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Abstract: Electromobility promises to efficiently mitigate consequences of increasing traffic volume
and its accompanied greenhouse gas emissions. On an individual level, electrified bikes allow
emission free electrified mobility at moderate costs, and consequently their stock has increased
significantly in recent years. This simultaneously increases the demand for spare parts, which are
often manufacturer- or application-specific, and due to many variants, challenging to provide for
the market. This article evaluates powder-based and extrusion-based metal additive manufacturing
of a typical electrified bike component. The overarching objective is to establish a sustainable spare
parts supply in the field of electromobility by manufacturing spare parts in a resource-efficient and
decentralized manner. This approach aims to eliminate the need for physical storage space and long
transport routes for the provision of spare parts, while significantly increasing the service life of
e-bikes. The investigation demonstrates how these parts can be additively manufactured function
equivalent and with sufficient mechanical properties, also taking economical aspects into account.
Furthermore, the needed resources and related environmental consequences for metal-based additive
manufacturing spare-part production are compared for both process routes. The results show that
both routes are capable of producing spare-parts at comparatively the same mechanical performance,
with the mechanical performance of the initial part clearly surpassed. Furthermore, it can be observed
that both routes exhibit comparable resource costs, with the powder bed fusion of metals using laser
beams showing significantly lower energy and gas costs by more than ten times, but higher material
costs that are approximately twice as high as those of atomic diffusion additive manufacturing.
Therefore, additive manufacturing offers a promising opportunity to rapidly produce parts in small
quantities which are resource efficient.

Keywords: electromobility; additive manufacturing; spare parts supply; process comparison; powder
bed fusion of metals via laser beam; metal extrusion-based additive manufacturing; resource efficiency

1. Introduction

Electromobility is a promising approach for dealing with the increasing volume of
traffic worldwide and for limiting global emissions of climate-damaging emissions [1]. The
sales figures and the stock of electrified bikes (e-bikes) have been rising continuously for
years. At the end of 2022, the stock of e-bikes in Germany was close to 10 million units [2].

The lifetime of an e-bike is on average about 5 to 10 years [3,4]. Due to the high number
of e-bikes, the number of defects is also increasing. A defect of an e-bike can be traced
back to mechanical components of the classic bicycle on the one hand. These components
are mostly standardized, and spare parts are widely available [5]. On the other hand, a
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defect can be attributed to the additional components of the assemblies built into an e-bike,
which distinguish the e-bike from the classic bicycle [5]. The components contained in these
assemblies are often manufacturer- and application-specific and, due to the high number of
variants, spare parts are more difficult to provide [6].

In a survey of 45 bicycle repair shops, the majority of defects in e-bikes were attributed
to defects in mechanical components of the assemblies specific to an e-bike (e.g., compo-
nents of an electric motor) [6]. Furthermore, the bicycle repair shops surveyed stated that
instead of replacing the defect individual components, the entire assembly is replaced
in almost 65% of cases because the components are not available as spare parts even in
the early years after the market launch of e-bikes [6]. However, the availability of spare
parts is crucial for the sustainable implementation of electric mobility. One approach to
solve this problem is the decentralized production of e-bike specific spare parts by bicycle
repair shops.

Due to global networking, the complexity of supply chains of goods and services is
increasing [7]. The COVID-19 outbreak illustrates that even single failures along a supply
chain can lead to its entire disruption [8]. Additive manufacturing (AM) has great potential
to respond quickly to failures along the supply chain [8]. By eliminating the need for
specific machining tools, AM has great potential to economically produce the required
spare parts in small quantities [9,10]. This means that extensive transport routes and
costly warehousing can be avoided [11]. Additionally, by eliminating the manufacturing
constraints of conventional production processes typically used for e-bike components,
AM enables components to be even better adapted to the specific application. These
include, for example, a reduction in component mass through a topology-optimized or
bionic component design [12]. Furthermore, by exploiting the manufacturing freedom
of AM processes, additional functions can be integrated or the components can be better
adapted to customer requirements [13]. Various additive manufacturing processes exist
for the production of metallic components (see Figure 1). Due to their prevalence, the
metal-based additive manufacturing processes of powder bed fusion, material extrusion,
material/binder jetting, and direct energy deposition are generally suitable for spare
part fabrication. However, material/binder jetting and direct energy deposition exhibit
relatively high machine costs, even for small build volumes, or high surface roughness of the
manufactured components, necessitating subsequent machining. As a result, their potential
for spare part fabrication in bicycle repair shops is considered lower compared to powder
bed fusion and material extrusion. While mechanical performance and improvements of
part tolerances and process robustness were a strong focus in recent research, comparative
studies, especially linked with aspects of sustainability or economic factors, are scarce.
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Figure 1. Market share of metal-based additive manufacturing processes in 2020 [14].

One prerequisite for the use of additively manufactured spare parts is their quality,
in particular their mechanical load capacity [15]. A wide range of AM processes exists,
which are in principle suitable for decentralized spare parts production at bicycle repair
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shops. Many studies have already demonstrated the advantages and disadvantages of
AM on classical supply chains based on diverse applications from aerospace, medical,
automotive, and consumer goods production [16–22]. The AM principle, in which material
is only applied where it is needed, allows the manufacturing restrictions of conventional
manufacturing processes to be circumvented and the component geometry to be adapted
to the specific application. As a result, the mass of waste generated along the additive
process chain can be reduced [11]. In a study by Blösch-Paidosh and Shea, it was shown
that by considering the design freedoms of AM, promising new designs of e-bikes are
made possible [23]. However, in addition to the possibility of integrating additional
functions into the spare parts to be manufactured or reducing their mass, the required
resource input for AM processes is crucial for an economically and ecologically spare part
production [24–26]. There are a large number of studies on this, which attribute the success
of AM compared to conventional manufacturing very heavily to the respective application
and the additive manufacturing process. For example, Ingarao et al. have shown that
especially the typically high energy demands for metal-based AM often lead to higher
emissions compared to conventional manufacturing [27]. In contrast, by using the AM
process of material extrusion, Top et al. were able to reduce the material requirements for
manufacturing an industrial-scale product by over 60% and the emissions resulting from
manufacturing by over 85% compared to conventional manufacturing [28]. By using AM,
the production of the individual components itself proves to be more time-consuming,
but by eliminating the need for specific molds or machining tools, the lead time could be
shortened [28]. Schuhmann et al. showed that especially the cost calculation of AM of
spare parts still has potential for improvement [26]. Although there are many cost models
which often only consider the process and hardly the entire process chain [29], in contrast,
Baumers et al. point out that due to the typically small number of process steps until the
completion of the finished product, AM allows a more transparent calculation of material
requirements and emissions compared to conventional manufacturing processes [30].

Furthermore, the implementation of AM-processes into the product development
process allows a circular economy approach, as it removes valuable materials from waste
streams by prioritizing product reuse, or repair [31]. Nevertheless, currently policies rather
than evidence related to manufacturing process or material data are the main driver for
eco-innovations [32]. Hence, this pushes companies and product developers towards eco-
design, that often do not have the necessary toolkit nor knowledge to integrate strategies
for reuse or repair into their product development process [13]. According to Hallstedt,
this is in particular critical, since a product’s social-ecological impacts throughout its life
cycle are largely defined in its early steps within the design process [33].

To provide product developers a guidance of metal-based AM’s capabilities for reuse
and repair purposes, this article shows, by example of a typical component from an
E-bike, how these parts can be additively manufactured by different metal-based AM
processes with sufficient strength at which cost. Furthermore, this article elucidates the
resources needed and resulting environmental consequences for metal-based AM spare-
part production. It is the objective of this article to investigate alternative routes for
achieving a sustainable spare part supply, thus the original part is not replicated rather
than manufactured function equivalent by the AM processes. Therefore, this research
contributes to sustainability by enabling a decentralized supply chain of spare parts and
eliminating the need for long-distance transportation. Furthermore, the digital archiving
of parts eliminates the need for storage space in logistics centers or warehouses. The
implementation of AM for resource-efficient and cost-effective spare part supply in bicycle
repair shops can significantly extend the lifespan of e-bikes.

2. Materials and Methods
2.1. Use Case Torque Arm

The aviation industry typically faces stringent requirements for spare part supply due
to the high costs associated with downtimes. At the same time, it is hardly possible for
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an airline to stock all components of an aircraft in sufficient numbers as spare parts [11].
This is due to the fact that several million different components are often installed in an
aircraft [34]. In comparison, the number of components installed in e-bikes is significantly
lower. Therefore, e-bikes have more variants, and there also exists more bicycle repair shops
that must keep the potentially necessary spare parts on hand to be able to react flexibly to
the defects of individual components and thus minimize the downtimes of e-bikes.

The torque arm represents a component of an e-bike with a particularly high number of
variants, and at the same time with a high probability of failure [5]. In addition, the torque
arm is typically required to retrofit an electric motor to classic bicycles. The torque arm is
a metallic component that is typically located on the motor shaft, absorbs the differential
torque of the drive and output, and introduces it into the frame of the e-bike.

A prerequisite for the use of AM is the availability of a three-dimensional data model
of the component to be manufactured. However, bicycle repair shops typically do not have
the three-dimensional data models of the components to be manufactured [5]. A good part
of the three-dimensional data models can be generated by decentralized measuring and
then designing it using a CAD program. Alternatively, a digital three-dimensional data
model can be generated from a good part by means of a decentralized tactile or imaging
measurement process, e.g., 3D scanning.

The torque arm used in this study (see Figure 2) was developed by Electric Bike
Solutions GmbH (Heidelberg, Germany) for retrofitting a special front hub motor, the so
called moak08, to a classic bicycle. A similar torque arm with the same function is currently
not available on the market. When using the upgraded e-bike, the torque arm must transmit
a motor torque of 10 Nm, which can increase up to 25 Nm under high load.
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an e-bike.

2.2. AM Processes Used

Within the scope of the present work, five torque arms were manufactured using the
two metal-based AM processes Powder Bed Fusion of Metals via Laser Beam (PBF-LB/M)
and Atomic Diffusion Additive Manufacturing (ADAM). For a comparison of both AM
processes, their entire process chain must be analyzed in detail. Thus, in the following
sections, the AM processes, and the corresponding process steps for the entire process
chain, including component preparation and post-processing, are described along the PRE-,
IN-, and POST-process phases. In both cases, common machine parameter and materials
were used to manufacture function equivalent spare parts for the moak08.

2.2.1. Powder Bed Fusion of Metals via Laser Beam

Powder Bed Fusion of Metals via Laser Beam (PBF-LB/M) is the most widely used
AM process for metallic components [35]. The AM process is based on a cyclic process
sequence in which the required components are built up layer by layer.

The cyclic process sequence consists of a local application of metal powder by means
of a coater on a build platform or the already exposed powder layers, a selective exposure
of the metal powder by means of a fiber laser and an incremental lowering of the build
platform by one layer thickness. The entire PBF-LB/M process is carried out in an inert
gas atmosphere. Process spatter and fume generated during the PBF-LB/M process are
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removed from the process chamber by an inert gas flow and separated in a process gas
filter. In order to prevent distortion due to thermal stress in particular, the PBF-LB/M
components are connected to the build platform via support structures [36]. The process
steps of the PBF-LB/M process chain are assigned to the PRE- IN- and POST-Process phases
in Figure 3.
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The PBF-LB/M process is preceded by part design, data preparation of the build job,
and preparation of the PBF-LB/M machine. After the PBF-LB/M process, loose metal
powder is widely removed from the components by means of brushes. Subsequently, the
components connected to the build platform via support structures are sucked off with a
wet separator and removed from the construction chamber. After that, the components were
cleaned by compressed air in a blasting cabin to completely remove the loose metal powder
located between the support structures. Due to the low complexity of the geometry, the
optional heat treatment step to reduce thermally induced residual stresses is not necessary
to produce the torque arms, and is therefore not considered. After the de-powdering
process, the torque arms are firstly removed from the build platform with pliers, and
secondly the support structures are removed from the torque arms by hammer and chisel.
After the surface of the torque arms has been smoothened by sandblasting, they are ready
for use. At the end of the process chain, the metal powder, which was not melted in the
PBF-LB/M process will be sieved to reuse it again.

2.2.2. Metal Extrusion-Based Additive Manufacturing via Atomic Diffusion
Additive Manufacturing

Atomic Diffusion Additive Manufacturing (ADAM) is an extrusion-based additive
manufacturing (EAM) process by Markforged (Markforged Inc., Boston, MA, USA), which
uses highly filled polymer filaments to fabricate metal parts by subsequent debinding
and sintering (metal extrusion-based additive manufacturing, MEAM). The associated
process steps of the MEAM process chain are assigned to the process phases PRE-, IN-, and
POST-process, as shown in Figure 4.

After inserting the printing paper and clamping the filaments, the MEAM process
takes place to manufacture the components. These components with any necessary support
structures are subsequently manually removed from the build platform. Afterwards, the
main-part of the organic binding-agent is removed in the debinding step, leaving behind
a highly porous so-called brown part. In the final sintering process, rearrangement and
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diffusion effects are causing a densification of the part. The remaining backbone of the
binding-agent is removed thermally, after the first so-called sinter necks have been formed.
During sintering, the part is consolidated due to various diffusion processes, which leads
to nearly full-dense parts [40,41]. While the equipment and periphery needed for powder
bed-based metal AM processes is costly, MEAM promises a low-cost entry into metal
AM [42]. Additionally, the EAM process allows to additively manufacture parts without
any support structures if an overhang angle greater than 40◦ is in the design. Within this
study, all specimens were fabricated using the Markforged D2 filament (Markforged Inc.,
Boston, MA, USA).
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2.2.3. Comparison of Process Parameter

As part of the build job preparation, the torque arms were virtually positioned in the
build chambers of the machines used for the PBF-LB/M and EAM process. Figure 5 shows
the position and orientation of the torque arms on the build platform. The used process
parameters for the PBF-LB/M and EAM process to manufacture the torque arms are listed
in Table 1. In the following Table 2, the individual process steps of the two process chains
are shown with the main resources used in each case. The process steps were assigned to
the PRE, IN, and POST process phases.
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Figure 5. Additively manufactured torque arms on the build platform during build job preparation
(a) for PBF-LB/M (b) and for EAM within the ADAM process chain.
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Table 1. Process parameters used for manufacturing function equivalent torque arms with PBF-LB/M
and ADAM.

AM Process Parameter Value

Machine Orlas Creator RA (O.R. Lasertechnologie
Inc., Dieburg, Germany)

Material TiAl6V4

Particle size distribution
d10 = 19.2 µm
d50 = 32.9 µm
d90 = 42.5 µm

Inert gas Argon
Layer thickness 25 µm

Laser power 106.75 W
Scan speed 600 mm/s

Hatch distance 50 µm
Laser focus diameter 40 µm

PBF-LB/M

Part orientation 30◦ inclination to the build platform

Machine Markforged Metal X (Markforged Inc.,
Boston, MA, USA)

Material D2-Steel
Layer thickness 100 µm

Infill Approx. 37%
Infill pattern Triangular
Wall layers 4 (0.51 mm post sintered)

Roof and Floor Layers 4 (1.00 mm post sintered)

EAM

Part orientation Parallel to build platform

Table 2. Main materials handled along the process chain for manufacturing function equivalent
torque arms with PBF-LB/M and ADAM.

PBF-LB/M ADAM
Process phase Process step Main materials used Process step Main materials used

PRE-process
Machine preparation (fill metal
powder in PBF-LB/M machine,

inert PBF-LB/M machine)
metal powder, argon

Machine preparation
(clamp filaments in

printer, insert printing
paper, activate vacuum

pump)

printing paper, metal
filament, ceramic
release filament *

IN-
process PBF-LB/M process

metal powder, energy,
argon,

gas filter,
coating lip

EAM process metal filament, ceramic
release filament

POST-process

Depowdering and part
removal

(remove loose metal powder
from printed components,

remove build platform from
PBF-LB/M machine)

metal powder

Separation from build
platform

(Remove the printed
components from
printing paper)

Separation from build platform
(remove components from
build platform manually)

metal powder

Solvent debinding
(remove most of the

organic binder material
during debinding

process)

Novec 72DA
(3M, Saint Paul, MN,

USA)
(debinding fluid),

energy

Removal of support structures
(remove support structures

from components manually)
metal powder Thermal debinding,

sintering

argon,
argon mix-gas,

energy,
gas filter,

* It is to note, here, that the ceramic release filament is only needed if support structures or rafts are used,
respectively, and are necessary in the design.
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2.3. Measurement of Resource Consumption and Process Time

The resource consumption along the process steps of the two process chains are
recorded using various measuring devices; see Table 3. The metal powder or metal filament
required to manufacture the torque arms is determined gravimetrically. The demand for
different gases, such as argon or compressed air, is also measured using a thermal mass
flow meter. The energy demand for the PBF-LB/M and EAM process, as well as for selected
process steps with high energy demand, is recorded by means of a network analyzer.
This is also used, just like a stopwatch, to record the time required for the process steps.
Furthermore, the proportionate time and energy demand per process step was calculated
by comparing it to the time and energy demand for completing the five torque arms.

Table 3. Measuring devices used to determine the resource consumption for manufacturing the
torque arms.

Resource Measuring Device

metal powder,
filaments

Measuring scale—type 572-57
(Kern & Sohn GmbH, Balingen, Germany)

process gases Thermal mass flow meter—type GSM-B5BGYQM4
(vögtlin instruments, Muttenz, Switzerland)

energy Power analyzer—type C.A 8335 QUALISTAR+
(Chauvin Arnoux, Asnières-Sur-Seine, France)

time Power analyzer—type C.A 8335 QUALISTAR+
(Chauvin Arnoux, Asnières-Sur-Seine, France); stopwatch

gas filter proportional utilization rate

It is to note here, that the proportional utilization rate of the gas filter is calculated based
on the process time and the empirical value until the filter is replaced at regular intervals.

2.4. Testing of the Manufactured Torque Arms

For testing the torque arms, they were each fixed to the axis of rotation (cf. point B,
Figure 6) and loaded with the force F applied to the slotted hole. To generate the maximum
possible load on the torque arm in the test rig, the load was applied at the outer end of the
slotted hole for each test sequence (maximum lever arm). During loading, the deformation
of the torque arm was detected via the angular displacement γ. In this setup, the torque
arms should withstand at least 20 Nm, whereby failure is indicated either by cracking
or a dislocation angle of 30◦. For each process chain, five torque arms were tested. In
addition, original torque arms were tested and compared to the manufactured ones using
PBF-LB/M and ADAM. The force was applied hydraulically with a constant testing velocity
of 1◦ per second.
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3. Results
3.1. Resource Requirements
3.1.1. Lead Time

The lead time required to obtain five finished torque arms over the individual process
steps is shown in Figure 7 for the PBF-LB/M and ADAM process chain. The lead time until
completion of the five torque arms in the entire PBF-LB/M process chain is 4 h and 19 min,
with the actual PBF-LB/M process accounting for 54% of the total time. The remaining
process steps in the PRE and POST process phases range from 6 to 48 min. In contrast,
the lead time until completion of the five torque arms in the ADAM process chain is 50 h
and 25 min, which is nearly 12 times longer compared to the PBF-LB/M process chain.
This increased time requirement is mainly due to the process steps of solvent debinding
(20.1 h) and thermal debinding, sintering (24 h), which together account for about 88% of
the total time until completion of the torque arms. The EAM process itself takes about 5 h
and 48 min, which is approximately 150% longer compared to the PBF-LB/M process.
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Figure 7. Absolute and proportionate time for the completion of five torque arms for the PBF-LB/M
and ADAM process chain.

3.1.2. Energy Demand

Figure 8 shows the energy consumed for the process chain of PBF-LB/M and ADAM.
When manufacturing the torque arms using the PBF-LB/M process chain, 95% of the energy
demand, amounting to 10.2 kWh, is attributed to the PBF-LB/M process itself.

For the manufacturing of the torque arms using the EAM process, only 28% of the
energy demand compared to the PBF-LB/M process is needed. However, the energy
demand of the ADAM process chain (56.1 kWh) exceeds that of the PBF-LB/M process
chain (10.5 kWh) by more than five times. This is due to the energy-intensive process steps
of solvent debinding (18.3 kWh) and thermal debinding, sintering (35 kWh).

3.1.3. Cost of Resource Consumption

The quantity and the costs of the main resources used to manufacture the torque arms
are listed in Table 4 for the PBF-LB/M process chain and in Table 5 for the ADAM process
chain. The conversion of the quantity of resources into costs was based on the purchase
prices of the respective resources. Furthermore, the costs of the AM machines are listed in
both tables, which result from their runtime and the respective machine hourly rate. As the
AM machines are responsible for around 80% of the total investment costs in both process
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chains, the costs of the remaining machines and peripherals are taken into account via the
machine hourly rate of the AM machines.
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Figure 8. Absolute and proportionate energy demand for the completion of the five torque arms for
the PBF-LB/M and ADAM process chain.

Table 4. Quantity and costs of main resources and AM machine needed for manufacturing five torque
arms using the PBF-LB/M process chain.

Resource Amount Absolute Costs

Metal powder
104 g resp. 23.6 cm3

(components)
22.36 EUR

148.3 g resp. 56.2 cm3

(losses)
31.88 EUR

Process gas filter 0.02 pieces 1.80 EUR
Coating lip 1 piece 7.70 EUR

Argon 640 L 1.82 EUR
Energy demand 10.49 kWh 2.78 EUR

PBF-LB/M machine 3.61 h 72.58 EUR
Total 140.92 EUR

Table 5. Quantity and costs of main resources and AM machine needed for manufacturing five torque
arms using the ADAM process chain.

Resource Amount Absolute Costs

Metal-filament D2 67.2 g resp. 16.8 cm3

(components)
26.04 EUR

Ceramic release filament - -
Debinding fluid Novec 72 DA approx. 0.2 L 9.56 EUR

Argon 700 L 1.99 EUR
Argon-mix gas 300 L 4.05 EUR

Exhaust gas filter 0.1 piece(s) 2.50 EUR
Gas purification filter 0.02 piece(s) 14.00 EUR

Energy demand 105.01 kWh 27.83 EUR
EAM machine 5.97 h 68.11 EUR

Total 141.12 EUR

It should be noted, here, that in the PBF-LB/M process chain, in addition to the direct
losses of metal powder (e.g., as support structures or as metal powder in the process gas
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filter), further losses can occur in the downstream sieving process of the metal powder
present in the PBF-LB/M machine, which were not considered in this study.

In the PBF-LB/M process chain, the costs of the PBF-LB/M machine account for the
highest proportion, representing 51.5% of the total costs. Material costs are primarily driven
by the expense of metal powder, which constitutes 79% (54.24 EUR) of the total. However,
only 41.2% of the metal powder used actually ends up in the final components. The majority
of the metal powder is lost during handling and in the form of support structures, spatter,
and agglomerates during the PBF-LB/M process. These losses significantly contribute to
the overall costs.

The cost of manufacturing the five torque arms in the ADAM process chain is 141.12 EUR
slightly higher than in the PBF-LB/M process chain. At 48.3%, the machine costs are
proportionately similar to the PBF-LB/M. The material costs are mainly attributed to the
required metal filament (35.7%), debinding fluid (13.1%), the proportional use of the gas
purification filter (19.2%), and the energy consumption (20.4%).

3.2. Testing of the Torque Arms

The resulting maximum torque for each tested configuration is plotted in Figure 9
with its standard deviation. The plot shows that the deviations between the measurements
are small in all cases, while it is slightly higher for PBF-LB/M.
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Figure 9. Comparison of the measured maximum torque for the reference torque arm and the ones
manufactured with PBF-LB/M and EAM. For each configuration, five specimens were tested.

Based on the results in Figure 9, both AM-techniques show significantly higher values,
which is attributed to the material change from aluminum, for the reference torque arm
manufactured by milling, to titanium for the PBF-LB/M configuration and steel for the EAM
configuration, respectively. As the objective was to use the standard process parameter
for both AM-techniques, the PBF-LB/M configurations were printed solid, while for the
ADAM parts a sparse triangular infill with approximately 37% relative density was used.
Thus, it is reasonable that the PBF-LB/M titanium torque arm slightly predominates the
ADAM steel configuration.

4. Discussion

Defects in e-bikes can be attributed to a large number of components, which is why
additive manufacturing offers a promising opportunity to manufacture the required spare
parts economically and quickly in small quantities. In this study, the additive manufac-
turing of five identical torque arms was examined as an application. A realistic load test
demonstrated the required strength of the additively manufactured spare parts. By using
different materials compared to the original component, an increase in strength of at least
218% was achieved.

The lead time for the torque arms depends heavily on the additive manufacturing
process selected. With the PBF-LB/M process chain, the time required to manufacture
five torque arms was 4.3 h, while with ADAM it took 50.4 h (see Figure 10). Single-part
production of the torque arms would reduce the production time. In the PBF-LB/M process
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chain, the production time is mainly due to the layer-by-layer application of the metal
powder and the exposure of the component cross section. Individual part production
significantly shortens the exposure time due to the reduced component volume. This
also applies to the EAM process. However, the EAM process only accounts for around
12% of the entire ADAM process chain, which means that the lead time for the torque
arms is hardly affected. Most of the time in the ADAM process chain is accounted for
the downstream process steps solvent debinding and thermal debinding, sintering. These
process steps depend heavily on the number of components to be manufactured. At full
capacity, 13 torque arms could be debindered and sintered simultaneously, and thus this
has a significant effect on the runtime per part, but not the lead time until the first part
is finished.

Sustainability 2024, 16, x FOR PEER REVIEW 14 of 19 
 

13 torque arms could be debindered and sintered simultaneously, and thus this has a sig-
nificant effect on the runtime per part, but not the lead time until the first part is finished. 

 
Figure 10. Time to completion of five torque arms using the process chains of PBF-LB/M and ADAM. 

The energy consumption to produce the torque arms heavily depends on the selected 
AM process. In the PBF-LB/M process chain, the PBF-LB/M process itself accounts for 95% 
of the energy consumption. Reducing the number of components to be manufactured re-
sults in lower energy consumption, as the exposure time and production time would be 
reduced. In the ADAM process chain, the total energy consumption is about ten times 
higher than in the PBF-LB/M process chain (see Figure 11). In total, 97% of the energy 
consumption in the ADAM process chain is accounted for the process steps solvent 
debinding and thermal debinding, sintering. The process is economically viable when 
both the debinding station and sinter furnace are fully utilized, as the energy required for 
solvent debinding and thermal debinding, sintering, is independent of the number of 
components. Hence, single-part production would have hardly any effect on the absolute 
energy consumption. In contrast, batch production would reduce energy consumption 
per component significantly. 

  

0

10

20

30

40

50

60

PRE IN POST total

tim
e 

in
 h

PBF-LB/M ADAM

Figure 10. Time to completion of five torque arms using the process chains of PBF-LB/M and ADAM.

The energy consumption to produce the torque arms heavily depends on the selected
AM process. In the PBF-LB/M process chain, the PBF-LB/M process itself accounts for
95% of the energy consumption. Reducing the number of components to be manufactured
results in lower energy consumption, as the exposure time and production time would
be reduced. In the ADAM process chain, the total energy consumption is about ten
times higher than in the PBF-LB/M process chain (see Figure 11). In total, 97% of the
energy consumption in the ADAM process chain is accounted for the process steps solvent
debinding and thermal debinding, sintering. The process is economically viable when
both the debinding station and sinter furnace are fully utilized, as the energy required
for solvent debinding and thermal debinding, sintering, is independent of the number of
components. Hence, single-part production would have hardly any effect on the absolute
energy consumption. In contrast, batch production would reduce energy consumption per
component significantly.
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Figure 11. Energy demand for the manufacturing of the five torque arms by the process chains of
PBF-LB/M and ADAM.

The costs for the additive manufacturing of five torque arms are similar for both
processes, but slightly higher for the ADAM process chain. The material costs for both
additive manufacturing processes are attributable to different cost factors (see Figure 12).
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In the PBF-LBM process chain, almost 80% of the material costs are attributable to the
consumption of the raw material. In the ADAM process chain, this cost share is around 35%.
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Figure 12. Breakdown of costs for the process chains of PBF-LB/M and ADAM.

A major advantage over conventional manufacturing is that the complexity of a
component has little influence on the additive manufacturing process. However, as the
complexity increases, the material usage can also increase due to the need for support
structures. In the ADAM process chain, this would require the use of ceramic release
filaments. The fabrication of support structures would consequently increase the process
time and energy demand in both manufacturing routes. Nevertheless, by appropriately
orienting the component within the build chamber, the need for support structures can be
reduced to some extent, even for complex component geometries.

The PBF-LB/M process chain offers advantages in terms of early component availabil-
ity. The ADAM process chain has advantages for larger quantities, as the post-processing
systems of the downstream process steps were only slightly utilized in this application. The
machines required to manufacture the torque arms are expensive for both process chains,
which is why internal production in bicycle repair shops only makes economic sense when
capacity utilization is high. In addition, the implementation of additive manufacturing
processes in bicycle repair shops requires overcoming further challenges. In the case of
powder bed fusion, particular attention needs to be given to occupational safety due to the
hazards associated with metal powders [43]. As for material extrusion, the influence of
debinding and sintering on part quality is still relatively unexplored [14]. Overall, further
research is needed to fulfill the “First Time Right” approach, which is essential for the
economic viability of additive manufacturing in bicycle repair shops.

5. Conclusions

The sharp rise in traffic volumes in the field of electromobility is leading to a higher
demand for spare parts. In particular, the components that distinguish e-bikes from
conventional bicycles pose major challenges for bicycle workshops. This is particularly
due to the fact that these components are often manufacturer and application-specific, and
are only available as spare parts to a limited extent due to the high number of variants.
In this study, the production of a torque arm was used to investigate the extent to which
additive manufacturing processes are suitable to produce function equivalent spare parts
for metal components in the field of electromobility. To this end, five torque arms were
manufactured using the two metal-based additive manufacturing processes, powder bed
fusion of metals using laser beam (PBF-LB/M) and atomic diffusion additive manufacturing
(ADAM). The time to completion, energy demand, and material and machine costs were
recorded along the process chains of both additive manufacturing processes. It was found
that the lead time and energy demand depended heavily on the additive manufacturing
process selected, although the material and machine costs were almost the same for both
additive manufacturing processes. To test the loadable maximum torque of the torque arm,
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a practical test rig was set up and used to investigate the torque arms. Furthermore, the
loadable maximum torque of the additively manufactured torque arms was compared with
that of original torque arms. This analysis showed that the loadable maximum torque of
the additively manufactured torque arms exceeded that of the original torque arm, and is
therefore suitable for use in e-bikes.

In order to comprehensively evaluate the economic viability of additive spare part
manufacturing, future studies should provide a more detailed breakdown of the lead time
along the process chain, with separate assessment of personnel time and machine time.
As environmental protection is increasingly becoming a focus of research the ecological
aspects should also be considered simultaneously alongside the economic impact of ad-
ditively manufactured spare parts. Since the time required for personnel and machines,
as well as material costs, influence economic efficiency and thus also the use of additive
manufacturing processes, a methodical approach to reduce these is necessary for future
work. Furthermore, there is a need to address the challenges related to occupational safety,
achieving “First Time Right” results, and enhancing knowledge for the implementation of
additive manufacturing processes in bicycle repair shops.
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