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Abstract: Off-grid electrification planning increasingly recognizes the importance of productive use
of electricity (PUE) to promote community value creation and (financial) project sustainability. To
ensure a sustainable and efficient integration in the community and energy system, PUE assets must
be carefully evaluated to match both the community needs and the residential electricity demand
patterns. We propose a novel methodology interlinking qualitative interviews, statistical analysis and
energy system modeling to optimize decision making for PUE integration in off-grid energy systems
in rural Madagascar by aligning relevant PUE effectively with anticipated residential electricity
demand patterns based on socio-economic determinants of the community. We find that a possible
contribution of the PUE to reducing the electricity costs depends significantly on three factors: (1) The
residential electricity consumption patterns, which are influenced by the socio-economic composition
of the community; (2) The degree of flexibility of (i) PUE assets and (ii) operational preferences
of the PUE user; and (3) The capacity of community members to finance and operate PUE assets.
Our study demonstrates that significant cost reductions for PUE-integrated off-grid energy systems
can be achieved by applying our proposed methodology. When matching PUE and residential
consumption patterns, the integration of PUE assets in residential community energy systems can
reduce the financial risk for operators, provided the PUE enterprise operates reliably and sustainably.
We highlight that the consideration of local value chains and co-creation approaches are essential
to ensure the energy system is addressing the community’s needs, creates value for the community,
enhances the project’s financial sustainability and is achieving the overall objectives of decentralized
energy system planning.

Keywords: rural electrification; productive use of electricity; off-grid; community energy; energy
system planning; sustainable development; key informant interviews; energy system modeling;
statistical analysis; co-creation

1. Introduction
1.1. Background and Theoretical Foundations

Ensuring reliable and affordable access to electricity is paramount for households and
communities to attain fundamental capabilities [1]. The useful energy services associated
with adequate access to electricity are a cornerstone for economic development [2,3] but are
also indispensable for advancement across diverse dimensions, i.e., education, nutrition,
sanitation and health [4–6]. Furthermore, access to electricity is a socio-technical imperative,
fostering social innovation, which is pivotal in facilitating a low-carbon energy transition,
promoting civic empowerment and addressing overarching social objectives [7].

On the global political stage, the acknowledgement of the critical role of universal
access to electricity is reflected in target 7.1 of the Sustainable Development Goals (SDGs),
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adopted by the United Nations in 2015 [8]. While notable progress has been documented
in the preceding decade, the realization of universal electrification by 2030, as stipulated
within SDG 7.1, remains at a considerable distance. Globally, more than 675 million people
lacked access to electricity in 2021 [9]. Rural regions are disproportionally affected, with
eight out of ten people without access living in rural areas [9]. In Sub-Saharan Africa, where
567 million people lacked access to electricity in 2021, the disparity in electricity access rates
between urban and rural areas has risen in recent years [9]. This trend can be attributed to
the financial and technical challenges of reaching the rural population. In rural areas, which
are only sparsely populated and where purchase power and electricity consumption can
be low [10], extending the national power grid to supply electricity is often economically
not viable [11]. Here, isolated renewable-based off-grid systems can be a cost-efficient and
sustainable solution to enable electricity access to communities (e.g., [11–14]) and provide
communities with a basis for conducting activities, which enhance development across the
various dimensions interlinked with electricity (see, e.g., [2,6,10,15]).

More granular research on the interlinkage of access to electricity and development on
the micro-level (see, for example, [16]) has shown that while access to electricity via off-
grid energy systems can stimulate development in rural communities, access to electricity
alone does not guarantee development. One must note that the literature assessing the
correlation between electricity access and development often identifies economic metrics as
a central effect measure for development, e.g., household income (e.g., [16,17]). Given the
significance of household income for causally related household activities, which may lead
to changes evoking development in other dimensions [17], this is a meaningful indication.
Nevertheless, evidence of projects, in which access to electricity in rural locations was
enabled and no direct effect on income or well-being was observed, is abundant (e.g., [18]).
In fact, the impact of electrification projects on enhanced development (i.e., increasing
economic activities or household income) seems to crucially depend on the community’s
choice of how to use the electricity within the scope of action, which is facilitated by the
local energy system. Thus, the literature evidence is strong that the outcomes and impact of
electrification projects (note that in this paper, we understand—as per the logical framework
theory—“outcomes” as the project’s effects at the target-group level, as opposed to “impact”
as the project’s effects at the societal or regional level) depend on (i) the ability and choice
of the community to use the electricity for productive activities [19,20]; (ii) external factors
supporting the community in their capacity to utilize electricity for productive activities, e.g.,
finance, training, awareness, etc. [15,17]; and (iii) the degree to which the energy system
design facilitates the community´s choices.

The use of electricity for productive uses is commonly referred to as productive use of
electricity (PUE), as opposed to consumptive use of electricity in households [19]. Such PUE
commonly comprises electrically powered machinery used by the community, according
to their operational preferences, and may be directly integrated into the electricity supply
system, which serves residential loads of the community. Thus, the PUE appliances and
the user of the PUE asset directly influence the operational requirements of the electricity
supply system and its financial viability. Energy system planners (note that we use the term
“energy system” instead of “electricity system” to account for potential additional energy
vectors in the system) pay increasing attention to PUE system integration and PUE user
behavior. In addition to supporting the stimulation of economic and social development
of the community or individual user [15,17], PUE appliances can benefit the financial
viability of the energy supply system. PUE appliances typically consume more energy
than residential appliances in rural villages [21,22] and may therefore provide a reliable
(and relatively larger) source of income for the system operator compared to domestic
loads (see the relevant discussions on “anchor loads” as relatively large non-domestic
loads in [23]). Prominently, the financially viable operation of off-grid energy supply
systems serving residential customers with a low electricity consumption poses significant
challenges. Including PUE assets as anchor loads can increase the energy system utilization
rate and provide a predictable high off-take guarantee, which in turn improves the projects’
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bankability [21] and de-risks electrification projects for the private sector [10]. One must
note that the prevailing narrative in the relevant literature that PUEs represent a reliable and
relatively higher source of income for rural electrification operators (“anchor load”) is not
universally applicable and depends on the respective context. In rural businesses, which
are often operated by single informal entrepreneurs and may not be well organized, the
operation of PUE may in fact be erratic. In addition, the continuous electricity demand for
the PUE asset depends on the economic success of the associated business. The dependency
poses a financial risk to the energy system operator. This is especially relevant in contexts,
which are characterized by short lifetimes of businesses. Nevertheless, in communities
with limited financial capacity to invest in stand-alone energy systems, which power a PUE
asset, the systematic planning of integrated energy systems serving both PUE assets and
residential loads is imperative for the utilization of electricity for productive uses and the
development of associated capacities within the community.

The essential aim of off-grid energy system planning is to design a system, which
adequately addresses the electricity-related needs of the community it serves. In this, the
system must be financially viable to be sustainably operated and maintained to ensure
its proper function. Figure 1 describes the basic dynamics and interactions between local
parties involved in and relevant to the description of the considerations, which guide the
planning of an off-grid energy system integrating domestic household loads and PUE loads.
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Figure 1. Conceptual considerations for the integration of PUE and household electricity demands in
off-grid energy system planning.

The community is composed of individual households using the energy system. These
households have individual time-variable preferences and capabilities (i.e., assets) to utilize
electricity. Within the community, there are needs for services, some of which can be
supplied by specific PUE, which can be integrated in the local electricity supply system.
The electricity and service needs are highly context-specific. The electricity utilization
preferences of the individual households and the operational preferences of the PUE
operator determine the principal design requirements for the integrated energy system. For
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the energy system and the PUE, two roles are relevant, namely the role of operation and the
role of financing and ownership. These roles may be assumed by the community, a single
member of the community or an external entity, including the energy system planner.

We make use of Figure 1 to both guide the discussion of existing literature and its
respective underlying perspectives and to describe the deliberate assumptions we made
in our analysis. In research and in the practical implementation of a project, the planning
rationale deviates from a generalized perspective. For context-specific relevance, it is useful
to deviate from a generalized consideration, presume system design choice and make
context-specific assumptions. The assumptions made may be a result of limitations of
the available data, e.g., the household electricity demand, or they may result from the
intention to study certain underlying dynamics or the consequences of specific system
choices, e.g., applicable business models. In practice, the basis for decision making is, in
many cases, the financial viability of the energy system, as rural electrification efforts are
often driven by the private sector, which requires a cost recovery business model. It is
important to note that this constitutes a specific perspective, namely system financing and
operation. Accordingly, the current literature investigating the integration of PUE in off-grid
systems supplying electricity to household loads often and usefully considers the financial
perspective and evaluates the integration of PUE in off-grid systems based on its expected
financial impact. Given the complexity and the various possible constellations of interaction
and behavior of the parties involved in the local energy system, as depicted in Figure 1, it
is no surprise that the existing literature finds contradictory results regarding the financial
benefits of integration of PUE in off-grid energy systems. For example, Booth et al. [24], in
a hypothetical community micro-grid scenario (peak load of 5.7 kW), find that integrating a
single 10 kW maize mill could either decrease the cost of electricity provided by the system
by 14% or increase it by 7% compared to a system only serving domestic loads, depending
on the mill’s daily and seasonal operational parameters (notably, the authors exclude the
costs of the mill from their calculation, assuming a community member or external party
is responsible for the financing of the PUE asset). Specifically, the authors find that the
economic impact of integrating the maize mill varies across “operating scenarios”, which
denote different usage patterns of the mill across days of the week or seasons of the year.
Similarly, van Hove et al. [21], studying the economic impact of integrating various PUEs
in mini-grids serving household loads, find that the impact is determined by the usage
patterns of the PUE. Seasonally used PUEs in particular may offer only little improvements
in the system costs, as they require additional energy system assets to meet peak demand
during the high season, which are under-utilized during the low season [21]. These two
examples (for other similar examples, see [25,26]) support our suggestion that in order
to ensure economic improvements in off-grid electricity supply via integration of PUE,
the energy consumption patterns of the PUE appliances (notably determined via usage
patterns and community preferences) need to fit into the household residential electricity
consumption patterns to avoid costly additional production (and storage) devices being
required to power the PUE, aside from the residential loads.

1.2. Motivation and Ambition

Supported by this evidence, we determine that the economic benefit of integrating
PUE in energy systems will only be substantiated for all parties involved when (i) the PUE
asset integrated in the system addresses the service needs of the community, thus being
used and consuming electricity sustainedly, (ii) the electricity load patterns of the PUE
and residential loads—each determined by the individual community member using the
respective load—enable operational synergies; and (iii) the energy system infrastructure is
sufficiently flexible to accommodate varying demand conditions (i.e., measures to efficiently
add or remove production, storage and distribution assets). Thus, energy system planners
integrating PUE in off-grid systems simultaneously serving residential loads are challenged
in identifying the PUEs, which are relevant to fulfilling the service needs of the local
community (Challenge I), and identifying PUEs with load profiles, which do not conflict
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with the domestic household load profiles (Challenge II). While the first issue may be
solvable by observing local value streams of the communities, the latter poses a significant
challenge. To identify a well-fitting PUE for a residential system, practitioners often
integrate PUE ex post within existing residential off-grid energy systems to use historical
data of the system under consideration or similar systems to identify PUEs matching the
current residential energy consumption. However, historical data of residential users in
off-grid energy systems are often not available, not generalizable [27] or require complex
processing. Therefore, practitioners rely on trial and error, often ending up with inefficient
solutions and energy systems ill-suited to their application [27]. Further, ex post integration
of PUE in existing residential systems may hinge on the decisions made in conceptualizing
the residential system, which leads to inefficient path dependencies for the entire PUE
system. For example, if the primary energy generation asset is already fixed, it may
be inefficient to install additional production equipment required to supply the PUE
appliance, which could potentially prevent the simultaneous scaling of the residential
and PUE systems (Challenge III). Third, it is well known that the usage patterns of PUE
appliances, dictated by the activities and behavior of residents using the appliances, can
affect the requirements of the system components, scaling, and therefore, economics [21].
Co-creating an energy system with the PUE user and residential energy system users (see
Figure 1) may unlock cost savings, which cannot be achieved under ex post integration of
PUE systems. While such co-creation approach is increasingly discussed in the academic
literature (see, e.g., [28,29]), it is rarely used in practice. However, in fact, energy system
users—i.e., community members—are implicitly included in system conceptualization by
energy system planners at the beginning of the conceptual design of energy systems (e.g.,
by assuming consumption patterns based on previous experience, etc.), but they are not
comprehensively integrated in the planning process. The potential of fully integrating
co-creation approaches in energy systems is yet to be explored (Challenge IV). A maximum
participation of (future) users—as will be discussed in this paper—can contribute to optimal
alignment of the various electricity consumptions in a system—dictated by user behavior—
with the planned energy system assets to minimize the energy supply costs and, as a result,
also minimize the possible energy costs for the users.

Therefore, in this paper, we propose a methodology to tackle the prevailing challenges
in energy system planning for off-grid electricity systems to cost-efficiently design off-
grid energy systems, including PUE, improve the project’s financial viability and increase
the potential contribution of electricity access to enhance the development of electrified
communities. We therefore aim to address the following challenges:

Challenge I: Identify a PUE appliance, which fulfils the service needs of the local
community and guarantees sustained usage and electricity consumption;

Challenge II: Identify PUE appliances with load profiles, which do not conflict with
the residential load profiles, with the aim to improve the financial viability of the project
via PUE integration;

Challenge III: Design an energy system, which serves both residential loads and the
PUE appliance to make use of synergies;

Challenge IV: Showcase the potential for energy system cost reduction, which can
be achieved by matching the user behavior of PUE and of household appliances when
co-creating energy systems with their users.

Our methodology combines qualitative interviews, advanced statistical analysis and
energy system modeling. First, in a community in Madagascar, we identify the relevant
PUE assets, which address the community’s service needs, the associated value streams and
the associated operational patterns. Next, we use the historical data of residential nanogrid
energy systems to study the development of electricity consumption over time, identify
the statistically significant predictors of electricity consumption and derive representative
load profiles. Subsequently, we apply energy system modeling to model the scenarios of
integrating PUE appliances with representative residential load profiles, which represent
socio-economic characteristics, and optimize the models with regard to the lowest total
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system costs, including the investment decision in energy system assets and PUE and
their dispatch. We evaluate the results based on key economic and technical metrics. By
interpreting the key figures, we can derive statements regarding the suitability of matching
different PUE appliances with households based on their socio-economic and demographic
description. In addition, we can observe the distributional effects of cost sharing between
residential electricity users and PUE users across different PUEs.

The methodology was developed in a case study of a rural village in northern Mada-
gascar, and two PUE appliances were exemplarily assessed (an electric rice huller and a
freezer). We provide evidence from semi-structured interviews with local communities to
calibrate the model and derive additional qualitative evidence of PUE integration in energy
system planning.

2. Materials and Methods

We first provide an overview of the setting of our case study (Section 2.1). Subsequently,
in Section 2.2, we describe the generalized and replicable methodological workflow of our
analysis. We explain the respective methods and the data used in each step of the workflow
in detail within Sections 2.2.1–2.2.5.

2.1. Case Study

The methodology was developed based on a case study encompassing data from the
village Ambohimena in the Diana region in northern Madagascar. The overall electricity
access rate in the Diana region is estimated at 5% (national average overall: 35%; rural: 10.9%
in 2021) [30]. Increasing electrification in the Diana region is challenged by the predominant
settlement patterns. Aside from a few densely populated (and electrified) cities, the
population density is low, dominated by small villages with closely built households. Hence,
small-scale grids connecting a few households are seen as an economically reasonable
pathway for electrification.

Ambohimena is near mangrove forests and is set along one main road, which is
unpaved and connects the coast with the city Ambanja. In contrast to other villages in
the region, the village is accessible via car and motorbike during most of the year. In
Ambohimena, electricity is available primarily through the services of the locally based
company Nanoé, which offers electricity supply via direct current (DC) PV-battery hybrid
nanogrids. The nanogrids typically connect 3–5 households with 100–200 Wp installed PV
and 90 Ah or 130 Ah battery storage capacity. Ambohimena was chosen as a case study
because (i) the historic residential electricity consumption patterns of nanogrid users are
available; (ii) the socio-economic data of residents are available; (iii) the residents of the
village could be interviewed during a field trip conducted in October and November 2022.

2.2. Methods

As part of this study, a novel methodological workflow was developed to evaluate dif-
ferent PUEs’ technical and economic fit with residential household energy consumption pat-
terns based on the residential community’s socio-economic and demographic composition.

Figure 2 illustrates the proposed methodological workflow. The workflow is divided
into five steps, for each of which the applied methods and integrated data are described in
detail in dedicated subsections (Sections 2.2.1–2.2.5).
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2.2.1. Consumption Data Analysis

Our methodology relies on thoroughly assessing the historical electricity consumption
patterns of a representative residential community connected to a nanogrid. The con-
sumption data analysis aims to identify (i) the time-dependent determinants of residential
electricity consumption patterns (based on power and energy demand in an hourly resolu-
tion) and (ii) the socio-economic and demographic determinants of electricity consumption
patterns. In total, 107 village residents currently connected to nanogrids were chosen as
the sample size for the study due to the consistency of electricity consumption data and
socio-economic data. The following data were used:

• Electricity consumption data: In order to reconstruct the historic hourly electricity
consumption patterns, the sample’s electricity current measurements (10 min reso-
lution) between January 2018 and December 2021 (earliest data point: 10 February
2018; latest data point: 1 December 2021) were multiplied by the measured voltage
(hourly resolution) and interpolated. The data were cleaned to cover for eventual
reboot events of the electricity consumption logging system or other missing values
and passed to a Python-capable environment for further processing.

• Socio-economic and demographic data: We used socio-economic data from irregularly
conducted household surveys undertaken by Nanoé in 2018–2021 for the purpose of
assessing potential nanogrid clients. As the surveys at that time were not intended to
be used for a thorough statistical treatment to identify the socio-economic predictors
of energy consumption patterns, only a few useful characteristics were assessed
(this represents a major aspect to be improved in future work within this research).
However, in order to develop the methodology, we relied on these secondary survey
data. The surveys were conducted with any household resident available, with the
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option to reject the answer to any question. The characteristics assessed (indicating
the descriptive statistics of valid answers only within brackets) included

# Housing occupant status (74.7% owners, 5% tenants);
# Number of adults (median (Md): 2);
# Number of children (Md: 2);
# Monthly income (Md: MGA 150,000~EUR 30);
# Housing wall type (Ravinala wood (40%), wood–concrete structure (18%),

concrete–stone (22%), tin (2%));
# Housing roof type (tin (73%), leaves (9%), concrete (1%)), floor type (concrete

(77%), board (4%));
# Appliance ownership (LED bulb, LED spot, TV, USB phone charger, 12 V plug);
# Profession of the client (grouped into trader (22.2%), farmer (31.6%), employee

(6.8%), other (6.8%), public lighting (32.5%)). Notably, “public lighting” was
included as a “profession” for the stated purpose of electricity use in the
client data.

In addition to the socio-economic and demographic data, the historical tariff subscrip-
tion option of residents was identified from the records. Notably, to mitigate the data
availability limitations within tariff records, we applied a machine-leaning algorithm to
calculate tariff subscriptions based on a multi-class problem. A detailed description of the
method and its application in our analysis is available in the public project report [31]. For
a description of the tariffs, see Appendix A Table A1. For a more extensive presentation and
investigation of the descriptive statistics of our sample group—and the entire Ambohimena
village members—we refer to our related public project report [32]. The report also includes
a visual representation of the descriptive statistics of the clusters identified during cluster
analysis (see Section 3.1.1).

We used advanced statistical analysis to identify the socio-economic and demographic
determinants of electricity consumption patterns, including preferred tariffs. First, we
applied cluster analysis to historical electricity consumption data to identify the common
clusters of representative annual electricity consumption patterns. K-means clustering was
used as the clustering method. K-means clustering is a machine-learning algorithm used
to partition a given dataset into k clusters based on the similarity of the data points [33].
It effectively identifies similarities between numerical data, defining distinct groups of
patterns [33]. K-means clustering does not require uniform cluster densities and allows
for multiple dimensional data [34]. Before applying the sensitive-to-outliers k-means
algorithm, the data must be cleaned of the outliers and re-scaled. Common min–max nor-
malization was applied; compared to other kinds of cluster analyses, the main shortcoming
of the method is the challenge of pre-determining the appropriate number of clusters [34].
However, this drawback can be overcome by calculating similarity measures (silhouette
score) [35]. Given that the data comprised numerical data, we used Gower as a dissimilarity
measure (for mathematical equations, see [36]).

Having established representative clusters of the annual electricity consumption
patterns within the representative sample group, we aimed to identify the socio-economic
and demographic characteristics, which could be used to predict the electricity consumption
behavior of a specific community resident. Thus, we searched for statistically significant
predictors of cluster membership. Therefore, we used the chi-square test or Fisher’s
exact probability test (depending on the type of underlying variable) to identify the socio-
economic characteristics, which occurred significantly often within the distinct load profiles.
The chi-square test of independence, a non-parametric method, assesses the potential
association between two categorical variables in a contingency table [32]. The test involves
organizing the variables into rows (variable i) and columns (variable j), with cells containing
the total count of cases for each category pair. By comparing the observed counts (oij) with
the expected counts (eij) for the sample size, the significant difference between the expected
and observed counts can be calculated (for mathematical equations, see [37]). If the resulting
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X2 is greater than the redefined critical X2, the null hypothesis of independent variables
may be rejected [32].

Like the chi-square test, the Fisher exact test can assess the significance of the relation-
ship between two categorical variables. The test calculates the probability of obtaining the
observed distribution of frequencies or more extreme ones, assuming that the row and col-
umn marginal totals are fixed (i.e., the marginal totals are the same as those in the observed
data). The Fisher exact test provides an exact p-value, making it suitable for situations
where the chi-square approximation might be unreliable due to small sample sizes [38].

The chi-square test and the Fisher exact test assess the significance of the relationship
between two variables. However, to quantify the strength of the significance, we calculated
Cramer´s V, which is a normalized version of the chi-square statistic. Cramer´s V effect
size assumes values between 0 and 1 with increasing relationship strength. Values up to
0.1 indicate weak association; values around 0.3 indicate moderate association; and values
around 0.5 or higher indicate strong association [36]. In addition, it is determined whether
the variables are characteristic of a single group, thus allowing it to be distinguished from
the other two.

As a final output of the consumption data analysis (Step 1), we obtain a set of represen-
tative annual residential electricity consumption load profiles, which relate to the residential
community’s socio-economic and demographic characteristics (including preferred tariffs).

2.2.2. Productive Use of Electricity Analysis

As a critical challenge when aiming to integrate PUE in off-grid energy systems, the
services needed by the local community and the respective PUE asset delivering the service
must be identified. On the one hand, this ensures that the PUE asset will be operated,
and electricity will be consumed sustainedly. On the other hand, the identification of
service needs is essential to ensure value creation for and improved development of the
local community. Thus, the PUE services and assets, which are relevant for the given
context, i.e., significantly intertwined within existing value streams, must be identified and
characterized. Further, the potential usage patterns of the PUE must be assessed, including
the factors influencing possible alterations to usage patterns.

In the case under investigation, a market assessment revealed rice hulling and ice
production as relevant activities to be targeted with PUE due to their current dominance
and importance in the local value chains. A DC rice huller and a DC freezer were identified
as the respective relevant PUEs, technically feasible for integration into the nanogrids.
The required characteristics of the technical assets were identified during semi-structured
interviews with key informants in the study area—who already owned the respective assets
or fossil alternatives (i.e., diesel-based rice hullers)—local market analysis and previous
market assessments conducted by Nanoé. Semi-structured interviews with open-ended
questions based on the guidelines of Witzel [39] were introduced as a tool for information
acquisition to understand the context of the study and the complex correlation of local
issues. The interviews were used to capture (i) the status of PUE, (ii) the prospects of PUE,
(iii) local value chains, (iv) community structures and—essentially—(v) the time-dependent
usage patterns of PUE. A detailed evaluation of the interviews can be found in the publicly
available project report of the ENERGICA project [31].

The load curve of the DC freezer was obtained from historical consumption data of a
freezer (type: Steca PF166-H [40]) operated in the Ambohimena village, used to produce ice
and conserve juice. The load curve of the rice huller was estimated by observing the usage
patterns and product flows of currently used diesel-based rice hullers. The interviews
suggested a substantial seasonal variation in the use of the rice huller, ranging from 1 h
to 2 h a day in the rainy season up to 9 h a day in June, which is the peak month of the
harvest season. Based on the monthly production of rice hullers assessed via a survey
by Nanoé, we interpolated the required rice to be processed in every respective hour of
the year. We further assumed that the operation of the rice huller would start at 6 am, as
suggested by one interviewee, and finalize once the calculated output of the specific day
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has been reached (with a 3 h break between 11 am and 2 pm). Fitting the load curve in
our hourly based model, the rice huller would, for example, produce 84 kg paddy rice/h
between 6 am and 8 am in January but 71 kg/h between 6 am and 11 am and again from
2 pm until 6 pm in June. The PUE’s average daily electricity load patterns are illustrated in
Appendix A Figures A1–A3.

Due to time restrictions and the language barrier, it was only possible to record to a
limited extent which factors, in addition to external influences, determine user behavior
and to what extent user behavior is therefore variable. The answers received suggested
that the user behavior of the rice huller is largely determined by seasonal weather and
vegetation cycles but otherwise offers little flexibility.

We used Microsoft Excel Version 2403 to transfer the information into numerical data
and process the data. As a final output of the PUE analysis, we established (i) the time
series of the assumed electricity consumption over the year (8760 timesteps) and (ii) the
technical and economic characteristics of the PUE assets as numerical data.

2.2.3. Scenario Formulation

In the scenario formulation, we performed the matchmaking of residential electricity
consumption compositions and PUE asset electricity consumption patterns, as illustrated
in Figure 3.
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profile compositions (C1–C5) with different PUE assets (Base, PUE1–PUE3). Each electricity demand
profile comprises five residential loads.

We first developed five distinct sets of residential nanogrids reflecting distinct residen-
tial community compositions, as explained in Section 3. These differ in the constellation of
the five residential load average profiles representing the respective electricity consumption
pattern profile cluster identified during cluster analysis.

The five residential load sets were matched with different PUE and respective load
profiles. With this, we could derive valuable information on the fit of a PUE in specific
residential energy systems, reflecting residents’ distinct socio-economic and demographic
characteristics. Therefore, we matched four PUE integration scenarios with the five dis-
tinct residential compositions. The PUE integration scenarios consisted of (1) a base case
residential nanogrid without any integrated PUE according to the five distinct sets of resi-
dential load compositions (C1–C5 in Figure 3); (2) integration of a rice huller in a nanogrid
with residential load profiles C1–C5; (4) integration of a freezer; and (3) integration of an
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unconstrained and flexible-in-operation rice huller in a nanogrid. While the interviews
insufficiently assessed the flexibility of the users in adopting beneficial energy system
usage patterns, we additionally introduced a scenario, which offered “total operational
freedom” to the rice huller (4). In this “flexible operation” scenario, the only constraint was
the minimum required yearly rice output. Notably, this scenario presents an unrealistic
extreme. However, it reflects the (extreme) adoption of a user behavior to respect energy
system constraints.

2.2.4. Energy System Modeling

We applied computational energy system modeling to derive a quantitative basis
to evaluate the fit of PUE and different residential electricity consumption profiles. Via
energy system modeling, we obtained the technical (i.e., component capacity and dispatch)
and economic (cost) information of how a nanogrid serving the included residential and
productive loads would ideally be designed.

We relied on the open energy modeling framework (oemof). For a detailed description
of the framework, see Hilpert et al. [41]. Oemof is based on a graph-based approach,
setting components and buses into a mathematical relationship, holding both technical
and economic numerical data. With this, we can establish a mathematical representation
of the energy systems and underlying economic characteristics to perform an economic
optimization. We established a linear problem to be optimized. For this analysis, we
applied the minimization of the total annualized energy system costs (including capital and
operational expenditures) as the objective function. We estimated the economic and techni-
cal characteristics of the energy system asset based on local market data, experiences in the
local context and key informant interviews, as summarized in Tables 1 and 2. The financial
project life was assumed to be 10 years. This corresponds to an industry average adapted to
the Madagascar context, regardless of the type and origin of the entity (e.g., private person,
company or other), and it may differ in other settings. The technical and economic char-
acteristics of the energy system assets assumed reflect the experiences of operating in the
local context. Poor market regulation, low quality of the imported components and a harsh
environment, which drives degradation, are the decisive factors in reducing the lifetime of
components in Madagascar. Kinally et.al [42] provide an extensive review on e-waste in
Sub-Saharan Africa, reporting similar observations of reduced component lifetimes.

The weighted average costs of capital (WACC) are estimated at 10%. Note that the
WACC may significantly differ depending on the entity investing in the energy system, i.e.,
in a corridor between close to 0% for local private companies receiving funding grants and
up to 30% for local individuals. As the input data for a time series of PV irradiation in an
hourly resolution, we relied on the MERRA-2 dataset, with the reference year 2019. Data
were accessed via [43].

Table 1. Economic parameters of energy system assets assumed in the analyses. * According to
a market-available product [40]. ** While re-fitting diesel-based rice hullers with a DC motor is
tested within the ENERGICA project, the assumed costs are in line with commercially available
DC products [44].

Component CAPEXfix CAPEXvariable OPEX

PV EUR 101 EUR 540/kW EUR 14/kW/year
Battery EUR 26 EUR 246/kWh EUR 14/kW/year
Supplementary components EUR 306 - EUR 9.2/year
DC freezer * EUR 1220 -
DC rice huller ** - EUR 607/kW EUR 28/kW/year
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Table 2. Technical characteristics of energy system assets assumed in the analyses.

Component Parameter Value

PV
Lifetime 10 year
Optimal tilt −29◦ [45]
Loss fraction 10% [46]

Battery

Lifetime 3.5 year
Efficiency 0.8
SOC min 0.3
C-rate C/10

DC rice huller
Lifetime 5 year
Conversion rate of electricity to rice flour 70 kg/kWh

DC freezer Lifetime 10

2.2.5. Evaluation

To evaluate the modeled scenarios, we further computed the technical and economic
measures of the optimized energy systems. As economic measures, we calculated the
levelized costs of the entire energy system (LCOS), levelized costs of residential elec-
tricity consumption (LCOEResidential) and levelized costs of providing the PUE service
(LCOEService). The LCOS reflect the average costs per kWh of useful electricity the system
generates. We calculated the LCOS by dividing the total annualized costs (TAC) by the
amount of electricity served Electricityserved.

LCOS =
TAC

ElectricityServed
(1)

The terminus Electricityserved includes the total energy delivered, including residen-
tial and PUE loads. In contrast, the levelized costs of electricity for residential loads
LCOEResdidential account for the average cost per kWh of useful electricity energy produced
by the system to serve residential electric loads only. We divided the annualized costs of
producing electricity (notably excluding any cost associated with the potential PUE loads)
by the total electric load served.

LCOEResidential =

(
TAC − TACasset ∗ ElectricityPUE

ElectricityResidential
− TACPUE

)
ElectricityResidential

(2)

TACasset represents the total annualized costs of a specific energy system asset (i.e.,
PV, battery); TACPUE denotes the costs of the PUE asset itself and ElectricityPUE [kWh/yr];
and ElectricityResidential denotes the total electric power served to residential electric loads
[kWh/yr]. Notably, as we assumed simultaneously developing the energy system for
the residential load and PUE load, we included the costs for the PUE in the calculations,
maintaining the approach of optimizing the entire energy system without considering
a specific perspective (see Section 4.1 for a related discussion of alternative calculation
methods). Vice versa, we computed the levelized costs of electricity for service of the PUE
(LCOEService), accounting for the costs and energy share associated with the PUE load.

Notably, to calculate the share of costs of the PUE subsystem and residential electricity
supply subsystem, respectively (analogous to LCOEService and LCOEresidential), we consid-
ered an objective technical perspective, sharing the costs of installation and use of the total
system based on the share of energy consumption (bottom-up). We therefore calculated
the fraction of asset costs, e.g., PV investment costs, which are required to feed the PUE or
residential electricity supply subsystems, respectively, by relying on the share of PV elec-
tricity flows through each subsystem. While this technical approach is useful for evaluating
the performance of the entire system, it may differ from the approach adopted by current
off-grid system operators to calculate tariffs (see Section 4.1 for a related discussion).
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3. Results

The following section first describes the significant influences of residential electricity
consumption. Subsequently, the techno-economic results of fitting PUE into the community
consumption patterns are provided.

3.1. Influences of Electricity Consumption

We observed the time-dependent evolution and variation in electricity consumption
patterns (Section 3.1.1) and time-independent variation in consumption patterns based on
socio-economic characteristics (Section 3.1.2).

3.1.1. Time-Dependent Influences of Electricity Consumption

We studied the evolution in electricity consumption among 107 residential electricity
users over three years (earliest data log: 10 February 2018; latest data log: 1 December
2021). It is important to note that the applied payment scheme foresees optional (daily,
weekly or monthly) prepayments, where the user can choose between different credit
options reflecting daily power and energy limits. When exceeding the daily energy limit,
the user is remotely cut off and connected again when credits are left-over the next day.
When exceeding the power limits, the user is cut off only shortly and reconnected if
the power load is reduced. Hence, the studied electricity consumption patterns can be
constrained by the tariff chosen and the credit management of the household, and they
may not reflect an unconstrained evolution. Table 3 presents the evolution in the average
energy and power consumption per capita. Whereas the maximum average power demand
per household remained more stable over the years, the average daily energy demand
increased significantly. While a granular analysis confirms that the average energy demand
of the connected households increases over time, we also observe that, more recently, the
connected households tend to have higher average energy demands than clients connected
several years ago (see also Figure A4 in Appendix A). This is explained by an increasing set
of available DC appliances offered to local residents and a higher share of high-consumption
public lights integrated in the nanogrids.

Table 3. Evolution in the daily average energy consumption and peak power load per household.

Year
Average Daily
Household Electricity
Consumption [Wh]

Annual Change in
Average Daily Electricity
Consumption [%]

Average Daily Maximum
Household Power Demand
[W]

Annual Change in
Maximum Average Power
Consumption [%]

2018 8.16 - 2.26 -
2019 21.88 168.27 2.25 −0.75
2020 35.47 62.11 2.27 0.92
2021 50.62 42.72 2.99 32.11

Studying the average monthly energy consumption and peak load per household
reveals a seasonal variation in electricity consumption (see Figure 4); both increase signifi-
cantly after the rainy season (January–April). This is explained by the seasonality of crops,
the potentially increased liquidity of the households during these months and fewer hours
of sunshine.
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Figure 4. Seasonal variation in the average maximum peak power demand per household and
average daily electricity consumption.

3.1.2. Socio-Economic Predictors of Electricity Consumption

Based on the cluster analysis (see Section 2.1), we identify three distinct representative
annual electricity residential consumption profiles (silhouette score s = 0.53). Figure 5
illustrates the average daily load profile of each household in the sample group within the
distinct clusters, with the aggregated average load profile of all households belonging to
a cluster highlighted in bold. Cluster 0, including 17% of the residential sample group,
exhibits a significant evening peak demand, peaking at 15 W around 8 pm, accompanied
by a baseload demand of approximately 3 W throughout the rest of the day. Due to its
comparatively high demand (ca. 40 Wh per day), we label the profile as “high consump-
tion”. The majority (66%) of residents belong to Cluster 1—“low consumption”—where
we observe minimal day-time consumption, with a low night-time demand of around
1 W and a small evening peak of about 4 W. Cluster 2—“night-time consumption”—(17%)
displays a moderate-sized evening peak of 10 W, a night-time consumption around 8 W
and no day-time consumption. Within these profiles, two extremes emerge: a low-demand
consumer in Cluster 1, characterized by a consumption not exceeding 4 W and consistently
lower than other groups, and a high-demand consumer in Cluster 0, with an evening
peak demand four times higher than that of the low-demand consumer and twice that
of Cluster 2. Throughout the day, the high-demand profile maintains the highest overall
demand, dominated by a nearly constant medium baseload at 3 W.
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Based on the series of chi-square and Fisher tests, we detect a significant correlation
between the socio-economic characteristics and cluster membership of residents in the
community. Table 4 presents the socio-economic and demographic variables determined as
significant for predicting a distinct cluster membership (for an overview of the statistical
analysis results relevant to our study, see Table A2 in Appendix A, as well as [31] for
extensive additional statistical analyses of our underlying data). Based on the results,
we can characterize the distinct clusters and use the variables to predict a particular
energy consumption pattern. For instance, a high share of “Eco” tariffs within the sample
group significantly predicts a Cluster 1 membership, expressing a low-load consumption
load profile. Similarly, the “Public Lighting” tariff predicts the membership of a high-
consumption Cluster 2. While predicting the energy consumption behavior based on
tariffs is trivial, we find other more complex correlations. For instance, we see a high
share of residents working as traders, which significantly correlates with an electricity
consumption profile as reflected in Cluster 0, with a high peak during the evening. Most
respondents included in the low-consumption profile (Cluster 1) stated instead that they
were farmers (47%). Cluster 0 households also reported the highest number of LED bulbs
(2.2). In addition, the presence of a phone charger (83%) and 12 V plugs (56%) correlate
with membership of Cluster 0. LED spot ownership, however, predicts the membership of
Cluster 2.

Table 4. Socio-economic correlation with cluster groups. EC = Expected count, C = Count. Statistically
significant at p-value confidence level = 0.05. * Statistically significant at p-value confidence level = 0.1.

Variables Cluster 0 Cluster 1 Cluster 2 χ2 df Fisher’s
Exact Test p-Value Cramer’s V

C EC C EC C EC
Tariff Group

Eco
Yes 0 5.7 33 22.6 1 5.7

21.172 2 <0.001 0.445No 18 12.3 38 48.4 17 12.3

Eclairage Plus Yes 9 4.7 17 18.6 2 4.7
7.585 2 6.98 0.025 0.275No 9 13.3 54 52.4 16 13.3

Multimedia
Yes 7 2 4 8 1 2.2

16.654 2 12.37 0.001 0.395No 11 16 67 63 17 16

Public Lighting Yes 0 2 1 8 11 2
54.137 2 37.199 <0.001 0.711No 18 16 70 63 7 16

Tariff Switch
Yes 11 5 17 19.9 2 5

12.9 2 0.002 0.347No 7 13 52 51.1 16 13
Appliance Ownership

LED Bulb
Yes 16 14.1 61 55.7 7 14.1

20.201 2 16.635 <0.001 0.435No 2 3.9 10 15.3 11 3.9

LED Spot Yes 0 2 1 8 11 2
54.137 2 37.199 <0.001 0.711No 18 16 70 63 7 16

USB Phone Charger Yes 15 8.9 31 35.2 7 8.9
10.021 2 10.199 0.006 0.306No 3 9.1 40 35.8 11 9.1

12 V Plug Yes 10 5.7 21 22.6 3 5.7
6.749 2 0.034 0.251No 8 12.3 50 48.4 15 12.3

LED Bulb Quantity

0 2 3.9 10 15.3 11 3.9

40.883 12 35.687 <0.001 0.437

1 6 7.9 40 31.2 1 7.9
2 4 4 14 15.9 6 4
3 3 1.2 4 4.6 0 1.2
4 1 0.7 3 2.7 0 0.7
5 1 0.2 0 0.7 0 0.2
8 1 0.2 0 0.7 0 0.2

Demographic Variable

Number of Children *

0 1 2.9 13 10.9 1 1.3

16.175 8 13.283 0.065 0.31
1 8 4.6 16 17.4 0 2
2 3 4.4 19 16.7 1 1.9
3 3 3.6 11 13.8 5 1.6
4 1 0.6 2 2.2 0 0.3
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Table 4. Cont.

Variables Cluster 0 Cluster 1 Cluster 2 χ2 df Fisher’s
Exact Test p-Value Cramer’s V

Job Group

Trader
Yes 9 5.4 17 14.8 0 5.8

13.263 2 0.001 0.429No 6 9.6 24 26.2 16 10.2

Employee * Yes 4 1.7 4 4.6 0 1.8
5.751 2 4.959 0.056 0.283No 11 13.3 37 36.4 16 14.2

Public Lighting Yes 0 2.5 1 6.8 11 2.7
40.226 2 31.89 <0.001 0.747No 15 12.5 40 34.2 5 13.3

3.2. Techno-Economic Evaluation of PUE

According to the findings of the statistical analysis in the previous section, we es-
tablished scenarios to compare the integration of PUE in residential energy systems with
different compositions of residential consumption patterns, as explained in Section 2.2.3.
Hence, we matched four PUE integration scenarios with five distinct residential load profile
sets, each comprising five households representing the average daily load profile of a
certain cluster (see Figure 5). With this, we can derive valuable information on the fit of
a PUE in specific residential energy systems, reflecting residents’ distinct socio-economic
and demographic characteristics.

The residential load profile sets are labeled as

• “Representative demand”: Five residential loads, including three Cluster 1 loads (“low
consumption”) as the most common cluster, one Cluster 0 load (“high consumption”)
and one Cluster 2 load (“night-time consumption”). This set reflects the overall
percentage distribution of all samples. Annual residential demand: 101 kWh.

• “Low demand”: Five residential loads in Cluster 1 (“low consumption”). Annual
residential demand: 43 kWh.

• “High demand”: Five residential loads in Cluster 0 (“high consumption”). Annual
residential demand: 202 kWh.

• “Low demand with night-time load”: Four residential loads in Cluster 1 (“low consump-
tion”) and one load with a Cluster 2 profile representing a night-time load (public
lighting). Annual residential demand: 70 kWh.

• “High demand with night-time load”: Four residential loads in Cluster 0 (“high consump-
tion”) and one load with a Cluster 2 profile representing a night-time load (public
lighting). Annual residential demand: 196 kWh.

We evaluate the integration of PUE within the different composite residential energy
systems using technical metrics in Figure 6, demonstrating the example of representative
residential electricity consumption patterns (see Table A3 in Appendix A for all scenarios
and compositions), and economic metrics in Figure 7.

In order to interpret the economic results illustrated in Figure 7, we may compare

(i) The difference in LCOS within one PUE integration scenario across the different
residential load profile sets to understand the suitability of the specific PUE for
different communities;

(ii) The difference in LCOS across different PUE integration scenarios within one specific
residential load profile set to understand the best fitting PUE for the respective socio-
economic character of the community;

(iii) The distribution of LCOS, LCOEResdidential and LCOEService within each combination
of PUE integration and residential cluster composition to understand the share of costs
associated with supplying electricity to the residential users or the PUE appliance.
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Below, we highlight some of the key results derivable from Figure 7 based on PUE
integration scenarios:

Scenario: Base case residential nanogrid: Supplying only residential loads, the optimized
energy system considering a representative demand residential load profile set consists of
160 Wp PV and 560 Wh battery storage. The costs of the system are dominated by battery
storage (43% of the TAC; see Figure 8). Considering a low demand profile set—characteristic
of a community significantly consisting of residents subscribing to the “Eco” tariff and
characterized by owning only a few appliances (light bulbs), with a high share of farmers—
results in lower total system costs (EUR 110/year versus EUR 205/yr). However, consid-
ering the relative costs of supplying electricity to the opposite high demand consumption
profile set expected in communities with a significantly increased share of traders, many
residents changing tariffs to the “Multimedia” tariff, and many LED bulbs, are identified
higher. This tendency can increase when considering public lighting as a night-time load
(high demand with night-time load) to be included in the residential energy system with a
relatively high demand.
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Scenario: Integrated rice huller: Integrating a DC rice huller following the current con-
sumption patterns of fossil alternatives into a residential energy system increases the TAC
of the system by ten times (high demand residential load profile set) or up to twenty times
(low demand residential load profile set). The costs of the rice huller—with an optimized
capacity of 1.57 kWel—account for 15% of the total system costs. However, with the PUE
load dominating the share of energy consumed in the nanogrid (six-fold the residential con-
sumption in a high demand residential load composition set; see Table A3), it also dominates
the system costs. Hence, the benefits of integrating the rice huller toward reducing the
LCOS depend on the residential load composition set, reflecting a different socio-economic
and demographic community composition. With the rice huller relatively increasing the
costs of electricity production (as seen with the LCOEService exceeding the LCOEResdidential
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under any residential load composition set), we observe increasing LCOS when including
a rice huller in a high demand load profile composition set while observing beneficial effects
on the LCOS when the utilization of low demand residential load compositions is increased.
With splitting the costs across residential and PUE via energy shares (see Section 2.1), the
LCOEResdidential may decrease by EUR 1.35/kWh (see a related discussion on cost distribu-
tion in Section 4). However, accordingly, we must carefully note that the integration of PUE
can in fact result in higher cost of residential electricity consumption (based on the applied
calculation of electricity cost) if the two load profiles conflict.

Scenario: Integrated flexible rice huller: Assuming the DC rice huller to have “total opera-
tional freedom” and only requiring a minimum throughput within one year is an unrealistic
extreme (assuming abundant rice resources and ubiquitous storage opportunities). How-
ever, some increased flexibility in the operation—ergo, some changes in the usage patterns
of the asset’s users compared to the current usage patterns of fossil counterparts—can
arguably be expected to a certain degree to maneuver operational constraints imposed
by the DC system (see Section 4 for a related discussion). A comparison of the results
with the ones of the constrained rice huller scenario shows the significant cost reduction
achievable when increasing the flexibility of PUEs, which is unlocked by shifting the load
of the PUE toward the peak PV irradiation hours with least conflicting residential loads,
thus avoiding costly energy storage (see Figure A2 for a representative load profile). The
required power for the PUE asset is reduced to 0.6 kWel (compared to 1.57 kWel). Further,
the additional amount of PV and battery to be installed is reduced compared to a residential
system in order to satisfy the PUE load. While, for example, in a representative demand
residential household composition set, the optimal size and associated share of TAC of the
PV and battery exclusively feeding residential loads are 160 Wp and 0.56 kWh, the size
and costs (see Figure 8) increase to 3.43 kWp (20% of the TAC) and 13.28 kWh (60% of the
TAC), respectively, when integrating a DC rice huller following the load profile of the fossil
alternatives currently used (scenario: integrated rice huller). However, when maximizing
the flexibility of the huller (scenario: integrated flexible rice huller), the required PV size
increases to ca. 900 Wp compared to the residential system, while the battery size remains
the same compared to feeding residential loads only. Hence, significant battery costs can be
saved when increasing the flexibility of the PUE to be operated at peak irradiation times.
Consequently, with the amount of energy consumed in the nanogrid being dominated
by the rice huller (see Table A3), achieving low costs of supplying the rice huller with
electricity due to its operation harnessing excess electricity from the residential grid only,
the LCOS can be reduced to less than EUR 0.3/kWh. Significantly, by smoothening the
load curve in low-demand consumption scenarios, increasing the total system utilization
and reducing the excess electricity share (see Table A3), the cost efficiency measures are
improved compared to a high demand residential load profile set (see Figure 7).

Scenario: Integrated freezer: Integrating a freezer into the energy system quadruples the
TAC of the nanogrid when considering a low demand residential load composition set of
the community (EUR 552/yr versus EUR 139/yr) and triples the costs when assuming a
high demand residential community set (EUR 607/yr versus EUR 205/yr) (see Figure 8).
There is only slight variance in the LCOEResidential , suggesting that the applicable consump-
tion composition has little impact on the cost of electricity provision for households. The
comparison of the base case residential nanogrid only feeding residential loads and the inte-
grated freezer scenarios reveals that through the integration of the freezer, the LCOEResidential
can be reduced substantially. For the low demand residential load composition set, the
LCOEResidential are reduced by 75%, and for the high demand consumption composition
set, the LCOEResidential are reduced by 43%. Compared to the integrated rice huller, the PV
and battery optimized capacity and share of costs of the TAC are 1.1 kWp (23% of TAC)
and 1.84 kWh (31% of TAC), the latter of which is a sixth of the capacity required to satisfy
the rice huller. Notably, the freezer device (150 W) constitutes a third of the TAC (EUR
198/yr) (see Figure 8).
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4. Discussion

In this section, we first critically reflect on the limitations of our analysis, discuss the
impact of the limitations on the results and outline alternative pathways and approaches
to follow up on in future work (Section 4.1). Subsequently, we present and discuss the
implications of our study results (Section 4.2). Lastly, we consider the impacts of PUE
integration on the local value streams of communities (Section 4.3).

4.1. Critical Reflection on the Study

Our investigation was motivated by the potential to enhance off-grid electrification
by systematically integrating residential and PUE loads in early energy system planning.
PUEs are seen as a potential driver for facilitating local value creation in rural communities.
Integrating PUE in residential off-grid systems is challenging, as the electricity consump-
tion profile of the PUE must not conflict with the residential consumption patterns of the
community. Thus, the residential consumption patterns must be known—a condition often
not met due to lack of data and complex data acquisition. We suggest a methodology for
overcoming this barrier by identifying the socio-economic and demographic predictors of
residential electricity consumption patterns, which are easily accessible via a survey. We
developed and tested our methodology by relying on data accessible from the operations
of a local company providing nanogrids to residential customers in northern Madagascar.
The available data were acquired for a different purpose. Their utilization as part of this
study is a secondary application. Because the scope and content of the data were not specif-
ically tailored to serve the use of this study, they lacked relevant accuracy and constituted
limitations, especially regarding the exploration of potential socio-economic and demo-
graphic variables. For instance, these variables neglected some common socio-economic
characteristics, which are often reported to influence energy-related decisions, such as the
educational level (e.g., [47]). For the presented case study, this is a key limitation, which
has direct implications for the information value of the derived results. While our results
showcase the general relevance of utilizing determinants for the estimation of residential
demand profiles, the potential for applying the proposed methodology for the exploration
of relevant determinants is larger than what our results may suggest. Future studies should
meticulously design and tailor socio-economic and demographic data collection for the
analysis’s purpose. It is important to collaborate with local experts to specify the set of
variables to be investigated. In addition to the consideration of further socio-demographic
variables, which may determine the residential electricity consumption pattern and the
PUE operational pattern, future studies should make informed decisions regarding whom
to survey and interview. It is not a given that household members have the equivalent
information or views on relevant questions. This applies particularly to questions exploring
the possible future use of PUE assets, such as usage patterns. Here, it is advisable to first
determine the possible individual distribution of roles (owner, operator, employee, etc.)
to subsequently develop an appropriate strategy for conducting interviews and to obtain
information, which is as practical as possible. Participatory research approaches may be
especially suitable for revealing the relevant context-specific insights. McGookin et al. [29]
highlight increased robustness, including the production of broader knowledge and more
comprehensive hypotheses, as a key benefit of participatory approaches in energy system
planning. There is a wide range of participatory approaches, which can guide the data
inquiry to improve its relevance and sensitivity to context. Vaughn and Jacquez [48] outline
the relevant participatory research approaches and frameworks.

Further, the uncertainty in constructing the estimated load profiles for PUE assets—
which we derived from users (or users of the currently used fossil counterparts) descriptions
assessed via interviews—highlights the need for closer monitoring of user behavior and
preferences for usage patterns when implementing DC-based PUE alternatives. For in-
stance, we derived the load curve for a rice huller based on interviews conducted with
current users of diesel-based rice hullers. While we relied on users’ descriptions of the
usage patterns, including the start and the duration of operating hours, close monitoring of
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users’ daily routines would be required to reconstruct a valid daily load profile. In addition,
participatory workshops can be conducted to gain a more accurate understanding of the
degree of flexibility in the operational preferences of users of PUE assets. This is especially
to be considered when substituting the current fossil-based PUE with renewable-powered
alternatives (as suggested in the integrated rice huller scenario of our analysis), as the degree
of flexibility of the asset itself and the usage preferences of PUE users may differ compared
to the fossil counterpart. It is important to note that in order to fully understand the
potential for an adaptive PUE operation, one must also consider the product and value
flows associated with a PUE asset. It should generally be noted that user behavior and
consumption patterns (given that the PUE asset is technically flexible) are based on indi-
vidual preferences and constraints. Conclusive PUE load profiles are difficult to predict,
may change over time, and the generalization and transfer to other locations are limited.
However, the risk of flawed prediction of the load profiles may be reduced by establishing
a continuous and meaningful exchange and creating a shared sense of responsibility for
the system, which includes sharing and communicating the benefits of increased system
efficiency. With a shared sense of ownership and responsibility, the willingness to adapt the
PUE asset—operational in such a way, that it benefits the system efficiency—may increase.
However, the operational flexibility of PUE assets is also constrained by their function. For
example, a freezer may offer limited flexibility in operational patterns when maintaining a
specific output quality of the product. Here, technical solutions (e.g., modifying the control
algorithms) may be further investigated.

Our economic calculations included PUE asset costs in the TAC and cost efficiency
measures (LCOS and LCOEService). This approach was chosen for the following reasons.
First, there are significant (financial) barriers for local community members to purchase
DC PUE assets. Thus, arguably, the PUE assets should be supplied as part of the system
infrastructure; otherwise, it is unlikely that the asset could be financed by a single potential
asset operator. Second, the perspective adopted holds the view of designing optimal
energy systems. Reflecting on the complex interrelation and roles within the community
and energy system (see Figure 1), we are explicitly not considering the perspective of the
energy system operator (who operates the energy system and only sells electricity). As
underpinned by our study, the energy system is designed and tailored to one specific PUE;
hence, it is not reasonable to strictly separate the energy generation from PUE operation,
but the PUE asset and energy system are inherently linked. In fact, a PUE operator may
not even be free to decide what asset to connect to the system, as this may be constrained
by the energy system in place. This observation underlines the imperative need for the
co-design of energy systems to maximize the value creation of all parties involved and to
ensure the energy system design is tailored to serving prioritized needs.

In order to increase the local relevance of system planning analyses, locally applicable
circumstances need to be integrated as design choices, as was performed in our study, with
the deliberate design regarding gate PUE asset financing. However, to understand the
implications of a study, it is important to understand the underlying respective design
choices and perspectives. Generalized analyses, which go beyond the scope of the case
study in this paper, may consider not including PUE asset costs as system costs, assuming
residential user ownership. This can significantly lower the costs of providing electricity.
However, with our approach of calculating the costs of delivering electricity to residents
and the PUE service, respectively, by splitting the costs of energy system assets among
the two loads based on the share of energy consumed, the cost efficiency measures would
be equal, with the costs of providing electricity to the PUE being significantly lower
compared to the current calculation method (e.g., in the scenario of an integrated freezer and a
representative household load composition set, the LCOEService would be reduced from EUR
1.01/kWh to EUR 0.6/kWh). Hence, one could argue that the costs of providing electricity
to the PUE load in our calculation may be overestimated. A detailed investigation of the
share of energy system costs would require studying the actual utilization of energy system
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assets (e.g., battery storage) to satisfy each load (this could, for example, be integrated by
considering the time of use of assets).

Alternatively, energy system planners may choose to evaluate the integration of PUE
based only on the additional costs incurred by the integration compared to an energy
system, which only serves residential loads—quasi ex post. To illustrate this consideration,
we use the example of an integrated freezer in a residential nanogrid with a representative load
profile set. The residential system’s TAC and LCOS—representing the LCOEResidential—are
only EUR 138/yr and EUR 1.37/kWh, respectively. Integrating the freezer increases the
system’s TAC to EUR 553/yr or EUR 353/yr when including or excluding the PUE asset.
The costs are split, as suggested by our technically neutral calculation: the LCOEService and
LCOEResidential amount to EUR 0.94/kWh and EUR 0.6/kWh, respectively, when including
the PUE, or EUR 0.6/kWh each when neglecting the costs of the freezer (notably substan-
tially reducing the relative costs of electricity supply). However, when only accounting
for the additional energy system costs (PV, battery) incurred by the integration of the
freezer compared to the residential system, we may only consider EUR 414/yr (including
PUE investment costs) or EUR 215/yr (excluding PUE investment costs) as additional
TAC accountable for the service provision. The respective calculated LCOEService are EUR
0.85/kWh and EUR 0.44/kWh—lower than those calculated via our technically neutral
approach—while the LCOEResidential would remain at EUR 1.37/kWh. This example shows
very well the impact the different calculation methods may have when energy planners
use cost efficiency measures as a benchmark for setting tariffs.

By using the calculation approach proposed in our study, we implicitly offer a novelty
for energy system planners to provide a particular service rather than electricity only,
which would crucially align with the rationale of PUE integration in energy systems (see
Section 1). While our analysis still compares the energy systems based on the costs per
unit of energy (kWh), we suggest following the approach of comparing energy systems
based on the services delivered. However, this may significantly increase the complexity of
evaluating the costs and end products. For example, the “hulling rice” product comprises
various components, e.g., energy system costs, operating and maintenance costs, service
commission, etc. Hence, a close look into the entire value chain is required rather than
separate evaluation of individual components. This is only possible for services, which
already exist locally.

The stated calculation examples and the subsequent discussion of the implication
showcase the importance of understanding the rationale of energy system planning in
a given context. The assumptions for energy system planning should be formulated in
collaboration with the local community to increase the relevance.

Our study provides insights into the associated costs of providing services. The
proposed methodology enables a cost-based system optimization from a system planning
perspective, which facilitates the needs of the energy system users and the energy system
operator (see Figure 1). To conclude energy system planning, our methodology may
be complemented by financial analyses including the relevant tariff structures, business
models and income considerations. These analyses require additional context-specific
data and are necessary to fully comprehend the implications of the system design for the
energy system operator and the PUE asset operator. We recommend that our proposed
methodology is further developed to include financial analyses. These studies may be
viewed as a subsequent step to our proposed methodology.

4.2. Implications of the Key Findings

This study shows that the integration of PUE can reduce the costs of residential energy
provision. However, for individuals, the costs of PUE assets may represent a significant
barrier to its uptake. In the case of a DC freezer, one interviewee, whose family owns a DC
freezer, reported paying off the micro-credit over a duration of two years, with monthly
paybacks of MGA 160,000 (ca. EUR 33). In addition, the electricity consumed by the
freezer was charged via a dedicated tariff (we may approximate a fictive tariff with the
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LCOEService to approximately MGA 38,000 per week (ca. EUR 8)). The owner reported
daily profits of MGA 5000 after paying bills (ca. EUR 1) from selling a broad spectrum of
goods, including iced water, ice for cooling food and beverages, and frozen juice. While
the economic benefits for the PUE owner are therefore evident, our analysis shows the
potential for other community members to gain financial benefits from the integration of
PUEs, assuming that different stacked tariffs are in place. We observed the difference in
LCOEResidential and LCOEService during the analysis. Notably, the LCOE only reflects part
of the costs to be included when determining a tariff but may be seen as indicative of the
tariff to be set. Based on our analysis, we can observe that the LCOEresidential (significantly)
decreases when the PUE is integrated (integrated freezer), while the LCOEService exceeds
the LCOEResidential .

To illustrate the consequences, we conducted a very simplified thought experiment.
Considering a low demand residential composition set, the average annual electricity con-
sumption per household is 10.6 kWh. When adopting the LCOEResidential as a tariff, in
a base case nanogrid (LCOEResidential = EUR 2.5/kWh), the annual costs of electricity per
household would be approximately EUR 27. We now consider the case of having five low
demand loads and one freezer integrated into the system, the operator of which is charged a
tariff in the magnitude of the LCOEService. Adopting the new LCOEResidential found within
the analysis for integrating a freezer (LCOEResidential = ca. EUR 0.6/kWh), the annual costs
of electricity to be paid by each household are reduced by 74 percent to approximately
EUR 6.5, while the costs of operating the freezer would total EUR 533 per year. While this
calculation is a simplification, it shows the distributional monetary benefits among the
community to be potentially unlocked when setting an appropriate tariff scheme. Thus, our
analysis supports the suggestion from the literature [15] that the entire local economy may
be improved when initial barriers to investing in PUE to be integrated into the system are
overcome. However, one must carefully note that we also reported the exact opposite and
increasing LCOEResidential when PUE and residential load consumption patterns conflict,
incurring additional energy system costs (integrated rice huller in a high demand residential
load composition set).

Our study highlights the importance of matching the electricity consumption patterns
of the residential community and the PUE to minimize the costs of electricity production.
The associated cost of electricity production varies significantly between the different
scenarios and underlying household load composition sets considered in this case study.
Figure 9 shows the LCOS and the respective excess electricity percentage share for every
scenario and residential load profile composition set considered in this study. Significant
deviations in the associated cost of supplying electricity can be observed for both different
residential consumption compositions when considering a single selected PUE asset, which
is indicated with a uniform color code but different marker in Figure 9, and between
different PUE assets, which are represented in different colors. The high variance among
the electricity generation costs underlines the potential arising from a “matchmaking”
approach, as proposed in this study. The spread of costs within a specific PUE integration
scenario across the different residential load composition sets can be interpreted as “robust-
ness” of the PUE load curve toward potentially conflicting residential load profiles. The
results indicate that the robustness of the associated electricity provision cost can be in-
creased when non-integrated and integrated systems are compared. The maximum spread
of LCOS in the base case scenarios is EUR 1.5/kWh, whereas it is only EUR 0.13/kWh for
the integrated freezer scenario and the integrated rice huller scenario. The economic impact of
integrating a rice huller into a residential energy system in the flexible rice huller scenario is
even less sensitive toward the load profiles of the residents than a freezer, with a spread of
only EUR 0.02/kWh. This demonstrates that PUE integration into a residential off-gid en-
ergy system decreases the sensitivity of the economic results (measured by LCOS) toward
underlying residential community electricity consumption patterns.
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The proposed matchmaking approach necessitates information regarding the locally
relevant PUE and the associated operational behavior. In our study, we propose an approach
using survey data and statistical analysis to identify the consumption determinants and
calculate the representative consumption profiles. Provided that sufficient data can be
collected to ensure a high degree of informative value, the identified determinants can be
an efficient shortcut toward identifying favorable locations for integrated energy systems.
Further statistical verification may expand the area of application to a broader geographical
scope, beyond the surveyed region. The appropriate selection of PUE for a given location
ultimately requires close collaboration with the community, which the energy system
serves. The identification of existing value streams, the selection of relevant PUE and
thorough understanding of the operational preferences, which can be achieved through
KIIs, are the key requirements for the efficient integration of household and PUE loads. The
long-term success of a deployed energy system is substantially influenced by the accuracy
of the assumptions made regarding the energy-related needs in the community while
planning the energy system. To improve the accuracy and to increase the overall value of
the energy system, it is essential to include the community in energy system planning. We
explored the potential of adapted operational behavior for PUE. To showcase the impact on
electricity provision cost, we defined a PUE asset integration case, in which its operation
did not collide with residential patterns and to harness peak PV irradiation. In line with
the current literature (e.g., [21]), our study underscores the substantial impact of increasing
the operational flexibility of PUEs on decreasing energy system costs. This is reflected in
the fundamental differences in the percentage share of excess electricity when comparing
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the rice huller and the flexible rice huller in Figure 9. While the assumed operational
adaptation is not realistically achievable and represents an extreme case, it showcases the
theoretical potential, which lies in increased operational flexibility. To gain a more accurate
understanding of the usage patterns and the associated degree of flexibility, two strategies
are advisable. First, close monitoring and detailed recordings of appliance usage of existing
PUE assets may significantly improve informed decision making. A systematic integration
of usage monitoring in energy projects will improve the information base and sustainably
improve the efficient integration of PUE assets in off-grid energy systems. Second, the
actual operational preferences and willingness to adapt can only be determined in close
collaboration with the PUE operator and may be linked to further product and value
streams within the community. The importance of community participation in energy
system planning and a meaningful exchange between an energy system investor and
energy system users is further underlined by the previously (see Section 1) discussed risk
of the business associated with PUE ceasing to exist prior to the point in time when a
positive return on investment for the energy system is achieved. Such financial risks may
be mitigated by facilitating continous exchange with the users of the energy system and
providing supportive measures where relevant.

4.3. Considerations of PUE Impact on Value Streams of the Community and Its Environment

Our results highlight the crucial importance of including the local community in the
decision-making and energy system design processes. First, energy system planners must
identify a PUE asset, which is relevant for addressing the service needs of the community
to ensure a sustained uptake of the service and electricity consumption. Hence, a close
interaction with community members is inevitable. Second, identifying individual prefer-
ences and the degree of flexibility in the usage patterns of PUE users can support alignment
of the PUE load profile with residential load profiles, which is critical to minimizing the
costs of electricity supply (see Section 3.2). In the qualitative data acquisition and in our
analysis, we focused on the local community directly interacting with the energy system.
These considerations offer new insights into more relevant and more efficient designs of
off-grid energy systems. However, we recommend that future studies further systemati-
cally integrate considerations regarding the external environment in which the community
is set. The interaction of the community with the external environment further improves
the information value of the conducted analysis in several ways. First, the potential for a
flexible operation of the PUE asset is constrained by the product and value streams of local
markets. Second, the identification of relevant service needs (see Section 2.2.2) is linked
to services, which may exist outside the scope of the community. Third, the impact of
introducing PUE assets—in terms of development—may have implications beyond the
community, as it will change the existing value and product streams.

To showcase the relevance of integrating considerations regarding the environment
in which the community is set, in the following, we discuss the potential implications.
The results of our economic analysis (see Section 3.2) suggest that the integration of PUE
can improve the economics of off-grid energy systems. As suggested in our discussion,
these benefits could be further distributed to residential energy system users. Additionally,
we provided evidence of a potential for improved household income (Section 4.2) as a
result of investing in PUE. It is important to note that in this analysis, we only consider
improved household income via potential savings on energy expenditures. A detailed
description of additional income generated via the PUE products is laid out in a report of
the associated ENERGICA project [31]. However, we must bear in mind that the integration
of PUEs impacts the energy system operator and the PUE user, and it may disrupt the local
value stream patterns of the community and its external environment. The integration
of PUE in energy systems, communities and energy access projects is complex, given the
multidimensional and bilateral relation of PUE with the embedded ecosystem. Previous
research has developed the causal relation of PUE integration in energy access projects,
identifying the risks, preconditions and external factors impacting the implementation of
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PUE in projects [15,49]. Riva et al. [17] show the complex causal loops associated with
energy access and productive activities. Based on interviews with several community
members in our case study, we can illustrate the changes in local community value streams
when, for example, considering the uptake of a freezer in a village (Figure 10). A corre-
sponding description for the case of an electric rice huller is documented in the associated
ENERGICA project [31].
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Figure 10 depicts the systems and value streams of the environment associated with the
product “ice”, which is anticipated in a scenario introducing decentralized ice production
via a nanogrid-connected freezer. The value streams in existence prior to the availability
of locally produced ice are disrupted. It is expected that ice buyers (i.e., grocery shops
and bars) previously purchasing ice from mobile retailers—who transport the ice from
large factories in nearby cities—may now buy ice, which is produced locally. Hence, one
must note that the introduction of PUE in a decentralized grid and the associated increased
local economic activity may lead to other stakeholders experiencing negative consequences
(e.g., ice delivery or fuel delivery). Consequently, it is not a given per se that all local
stakeholders will profit from an increased uptake of PUE. For the planning of off-grid energy
systems, it is therefore relevant to be aware of the entire associated value chains of products
and thoroughly establish potential negative consequences. The importance of carefully
weighing potential system disruptions is acknowledged in the literature. The literature
shows that the uptake of PUE may increase inequalities or may have negative impacts
on the incomes of some parts of the population. For example, Khandker et al. [50] find
comparatively wealthier families, who can afford to invest in PUE to increase their income
due to PUE usage. In contrast, families who cannot afford a PUE remain comparatively
poor. Further, substituting labor-intensive jobs with PUE appliances threatens the jobs
of low-income families. This also applies to the eradication of jobs associated with fossil
fuels when implementing renewable energy sources (i.e., selling candles or kerosene [51]).
Prominently, the threat of increasing inequalities associated with PUE applies to gender-
based inequalities. Many PUEs stimulate activities and professions, which either men or
women predominantly carry out. Hence, a discrepancy in income stimulation as a result
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of PUE is evident in the literature [49]. Given the risk of unintended consequences, in
particular with regard to reinforcing local inequalities, the type of employment should
also be evaluated to determine whether certain PUEs actually contribute to livelihood
improvements [52]. In addition, Terrapon-Paff et al. [49] highlight the inclusion of dedicated
activities toward raising awareness among stakeholders across the entire value chain to
avoid the creation of inequalities when implementing PUEs.

5. Conclusions

Our study proposes a novel methodology for identifying PUE, which fit into the
community structures and off-grid residential energy systems, improving the (financial)
sustainability of rural electrification projects and the efficiency of energy system planning.
In contrast to the current methods, our approach has the potential to avoid extensive data
collection and overcome data gaps.

Our key findings emphasize the significance of aligning PUE electricity consumption
patterns with residential patterns to minimize electricity production costs. We observe that
considering the preferences for and the degree of flexibility in the usage patterns of PUE
users within the energy system design process is crucial to aligning the different loads,
unlocking synergies, and finally, reducing the LCOE.

We further discuss the financial capacity of community members to invest in PUE
assets as a critical determinant of electricity production costs. In our analysis, we explore
the different perspectives of energy system planning and discuss the different ownership
and finance models of PUE assets and their impact on the cost distribution of the system,
as well as the potential implications for the consequent electricity tariffs. This discussion
complements the existing literature advocating for strengthening the financial capacity of
rural community members to invest in PUE assets. According to our analysis, if the PUE
asset is taken over by the investor in the energy system itself, cost distributions are possible
(depending on the PUE asset and the structure of the community load patterns), which
may increase the total electricity generation costs. Accordingly, a sustainable economic
benefit for all parties through the financing of PUE assets as part of the energy system is
not unconditional.

In the existing literature, PUEs are essentially justified by the narrative of an anchor
load—a reliable and relatively higher demand for electricity and thus a source of income.
While this must be carefully reviewed in practice and is not generalizable (i.e., considering
short business lifetimes or erratic operation of PUE businesses), our analysis confirms a
plausible potential of the PUE attributed to reducing the financial risk of a project. Provided
that the PUE operational lifetime matches the economic lifetime of the energy project,
and a reliable operational pattern of the PUE asset can be assumed, we observe that the
integration of PUE assets in residential community energy systems reduces the sensitivity
of energy supply costs toward different community energy consumption patterns and
thus offers the potential for reducing the financial risk of the project. However, given the
preconditions of reliable and sustained electricity off-take by the PUE enterprises, we again
highlight the crucial role of offering support and actively engaging with the community and
PUE users not only during energy system planning but throughout the project operation.

Our discussion highlights the spectrum of rationales for off-grid energy system plan-
ning and the importance of transparency in the energy system planning process and
continuous project operation. The locally relevant rationale for energy system planning can
only be formulated in a collaborative process involving all locally relevant stakeholders,
and it is influenced by local dependencies, opportunities, community structures and the
external environment in which the community is set. The identified rationale translates into
applicable energy system design criteria, business models and ownership models. Future
research should develop novel approaches for facilitating a collaborative process, fostering
co-creation activities in off-grid energy system planning and harmonizing the expecta-
tions and goals among the actors involved in energy system decision making, including
residential community members, PUE users and energy system operators.



Sustainability 2024, 16, 3442 28 of 35

Exploring the local value streams of the community and its environment, we observe
the need for energy system planners to address the broader implications of PUE integration,
such as its impact on local community value streams and potential unintended conse-
quences, including increased inequalities. In line with the literature, our study underlines
that PUE can positively impact the energy system and the local community’s economy.
However, this is not unconditional, and we must respect that the benefits of PUE are not
equally shared among all community stakeholders. We recommend the consideration of
local value stream patterns beyond the community directly impacted by PUE asset inte-
gration and inclusion of the complex interactions of the community with its surrounding
environment to prevent adverse negative effects of PUE integration in rural settings.
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Appendix A

Table A1. Subscription options included in the analysis.

Tariff Name Maximum Power (W) Maximum Energy
Consumption per Day (Wh)

Eco 10 50
Eclairage 18 90

Eclairage Plus 30 150
Multimedia 42 210

Multimedia Plus 66 330
Congel 125 1250

www.energica-h2020.eu
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Figure A2. Load profile of the electric rice huller assuming maximum flexibility by only determining 
a minimum rice production over the entire year. Notably, this scenario represents an unrealistic 
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mining a minimum rice production over the entire year. Notably, this scenario represents an
unrealistic extreme.
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Figure A4. Average daily electricity consumption per household across all nanogrid clients in the
case study area. The dashed line indicates the commissioning of new nanogrids.

Table A2. Results of the statistical analysis of the socio-economic and demographic predictors of
energy consumption patterns.

Variables Cluster 0 Cluster 1 Cluster 2 χ2 df Fisher’s
Exact Test p Cramer’s V

C EC C EC C EC
Tariff Group

Eco
Yes 0 5.7 33 22.6 1 5.7

21.172 2
<0.001

0.445No 18 12.3 38 48.4 17 12.3

Eclairage Yes 6 5.7 23 22.6 5 5.7
0.165 2 0.954 0.047No 12 12.3 48 48.4 13 12.3

Eclairage Plus Yes 9 4.7 17 18.6 2 4.7
7.585 2 6.98 0.025 0.275No 9 13.3 54 52.4 16 13.3
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Table A2. Cont.

Variables Cluster 0 Cluster 1 Cluster 2 χ2 df Fisher’s
Exact Test p Cramer’s V

Multimedia
Yes 7 2 4 8 1 2.2

16.654 2 12.37 0.001 0.395No 11 16 67 63 17 16

Multimedia Plus
Yes 2 1 4 4 0 1

2.099 2 1.827 0.392 0.144No 16 17 67 67 18 17

Public Lighting Yes 0 2 1 8 11 2
54.137 2 37.199 <0.001 0.711No 18 16 70 63 7 16

Tariff Switch
Yes 11 5 17 19.9 2 5

12.9 2 0.002 0.347No 7 13 52 51.1 16 13
Appliance Ownership

LED Bulb
Yes 16 14.1 61 55.7 7 14.1

20.201 2 16.635 <0.001 0.435No 2 3.9 10 15.3 11 3.9

LED Spot Yes 0 2 1 8 11 2
54.137 2 37.199 <0.001 0.711No 18 16 70 63 7 16

TV
Yes 3 2 8 8 1 2

1.116 2 1.095 0.6 0.102No 15 16 63 63 17 16

USB Phone Charger Yes 15 8.9 31 35.2 7 8.9
10.021 2 10.199 0.006 0.306No 3 9.1 40 35.8 11 9.1

12 V Plug (Simple
and Double)

Yes 10 5.7 21 22.6 3 5.7
6.749 2 0.034 0.251No 8 12.3 50 48.4 15 12.3

LED Bulb Quantity

0 2 3.9 10 15.3 11 3.9

40.883 12 35.687 <0.001 0.437

1 6 7.9 40 31.2 1 7.9
2 4 4 14 15.9 6 4
3 3 1.2 4 4.6 0 1.2
4 1 0.7 3 2.7 0 0.7
5 1 0.2 0 0.7 0 0.2
8 1 0.2 0 0.7 0 0.2

Survey Variables

Occupant Status
Free 1 0.2 0 0.7 0 0.1

5.182 4 5.946 0.195 0.181Owner 14 14.8 54 52.7 5 5.5
Tenant 1 1 3 3.6 1 0.4

House Size
Large 8 4 11 15.2 2 1.8

8.515 4 7.027 0.089 0.226Medium 8 10.6 42 39.8 5 4.6
Small 0 1.3 7 5.1 0 0.6

Household
Monthly Income

0 0 0.2 1 0.7 0 0.1

6.689 10 8.661 0.568 0.207

100,000 0 2.5 10 8.6 2 0.9
150,000 7 7 25 24.4 2 2.6
200,000 6 4.5 14 15.8 2 1.7
300,000 2 1.2 4 4.3 0 0.5
500,000 1 0.6 2 2.2 0 0.2

Number of
Household
Members

0 0 1 5 3.6 0 0.4

16.766 12 14.922 0.149 0.312

1 1 0.4 1 1.4 0 0.2
2 1 3.4 15 12.3 1 1.4
3 8 4.2 13 15.1 0 1.7
4 3 4 15 14.4 2 1.6
5 3 3.6 11 13 4 1.5
6 1 0.6 2 2.2 0 0.2

Number of Adults

0 0 0.8 4 2.9 0 0.3

4.865 6 4.818 0.608 0.169
1 1 3 13 10.8 1 1.2
2 16 13 43 46.6 6 5.4
3 0 0.2 1 0.7 0 0.1

Number of Children

0 1 2.9 13 10.9 1 1.3

16.175 8 13.283 0.065 0.31
1 8 4.6 16 17.4 0 2
2 3 4.4 19 16.7 1 1.9
3 3 3.6 11 13.8 5 1.6
4 1 0.6 2 2.2 0 0.3

Job Group

Trader
Yes 9 5.4 17 14.8 0 5.8

13.263 2 0.001 0.429No 6 9.6 24 26.2 16 10.2

Farmer
Yes 8 7.9 25 21.6 5 8.4

4.083 2 0.13 0.238No 7 7.1 16 19.4 11 7.6

Employee Yes 4 1.7 4 4.6 0 1.8
5.751 2 4.959 0.056 0.283No 11 13.3 37 36.4 16 14.2

Public Lighting Yes 0 2.5 1 6.8 11 2.7
40.226 2 31.89 <0.001 0.747No 15 12.5 40 34.2 5 13.3

Other
Yes 1 1.7 6 4.6 1 1.8

1.198 2 0.849 0.676 0.129No 14 13.3 35 36.4 15 14.2
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Table A3. Technical results for the PUE integration scenarios.

Representative
Demand

Low
Demand

High
Demand

Low Demand
with Night-Time

Load

High Demand
with Night-Time

Load

PU
E

In
te

gr
at

io
n

Sc
en

ar
io

Ba
se

ca
se

Residential
Demand [kWh] 101.24 43.08 201.76 69.51 196.45

PUE Demand [kWh] 0.00 0.00 0.00 0.00 0.00
Excess Electricity

Share [%] 51.97 46.02 53.64 36.39 55.18

Excess Hours 3433 2804 3474 2670 3575

R
ic

e
hu

lle
r

Residential
Demand [kWh] 101.24 43.08 201.76 69.51 196.45

PUE Demand [kWh] 1309.15 1309.15 1309.15 1309.15 1309.15
Excess Electricity

Share [%] 70.67 70.51 69.28 70.71 69.43

Excess Hours 3142.00 3289.00 3303.00 3236.00 3297.00

Fl
ex

ib
le

ri
ce

hu
lle

r

Residential
Demand [kWh] 101.24 43.08 201.76 69.51 196.45

PUE Demand [kWh] 1309.14 1309.14 1309.14 1309.14 1309.14
Excess Electricity

Share [%] 0.12 0.12 0.12 0.12 0.12

Excess Hours 137 136 132 132 136

Fr
ee

ze
r

Residential
Demand [kWh] 101.2 43.1 201.8 69.5 196.4

PUE Demand [kWh] 485.0 485.0 485.0 485.0 485.0
Excess Electricity

Share [%] 63.3 63.3 62.8 63.2 63.1

Excess Hours 3841 3892 3856 3859 3901
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