines the advantages of the Inception structure and ResNet
structure by using grouped convolution to increase the width of the network while main-
taining its depth. This structure is not only easy to train but also allows for the extraction
of features from multiple perspectives. Compared to ResNet, ResNeXt-50 can improve
accuracy without increasing parameter complexity and reduce the number of hyperparam-
eters, thereby reducing the model’s complexity. Additionally, the ResNeXt-50 structure
adopts the idea of shortcut connections, introducing cross-layer connections in the network
to facilitate information propagation throughout the network. This design alleviates the
problem of gradient vanishing and enhances the model’s ability to perceive small Sichuan
pepper branches and deep features [19]. Its structure is illustrated in Figure 8. The input
features with 256 channels are divided into 32 groups, each compressed to 4 channels after
a 64-fold reduction. After the 32 groups are added together and concatenated with the
original residual features, the output is obtained. The use of “groups” instead of many
smaller pathways is because these groups contain multiple parallel pathways, each used to
learn different features. This enables the network to more effectively learn a greater variety
of features, increasing its representational capacity. This grouped convolution approach
effectively reduces computational complexity. In summary, the ResNeXt-50 network is
essentially a ResNet structure with aggregated residual and local connection structures,
while also incorporating data augmentation and regularization techniques such as Random
Erasing and Mixup.
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2.5.2. RPN Network Improvements

The RPN is a crucial component in target detection algorithms like Mask R-CNN.
It’s responsible for generating a series of RoI candidates, which are likely to contain
target objects. The operation of the RPN is primarily based on anchor boxes, predefined
rectangular boxes used to capture targets of different scales and aspect ratios in the image.
In the original design of the RPN, the sizes and aspect ratios of the anchor boxes are typically
determined based on cluster analysis results from specific datasets (such as human bodies,
vehicles, etc.). However, in the application scenario of pepper tree branch segmentation,
the shape and size distribution of the targets may differ significantly from these datasets.
In consideration of the shape characteristics of pepper tree branches, this chapter conducts
a feature similarity analysis and optimizes the anchor boxes in the RPN layer based on the
analysis results. Specifically, this study adjusts the aspect ratios and sizes of the anchor
boxes to better match the morphology of pepper tree branches. In the original design of
the RPN, three sizes {128, 256, 512} were obtained through cluster analysis of the dataset,
and they were allocated in proportions of 1:1, 1:2, and 2:1, resulting in a total of 3 × 3 = 9
candidate boxes [20]. However, these settings are not entirely suitable for the morphology
of pepper tree branches in the application scenario of this paper. Therefore, based on the
feature similarity of pepper tree branches, cluster analysis was conducted, and new anchor
box configurations were selected. In the new configuration, aspect ratios of (1:1, 1:4, 4:1)
and sizes of (128 × 128, 128 × 512, 512 × 128) were chosen. This configuration is closer to
the actual morphology of pepper tree branches and is expected to improve the detection
and segmentation effectiveness of targets while reducing computational complexity. The
structure is illustrated in Figure 9.

Sustainability 2024, 16, x FOR PEER REVIEW 9 of 18 
 

2.5.2. RPN Network Improvements 

The RPN is a crucial component in target detection algorithms like Mask R-CNN. It’s 

responsible for generating a series of RoI candidates, which are likely to contain target 

objects. The operation of the RPN is primarily based on anchor boxes, predefined rectan-

gular boxes used to capture targets of different scales and aspect ratios in the image. In 

the original design of the RPN, the sizes and aspect ratios of the anchor boxes are typically 

determined based on cluster analysis results from specific datasets (such as human bodies, 

vehicles, etc.). However, in the application scenario of pepper tree branch segmentation, 

the shape and size distribution of the targets may differ significantly from these datasets. 

In consideration of the shape characteristics of pepper tree branches, this chapter conducts 

a feature similarity analysis and optimizes the anchor boxes in the RPN layer based on the 

analysis results. Specifically, this study adjusts the aspect ratios and sizes of the anchor 

boxes to better match the morphology of pepper tree branches. In the original design of 

the RPN, three sizes {128, 256, 512} were obtained through cluster analysis of the dataset, 

and they were allocated in proportions of 1:1, 1:2, and 2:1, resulting in a total of 3 × 3 = 9 

candidate boxes [20]. However, these settings are not entirely suitable for the morphology 

of pepper tree branches in the application scenario of this paper. Therefore, based on the 

feature similarity of pepper tree branches, cluster analysis was conducted, and new an-

chor box configurations were selected. In the new configuration, aspect ratios of (1:1, 1:4, 

4:1) and sizes of (128 × 128, 128 × 512, 512 × 128) were chosen. This configuration is closer 

to the actual morphology of pepper tree branches and is expected to improve the detection 

and segmentation effectiveness of targets while reducing computational complexity. The 

structure is illustrated in Figure 9. 

 

Figure 9. The optimized RPN network structure. 

2.5.3. RoI Align Layer Optimization 

RoI Align in Mask R-CNN is a method of region feature aggregation that effectively 

addresses the quantization errors caused by the two quantization operations in RoI Pool-

ing of Faster R-CNN, thereby improving the accuracy of the detection model [21]. As 

shown in Equation (1), the original RoI Pooling method divides the RoI region into a fixed 

number of bins and performs a max pooling operation on each bin. However, this process 

involves two quantization operations: the first is quantizing the boundaries of RoI to inte-

gers for alignment with the pixels of the feature map, and the second is quantization dur-

ing the selection of the maximum value within each bin. These quantization operations 

introduce errors, especially in high-resolution or precise localization scenarios. The RoI 

Align layer reduces these errors by avoiding these quantization operations. It uses bilinear 

interpolation to accurately compute the average of features within each bin, as shown in 

Figure 10, rather than simply selecting the maximum value. This approach provides more 

accurate feature aggregation, thereby improving the accuracy of object detection. 

Figure 9. The optimized RPN network structure.



Sustainability 2024, 16, 3416 10 of 18

2.5.3. RoI Align Layer Optimization

RoI Align in Mask R-CNN is a method of region feature aggregation that effectively
addresses the quantization errors caused by the two quantization operations in RoI Pooling
of Faster R-CNN, thereby improving the accuracy of the detection model [21]. As shown in
Equation (1), the original RoI Pooling method divides the RoI region into a fixed number of
bins and performs a max pooling operation on each bin. However, this process involves
two quantization operations: the first is quantizing the boundaries of RoI to integers for
alignment with the pixels of the feature map, and the second is quantization during the
selection of the maximum value within each bin. These quantization operations introduce
errors, especially in high-resolution or precise localization scenarios. The RoI Align layer
reduces these errors by avoiding these quantization operations. It uses bilinear interpolation
to accurately compute the average of features within each bin, as shown in Figure 10, rather
than simply selecting the maximum value. This approach provides more accurate feature
aggregation, thereby improving the accuracy of object detection.
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In the task of pepper tree branch segmentation, precise localization is particularly
important due to the intersections between retained branches and pruned branches. There-
fore, this experiment adopts the double integral method to further reduce the quantization
errors that may exist in the pooling layer. As shown in Equation (2), the function f (x, y) is
double-integrated within the specific RoI region and normalized, ensuring that the result
of the pooling operation is the average based on the area of the region. This optimization is
expected to improve the performance of Mask R-CNN in pepper tree branch segmentation
tasks, especially in handling complex scenarios such as intersecting branches.

∂Pool(bin) =
N

∑
i=1

f (ai − bi)/N (1)

∂Pool(bin, F) =

∫ y2
y1

∫ x2
x1

f (x, y)dxdy

(x2 − x1)(y2 − y1)
(2)

In Equation (2), bin represents the feature block to be pooled; N is the number of
blocks into which these feature blocks are divided; F is the total number of feature blocks;
ai and bi are the horizontal and vertical coordinates of the blocks obtained by linear
interpolation after dividing the RoI region into blocks. x1, x2, and y1, y2 respectively denote
the coordinates of the top-left and bottom-right corners of the RoI region.

2.5.4. Loss Function Optimization

In the Mask R-CNN model, the design of the loss function is crucial for the training
effectiveness and final performance of the model. The loss function of this model typically
consists of a weighted sum of multiple components, including classification loss (Lcls),
bounding box loss (Lbox), and average binary cross-entropy loss (Lmask). These loss terms
correspond to different tasks of the model: classification, bounding box regression, and
instance segmentation.
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However, in the specific scenario of pepper tree branch segmentation, the overlap
between retained branches and pruned branches can lead to blurry edge features, increasing
the difficulty of segmentation. This blurred partial edge feature can result in slower
training times and the final segmentation mask being insensitive to edges. To enhance
the model’s sensitivity to such edges, this paper proposes adding an edge loss Ledge to the
loss function, which helps reduce the blurriness of edge features caused by overlapping
intersections, thus accurately locating the boundaries of pepper tree branches. Specifically,
in the implementation, this study first performs convolution operations on the annotated
branch masks, using the second-order differential Laplace operator to obtain the actual
edge information. Then, these edge information is utilized as additional training data.
Subsequently, in the loss function, the Laplace operator is applied to extract the predicted
edges from the predicted masks, which are then compared with the actual edges to calculate
the edge loss. To prevent the influence of other mask edges on the detected mask edge loss,
the average binary cross-entropy is chosen as the edge loss function. This loss function
effectively measures the difference between the predicted edges and the actual edges and
provides meaningful gradient information to guide the model’s training. The edge loss
Ledge function is represented as shown in Equation (3).

Ledge = −∑n
i=1[q

∗
i log(qi) + (1 − q∗i )log(1 − qi)] (3)

In Equation (3), qi represents the predicted probability of a pixel, while q∗i is a binary
indicator used to identify whether the pixel is an edge pixel. If the pixel is an edge pixel,
q∗i is set to 1; otherwise, it is set to 0. This paper measures the performance of the model
by calculating the difference between the predicted probability qi and the ground truth
label q∗i . If the model’s predictions for edge pixels are very accurate, this loss will be small;
conversely, if the model’s predictions deviate significantly from the ground truth, then the
loss function will be large.

Therefore, the total loss function of the Mask R-CNN network with the addition of the
edge loss Ledge is represented as Equation (4).

L = αLcls + βLbox + λLmask + Ledge (4)

where α, β and λ are the weight parameters of Lcls, Lbox and Lmask. Lcls denotes the loss of
categorization; Lbox denotes the border regression loss; Lmask denotes the mask loss.

3. Experiment and Result Analysis
3.1. Model Training

This study utilized the TensorFlow framework to train the Mask R-CNN model and
accelerated the training process using a GPU. The computer system used for training
comprised an Intel(R) Core (TM) i7-11320H@3.20GHz processor, and an NVIDIA GeForce
RTX 1650 GPU with 16GB of memory. The model was developed and written in the Python
3.8.3 environment using the PyCharm 2023 integrated development tool.

In the training of deep learning models, the selection of hyperparameters has a crucial
impact on the performance of the model. Table 1 provides detailed key hyperparameter
settings used in training the Mask R-CNN model in this study. These hyperparameters
include, but are not limited to, learning rate, batch size, number of iterations, and opti-
mizer type, etc. They collectively determine the convergence speed, stability, and final
performance of the model during training. Through careful adjustment of these hyperpa-
rameters, it is possible to obtain more accurate and robust models [22], better suited to the
requirements of pepper branch segmentation tasks.
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Table 1. Model hyper parameter settings.

Parameters Value

WEIGHT_DECAY 0.0001
BATCH_SIZE 2
POOL_SIZE 7

STEPS_PER_EPOCH 100
POST_NMS_RoIS_INFERENCE 1000
POST_NMS_RoIS_TRAINING 2000

MASK_POOL_SIZE 14
LEARNING_MOMENTUM 0.9

LEARNING_RATE 0.001
MAX_GT_INSTANCES 100

DETECTION_MAX_INSTANCES 100
DETECTION_MIN_CONFIDENCE 0.9
DETECTION_NMS_THRESHOLD 0.3

To assess the performance of the models before and after improvement, this study
conducted experiments on a specifically constructed pepper dataset. Fine adjustments and
reconfigurations were made to the parameters of both the original Mask R-CNN model
and the improved version. Specifically, the regularization coefficient (WEIGHT_DECAY)
was initially set to 0.0001. Regularization is a technique used to prevent model overfitting
by adding a penalty term related to weights to the model’s loss function. A smaller regular-
ization coefficient implies a smaller penalty on the weights, which helps retain important
features of the model while reducing unnecessary complexity to prevent overfitting. Sec-
ondly, the BATCH_SIZE was set to 2, meaning the network processes two training samples
before updating weights. Although this increases training time, it allows the model to
adjust weights more finely as gradient information from each sample is fully utilized [23].
Moreover, smaller batch sizes can reduce memory usage, making the training process more
feasible for memory-limited scenarios.

In the settings of the RoI Align layer, adjustments were made to both its pooling size
and mask pooling size. These parameters determine the spatial resolution when extract-
ing region features from feature maps. Appropriate pooling sizes can capture sufficient
spatial information while reducing computational and memory usage. During training,
these parameters were fine-tuned to find the optimal balance and improve segmentation
accuracy. To accelerate the training process and enhance model convergence performance,
the learning rate and momentum were adjusted to 0.001 and 0.9, respectively. The learning
rate determines the magnitude of weight updates in each iteration, while momentum
helps accelerate the gradient descent process, particularly in relevant directions. Such
adjustments can lead to a more stable convergence of the model during training.

3.2. Evaluation Indicators

This experiment utilized multiple standard evaluation metrics to comprehensively
assess the performance of the algorithm in pepper branch recognition and segmentation
tasks, including F1 score, accuracy, recall, and precision [24,25]. Precision refers to the ratio
of correctly predicted positive samples to all predicted positive samples; recall refers to
the ratio of correctly predicted positive samples to all actual positive samples; accuracy
refers to the ratio of correctly predicted samples to all predicted samples; and F1 score is
the harmonic mean of precision and recall, balancing the model’s ability to classify positive
and negative samples, as shown in Equation (5). These evaluation metrics are not only
used to evaluate the current model’s performance but also to guide subsequent model
optimization. In the equation, P represents Precision, and R represents Recall. TP (True
Positive) represents true positives, indicating the number of positive samples correctly
predicted as positive; TN (True Negative) represents true negatives, indicating the number
of negative samples correctly predicted as negative; FP (False Positive) represents false
positives, indicating the number of negative samples incorrectly predicted as positive;
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and FN (False Negative) represents false negatives, indicating the number of positive
samples incorrectly predicted as negative [26,27]. The calculation of each evaluation metric
is as follows:

F1 =
2PR

P + R
(5)

Recall =
TP

TP + FN
(6)

Precision =
TP

TP + FP
(7)

Accuracy =
TP + TN

TP + FP + TN + FN
(8)

3.3. Test Results and Analysis

After completing the training of the Mask R-CNN models before and after improve-
ment, this study conducted a detailed comparison and analysis of the training results [28],
as shown in Table 2 and Figure 11. By comparing the changes in loss values and accura-
cies of the two models during the same iteration process, the effectiveness of the model
improvement was thoroughly explored.

Table 2. Comparison of the performance of different models.

Method Backbone Feature
Extraction Method Loss Function Accuracy Loss

YOLOv8 Darknet53 —— Lcls + Lbox + Lco f 0.796 0.20
Faster R-CNN ResNet50 RoI Pooling Lcls + Lbox 0.751 0.24
Mask R-CNN ResNet101 RoI Align Lcls + Lbox + Lmask 0.878 0.12

improved
Mask R-CNN ResNeXt50 RoI Align +

double integral Lcls + Lbox + Lmask + Ledge 0.945 0.05
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Specifically, by improving the Mask R-CNN model in aspects such as the backbone
network, feature extraction method, and loss function, this study successfully increased
the model’s accuracy and reduced the loss values. To provide a more intuitive display
of the model performance, the TensorBoard visualization tool was utilized to track the
experimental results, as shown in Figure 12. In the figure, loss represents the loss of the
training set; rpn_bbox_loss and rpn_class_loss are the regression loss and classification
loss of the rpn network, respectively; mrcnn_bbox_loss and mrcnn_class_loss represent the
regression loss and classification loss of the mrcnn network, respectively.
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The results indicate that the network before improvement reached a loss value of
0.12 and an accuracy of 0.878 after 100 iterations. This suggests that the original model
had relatively high performance but still had room for improvement in accuracy. On the
other hand, the improved network showed a more significant performance improvement,
with the loss value decreasing to 0.05 and the accuracy increasing to 0.945 after the same
number of iterations. This outcome reflects the effectiveness of optimizing the model’s
structure and training process in this study. It’s noticeable throughout the iterations that
the improved model exhibits a faster decrease in loss value, especially in the early stages of
iteration. This may be attributed to the optimized network structure and training strategies,
allowing the model to learn and adapt to the features of pepper tree branches more quickly.

3.4. Evaluation and Validation of the Capsicum Branch Segmentation Model
3.4.1. Pepper Tree Branch Segmentation Model Evaluation

To further validate the effectiveness of the improved Mask R-CNN model in seg-
menting absolute interfering branches in pepper plants, this experiment adopted accuracy,
precision, recall, and F1 score for comprehensive evaluation of the model [29]. Table 3 pro-
vides detailed results of these evaluation metrics. According to the table data, the improved
Mask R-CNN model demonstrates excellent performance in identifying upright branches
and centripetal branches. The accuracy and F1 score are more important in the table, with
values above 0.94 and 0.8 respectively, demonstrating good discriminative ability. However,
for competitive branches classification, the accuracy is slightly lower, at 0.856. Overall,
the improved Mask R-CNN model exhibits remarkable performance in segmenting and
identifying absolute interfering branches in pepper plants, achieving an overall accuracy of
approximately 92% for the four types of branches. Moreover, with an average processing
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time of only 3.57 s, the detection accuracy and processing speed can meet the requirements
for the segmentation of absolute interfering branches in practical applications.

Table 3. Evaluation table of pepper dendritic segmentation models.

Type of Branches Accuracy Precision Recall F1-Score

Retained branches 0.921 0.808 0.875 0.840
Upright
branches 0.944 0.824 0.865 0.844

Centripetal branches 0.963 0.816 0.882 0.848
Competitive branches 0.856 0.865 0.753 0.805

3.4.2. Pepper Branch Segmentation Model Verification

After accurately segmenting the pepper branches, this study randomly selected
20 images for validation. The model was used to segment absolute interference branches in
these images, and the number of each type of absolute interference branches in the images
was calculated. The validation results were obtained by comparing the model segmentation
results with those annotated by experts, as shown in Table 4.

Table 4. Improved Mask R-CNN segmentation model expert comparison results.

Verification
Image

Upright Branch Centripetal Branch Competitive Branch Fault
Detection
Number

Detection
Rate (%)

Error
Rate (%)Actual

Number
Detection
Number

Actual
Number

Detection
Number

Actual
Number

Detection
Number

1 2 2 1 2 1 1 1 100 20
2 1 2 2 2 2 1 2 100 40
3 2 2 2 1 0 0 1 75 25
4 1 1 1 1 0 0 0 100 0
5 3 3 3 2 2 1 0 75 0
6 2 2 2 1 1 1 2 80 50
7 5 4 3 3 6 7 2 100 14
8 3 4 2 2 2 3 2 100 22
9 0 0 1 1 0 1 1 100 50

10 1 1 1 1 2 1 1 75 25
11 2 2 1 1 3 2 2 83 40
12 1 1 2 2 1 1 0 100 0
13 1 1 2 2 0 1 1 100 25
14 0 0 1 1 0 1 1 100 50
15 2 1 2 2 1 1 1 75 25
16 2 2 3 3 1 1 0 100 0
17 3 3 0 0 1 0 1 75 33
18 1 1 1 1 0 0 0 100 0
19 2 2 0 1 0 0 1 100 33
20 0 0 0 0 1 1 0 100 0

Total 25 24 21 21 19 21 15 91.9 22.6

This study experimentally validated the effectiveness and application potential of
the improved Mask R-CNN model in pepper tree branch segmentation tasks. Even in
complex pepper images, the model demonstrated high recognition accuracy, successfully
identifying absolute interfering branches in pepper images, as shown in Figure 13. Overall,
the improved Mask R-CNN model exhibited significant advantages in pepper tree branch
recognition tasks. In practical applications, users can upload images of pepper tree branches,
and then use this model to discriminate the types of branches. The model accurately
identifies three types of absolute interfering branches—Upright branches, Centripetal
branches, and Competitive branches—and determines whether pruning is necessary based
on the recognition results.
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4. Conclusions

For the segmentation and detection of pepper tree branches, this study replaced the
traditional ResNet architecture with the ResNeXt50 structure, significantly enhancing the
model’s ability to recognize fine branches and deep features of pepper trees. Additionally,
through clustering analysis of candidate boxes in the Region Proposal Network (RPN)
layer, the anchor box ratios and scales were optimized, effectively reducing computational
complexity and improving target detection rates. To address cases of branch adhesion
in images, the RoI Align layer was optimized using double integral methods to further
improve edge segmentation accuracy. Finally, by introducing edge loss in the loss function
and using mean binary cross-entropy as the edge loss function, the influence of other mask
edges on model performance was successfully reduced. Ultimately, a pepper tree branch
classification model based on improved Mask R-CNN was constructed and validated,
enabling the accurate segmentation of Upright branches, Centripetal branches, and Com-
petitive branches of pepper trees. Leveraging deep learning technology, this paper provides
a scientific basis for identifying absolute interfering branches in the growth process of
pepper trees, thereby promoting the automation of pruning operations.

Although the detection accuracy and processing speed of this model fully meet the
real-time detection requirements for pepper tree branches in practical applications, lim-
itations were observed during the instance segmentation [30] of pepper tree interfering
branches. This study noticed that the model still has certain limitations in handling some
complex phenomena on pepper trees, such as thin branches, excessively short branches,
or excessive pepper thorns on branches, where the segmentation accuracy was not fully
accurate. This exposes certain deficiencies in the model to some extent. To address these
issues, future research will consider increasing the specificity of the dataset to focus on
the segmentation of these complex branches, aiming to improve the model’s recognition
accuracy and adaptability. Overall, while this study has made significant progress in pepper
tree branch recognition, there is still room for further exploration and optimization in terms
of adaptability and practical application potential.
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