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Abstract: Droughts have extensive consequences, affecting the natural environment, water quality,
public health, and exacerbating economic losses. Precise drought forecasting is essential for promoting
sustainable development and mitigating risks, especially given the frequent drought occurrences
in recent decades. This study introduces the Improved Outlier Robust Extreme Learning Machine
(IORELM) for forecasting drought using the Multivariate Standardized Drought Index (MSDI). For
this purpose, four observation stations across British Columbia, Canada, were selected. Precipitation
and soil moisture data with one up to six lags are utilized as inputs, resulting in 12 variables for the
model. An exhaustive analysis of all potential input combinations is conducted using IORELM to
identify the best one. The study outcomes emphasize the importance of incorporating precipitation
and soil moisture data for accurate drought prediction. IORELM shows promising results in drought
classification, and the best input combination was found for each station based on its results. While
high Area Under Curve (AUC) values across stations, a Precision/Recall trade-off indicates variable
prediction tendencies. Moreover, the F1-score is moderate, meaning the balance between Precision,
Recall, and Classification Accuracy (CA) is notably high at specific stations. The results show that
stations near the ocean, like Pitt Meadows, have higher predictability up to 10% in AUC and CA
compared to inland stations, such as Langley, which exhibit lower values. These highlight geographic
influence on model performance.

Keywords: drought; machine learning; multivariate standardized drought index (MSDI); British
Columbia; natural disaster

1. Introduction

Drought, a complex and least-understood natural disaster, has become increasingly
prevalent in recent decades, necessitating effective management and resource preservation
strategies [1,2]. The impacts of droughts on agriculture, water resources, ecosystems,
and human settlements are severe and are escalating globally. Anthropogenic activities
disrupting atmospheric dynamics contribute to drought events’ worsening frequency and
intensity [3]. Mitigating these effects necessitates efficient early warning tools to aid rural
communities in preparation [4]. Droughts, striking due to climatic factors, topography,
and water demand, present a formidable challenge, causing economic, environmental, and
social losses. Their prolonged duration demands accurate monitoring and forecasting,
integrating meteorological and remote sensing data [5].

Predicting droughts is crucial for sustainable development and disaster risk reduction.
Artificial intelligence (AI) methods, leveraging computational intelligence techniques,

Sustainability 2024, 16, 3461. https://doi.org/10.3390/su16083461 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16083461
https://doi.org/10.3390/su16083461
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-0463-7386
https://orcid.org/0000-0003-4373-5763
https://orcid.org/0000-0002-6906-629X
https://orcid.org/0000-0002-7620-7433
https://orcid.org/0000-0001-6169-3654
https://doi.org/10.3390/su16083461
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16083461?type=check_update&version=1


Sustainability 2024, 16, 3461 2 of 27

have proven powerful in forecasting meteorological time series and enhancing drought
prediction capabilities [6–9]. AI’s contributions to environmental development, particularly
in disaster risk management, are noteworthy [10]. In contrast to traditional models, AI
models offer enhanced prediction accuracy by considering multiple variables and nonlinear
relationships [11]. Anticipating droughts is significant in pre-emptive water resource
management, agricultural strategizing, and disaster readiness. The progression of AI
techniques has ignited a burgeoning enthusiasm for tapping into their potential to enhance
Precision in drought prediction [10].

Dikshit et al. [12] conducted a study targeting drought prediction in New South Wales,
Australia. They employed the Standardized Precipitation Evapotranspiration Index (SPEI)
due to its comprehensive calculation, which considers temperature and rainfall, improv-
ing drought prediction. Utilizing climate research unit data, the index was constructed
over varying periods (1, 3, 6, and 12 months). Their analysis incorporated 13 predictors,
including sea surface temperature, climate factors, and diverse meteorological variables.
Employing Artificial Neural Network (ANN) and Support Vector Machine (SVM) forecast-
ing models trained on data from 1901 to 2010, they evaluated the models’ performance over
eight years (2011–2018). The results demonstrated ANN’s superior performance (R2 = 0.86)
compared to SVM (R2 = 0.75) in forecasting temporal drought patterns. Interestingly, the
study unveiled the minimal influence of climatic indicators (e.g., Pacific decadal oscillation)
and sea surface temperatures on temporal droughts. Zhang et al. [13] devised a distinctive
drought forecasting model utilizing meteorological measurements, drought indices, and cli-
matic signals from 32 stations in China’s Shaanxi Province. They employed cross-correlation
function and distributed lag nonlinear model (DLNM) techniques to select predictors and
ascertain their lag duration. DLNM, ANN, and XGBoost models were pitted against each
other to forecast the SPEI for 1–6 months. The XGBoost model emerged as the frontrun-
ner, exhibiting R2 values of 0.68–0.95 across various lead times (3, 6, 9, and 12 months)
and displaying superior accuracy in predicting overall, moderate, severe, and extreme
droughts. Achite et al. [14] harnessed multiple Machine Learning (ML) techniques—ANN,
ANFIS, SVM, and Decision Tree (DT)—for hydrological drought forecasting in the Wadi
Ouahrane basin in Algeria. The authors assessed the models using evaluation metrics
and found SVM to be the most effective in consistently accurately predicting hydrological
droughts. Notably, the SVM model achieved a coefficient of determination of 0.95 for
the 12-month timescale, showcasing its efficacy over varying time spans. Li et al. [15]
explored a novel meteorological drought prediction strategy by incorporating antecedent
SST fluctuation pattern (ASFP) and ML techniques like SVR, Extreme Learning Machine
(ELM), and Random Forest (RF). They applied this approach to four drought-prone river
basins globally, utilizing 1- and 3-month lead periods for forecasting SPEI. Their findings
highlighted the ASFP–ELM model’s supremacy in predicting spatial-temporal drought
evolution. Further research has delved into hybrid ML models fortified by optimization
algorithms for enhanced drought prediction. Mohamadi et al. [16] harnessed SVM, Radial
basis function network (RBFNN), ANFIS, and Multilayer perceptron (MLP) models to
forecast climatic droughts in Iran using data spanning from 1980 to 2014. Incorporating the
nomadic people algorithm (NPA), bat, salp swarm, and krill algorithms bolstered soft com-
puting models’ accuracy and convergence speed. In their case, hybrid ML models exhibited
improved performance, outperforming standalone models in forecasting the 3-month
standardized precipitation index. Nabipour et al. [17] adopted an amalgamation of ANN
models and optimization algorithms like the grasshopper optimization algorithm (GOA),
salp swarm algorithm (SSA), particle swarm optimization (PSO), and biogeography-based
optimization (BBO) for short-term hydrological drought prediction. Their hybrid models,
particularly the ANN model coupled with the PSO algorithm, outperformed conventional
ANN models, showcasing enhanced predictive accuracy for various drought indices at
distinct time scales.

While droughts grip British Columbia, existing research lacks tailor-made ML tools for
hydrological drought prediction. This study pioneers the Improved Outlier Robust Extreme
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Learning Machine (IORELM), a novel ML technique, to build robust forecasting models
within the province. Unlike prior studies, IORELM goes beyond existing frameworks by
meticulously analyzing various input combinations based on the Multivariate Standardized
Drought Index (MSDI) to identify the most reliable model for predicting future droughts.

This novel approach promises to overcome current limitations in drought prediction,
paving the way for significantly improved water management strategies. By enabling accu-
rate forecasts, IORELM can empower the implementation of robust regulatory protocols
and sustainable water use practices. This, in turn, bolsters mitigation efforts and safeguards
water resources in British Columbia.

Moreover, this study breaks new ground by investigating the following:

1. The efficacy of IORELM for drought forecasting: This represents the first application
of IORELM to droughts in British Columbia, marking a significant step forward.

2. Optimal input combinations: Analyzing various combinations based on MSDI pa-
rameters ensures the most reliable model is chosen, leading to improved prediction
accuracy.

3. Gridded reanalysis data in drought forecasting: This innovative approach has the
potential to enhance prediction capabilities further.

By delving into these unexplored avenues, this study offers a groundbreaking ap-
proach to drought prediction in British Columbia, ultimately contributing to a more sus-
tainable future for the province’s water resources.

2. Materials and Methods
2.1. Study Area

The scope of our investigation is delimited to the Lower Mainland Basin within
the province of British Columbia (B.C.), as visually outlined in Figure 1. This particular
geographical area encompasses our primary research focus and serves as the backdrop for
the placement and distribution of the monitoring stations essential to our study.
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The British Columbia Drought Information Portal (DIP) reports a severe drought
situation with a Drought Level 5—Adverse Impacts Almost Certain, signifying a critical
water scarcity condition. This portal was established to serve as a comprehensive and
centralized geographic information system for the residents of British Columbia. The DIP
application employs a multifaceted approach, incorporating several embedded maps to
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provide users with valuable data related to drought conditions. The information available
through the DIP encompasses various aspects, including the provincial drought levels,
historical drought patterns over time, and supplementary drought-related details. Further-
more, it is important to note that the Drought Portal ensures that the drought levels and
associated data are regularly updated promptly as new information becomes accessible
through its website. In British Columbia, drought levels are typically assessed using a
scale ranging from 0 to 5, with Drought Level 5 being the most severe and critical. This
designation signifies that the likelihood of adverse impacts on communities and ecosystems
is extremely high. As of the latest available data, which were recorded on September 21,
it is observed that most of British Columbia’s water basins are currently experiencing
Drought Levels 4 or 5, indicating a widespread and significant water shortage situation
across the region [18]. Four meteoritical stations from Environment and Climate Change
Canada (ECCC) were selected for the drought monitoring. The coordinates of this station
are presented in Table 1.

Table 1. Coordinates of the used stations.

Station Latitude Longitude

Lanfley 49◦08′40.800′′ N 122◦33′03.600′′ W
Pitt Meadows 49◦12′29.964′′ N 122◦41′24.076′′ W

Vancouver 49◦17′43.270′′ N 123◦07′18.730′′ W
West Vancouver 49◦20′49.350′′ N 123◦11′35.910′′ W

2.2. Data Acquisition

All the meteorological data are collected from the NCEP (National Centers for En-
vironmental Prediction) and NCAR (National Center for Atmospheric Research). The
NCEP/NCAR are collaborating on a significant project known as “reanalysis”. This
project’s primary goal is to create a comprehensive 40-year record of global atmospheric
field analyses to support the research and climate monitoring communities. This endeavor
involves several crucial steps, including retrieving data from various sources such as land
surface observations, ship records, rawinsonde (weather balloon) data, pibal observations
(pilot balloons), aircraft data, satellite data, and more. These diverse data sources are subject
to a rigorous quality control process. The collected data are incorporated into a consistent
data assimilation system for the entire NCEP/NCAR 40-year project reanalysis period,
using an advanced global system with a fixed configuration to avoid sudden climate data
discontinuities. The database used in this project is as complete as possible, aiming to
provide a comprehensive and accurate representation of atmospheric conditions over the
specified time frame [19]. The NCEP operational Global Forecast System utilizes analysis
and forecast grids with a global latitude–longitude grid resolution of 0.25 by 0.25 degrees.
These grids encompass analysis and forecast time steps, following a pattern of a 3 h interval
from 0 to 240 h and a 12 h interval from 240 to 384 h into the future. The model forecast
runs occur at four specific Coordinated Universal Time (UTC) times daily, which are 00:00
UTC, 06:00 UTC, 12:00 UTC, and 18:00 UTC. This regular model run schedule ensures
timely and up-to-date weather forecasting information for users and stakeholders [20]. For
this research, the Precipitation and Soil moisture data were collected from 2019 to 2023 in a
daily format.

2.3. Downscaling of Gridded Data

Downscaling methods, such as statistical and dynamical approaches, play a crucial
role in providing higher-resolution climate information for local or regional applications.
Statistical downscaling involves establishing relationships between large-scale atmospheric
variables and local-scale climate conditions, utilizing techniques like regression models
and weather generators. While computationally efficient, these methods may struggle to
capture local-scale processes and extremes [2,9]. On the other hand, dynamic downscaling
employs regional climate models to simulate climate at higher resolutions, considering
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regional-scale factors like topography and land use. Although offering detailed information
on local-scale climate processes, dynamic downscaling requires intensive computation and
careful calibration [21]. According to this, the collected data were downscaled using the
Inverse Distance Weighting (IDW) technique as presented in Equation (1).

Zu =
∑
(

zi
dp

i

)
∑
(

1
dp

i

) (1)

where Zu is the downscaled parameter in the desired location, Zi is the known value
(Precipitation and air temperature) at the sampled location i (sampled location), di is the
distance between the un-sampled location (u) and each location (i), and p is a positive power
parameter that determines the rate at which the weights decrease with distance. Common
values for p include 1 (inverse linear distance weighting) and 2 (inverse squared distance
weighting). In this study, p was 2. Following the downscaling process using the IDW
technique, the derived values for each monitoring station were subsequently employed in
the computation of the Drought Index specific to each station. This critical step allowed us
to assess and quantify the drought conditions unique to each location under consideration.
By utilizing the refined and downscaled data from both Precipitation and Soil Moisture
sources, we could construct a localized Drought Index for every station.

2.4. The Multivariate Standardized Drought Index (MSDI)

The Multivariate Standardized Drought Index (MSDI) stands as a holistic drought as-
sessment metric that embraces a multitude of factors, including precipitation, temperature,
and streamflow, to evaluate drought conditions. Its comprehensive nature lies in consider-
ing the interconnectedness between various meteorological and hydrological elements [22].
Inspired by the widely adopted Standardized Precipitation Index (SPI), the prospect of
formulating a multi-index model emerges by constructing a joint distribution function
encompassing two or more univariate drought variables or indices. In this study, they
introduce the MSDI, which extends the univariate SPI to incorporate the joint distribution
of precipitation and soil moisture, a comprehensive approach for characterizing meteoro-
logical and agricultural drought. Central to this concept is copulas, a class of functions that
enable the derivation of joint distributions for two or more variables, disregarding their
original marginal distributions. They consider precipitation and soil moisture as random
variables, represented as X and Y, respectively. The cumulative joint probability (p) can
be succinctly expressed using a copula (C) as outlined in Equation (2). Copulas serve as
mathematical tools enabling the derivation of the joint distribution of two or more variables,
irrespective of their initial marginal distributions. They provide a means to model the inter-
dependence or correlation between variables, allowing for a comprehensive understanding
of their collective behavior within a given system [23]. By utilizing copulas, analysts and
researchers can effectively capture the intricate relationships between variables, facilitating
modeling. Furthermore, copulas offer a versatile framework that accommodates diverse
types of data distributions, enabling the exploration of complex dependencies that may
not be adequately captured by traditional statistical methods. Hence, their utilization rep-
resents a significant advancement in probability theory and statistical modeling, offering
practitioners a powerful tool to analyze and interpret multivariate data effectively [23,24].

P(X < x, Y < y) = C
(

F(x), G(Y)
)
= P (2)

C(u, v) = −1
θ

ln

(
1 +

(
e−θu − 1

)(
e−θv − 1

)
e−θ − 1

)
(3)

τ = 1 +
4[D(θ)− 1]

θ
(4)
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D(θ) =
1
θ

∫ θ

0

t
exp(t)− 1

dt (5)

MSDI = φ−1(P) (6)

In this context, C symbolizes the copula function, while F(X) and G(Y) refer to the
marginal cumulative distribution functions of the random variables X and Y, respectively
(see Equation (2)). The copula (C) introduces a dynamic framework for constructing the
joint distribution of random variables while considering their individual marginal distri-
butions. The integration of copulas in modeling nonlinear dependence structures within
multivariate data has gained popularity in hydrological and climatological studies, en-
compassing applications such as multivariate frequency analysis, risk assessment, drought
modeling, and geostatistical interpolation. Various copula families have been developed
and employed to model diverse dependence structures of random variables. For instance,
the Frank copula embodies a symmetric dependence structure, whereas the Gumbel and
Clayton copulas manifest asymmetric dependence structures. For illustration, the Frank
copula’s representation is as Equation (3). Here, θ signifies the parameter (drought), while
u and v represent the marginal cumulative probabilities of precipitation and soil mois-
ture, respectively. The parameter θ can be estimated via Kendall’s rank correlation “τ” in
Equation (4). The function D(θ) is articulated as Equation (5), and “t” is the integration
variable. Based on the cumulative joint probability “p” as depicted in Equation (2), the
MSDI can be formulated as Equation (6). Here, φ embodies the standard normal distri-
bution function. Equation (5) facilitates the conversion of the joint probability into the
MSDI format, positioning it within the same realm as the original SPI, thereby enabling
meaningful cross-comparisons across distinct drought indices. The methodology employed
for SPI development can also be extended to other variables, such as soil moisture and
runoff. Using copulas facilitates a cohesive representation of the interrelationship between
precipitation and soil moisture, transcending the boundaries of their marginal distributions.
This innovative approach, embodied by the MSDI, showcases the potential for a more holis-
tic understanding of meteorological and agricultural drought dynamics [22]. The MSDI is
pivotal in drought monitoring, early warning systems, and decision making across diverse
domains such as agriculture, water resource management, and disaster preparedness. By
embracing multiple variables, it offers a more comprehensive and unified viewpoint of
drought conditions, capturing intricate interactions between meteorological and hydro-
logical dynamics. However, it is imperative to underline that accurate MSDI calculation
necessitates dependable and quality-assured data for all involved variables. Additionally,
selecting variables, corresponding weights, and the methodology employed in analysis
can influence outcomes and interpretations. A meticulous approach and validation are
indispensable when applying the MSDI in practical contexts and policy formulation [24].

2.5. Improved Outlier Robust Extreme Learning Machine (IORELM)

Extreme Learning Machine (ELM) is a learning algorithm for single-hidden layer
feedforward neural networks (SLFFNNs) that was introduced by Guang-Bin Huang and
colleagues in the early 2000s [25,26]. ELM is designed to overcome some of the difficulties
and limitations associated with traditional feedforward neural network training methods,
such as slow training speed [27], local minima [28,29], and the need for the iterative tuning
of learning parameters [30].

ELM is primarily characterized by its extremely fast learning speed and ease of imple-
mentation [31]. It randomly assigns input weights and biases and analytically determines
the output weights of SLFFNNs. This approach eliminates the need for iterative adjustment,
making the learning process significantly faster than conventional gradient-based learning
methods. A schematic of the ELM structure is presented in Figure 2.
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The key idea behind ELM is to randomly choose hidden nodes’ input weights and
biases and calculate the output weights analytically. The initial phase involves randomly
allocating weights and biases for inputs. During this stage, each pair in the training dataset,
denoted as (xi, yi)—where xi represents the input vector and yi the desired output—is
processed by assigning random values to the input weights (InW) (Equation (7)) and biases
(B) (Equation (8)) of the nodes within the hidden layer.

InW =

 InW11 · · · InWI1
...

. . .
...

InWN1 · · · InWNI


N×I

(7)

where N represents the number of neurons in the hidden layer, while i indicates the number
of input variables.

B =

 B1
...

BN


N×1

(8)

The second phase entails computing the hidden layer’s output matrix (K). For every
input sample, the hidden layer’s output is derived through an activation function, culmi-
nating in the formation of the hidden layer output matrix K. For detailed information on
various activation functions, refer to the studies in the literature [30].

In the third phase, the focus shifts to establishing the output weights (γ) that link
the hidden layer with the output layer. These weights are determined analytically by
identifying the least squares solution to the following linear equation.

K γ = Y (9)
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where

Y =

yT
1
...

yT
n


n×1

(10)

γ =

γT
1
...

γT
N


N×1

(11)

K =

 f (InW1 · x1 + B1) · · · f (InWN · x1 + BN)
...

. . .
...

f (InW1 · xn + B1) · · · f (InWN · xn + BN)


n×N

(12)

where n denotes the number of training samples, N represents the count of neurons in the
hidden layer, InW refers to the matrix of input weights, B indicates the bias associated with
the hidden neurons, x is the set of input variables, Y stands for the matrix of target outputs,
and γ signifies the output weight.

An effective approach to addressing this issue involves determining the best value
for γ̂ by minimizing the loss function, which is achieved through calculating the optimal
least squares.

EELM = min∥y − Kγ∥ (13)

This process typically involves employing the Moore–Penrose generalized inverse
of matrix K, denoted as K+, resulting in the following equation in the sense of minimum
ℓ2-norm to find the optimal output weights.

γ̂ = K+Y (14)

The crucial aspect of ELM lies in forming a specific matrix by minimizing training
errors, which is significantly influenced by the random assignment of input weights and
biases to hidden neurons. Bartlett [32] highlighted that in an FFNN, maximum general-
ization capability is achieved when both the training error and the magnitude of output
weights are minimized concurrently. Similarly, optimal generalization is realized in ELM by
striking the right balance between minimizing the output weights’ norm and the training
error [32]. A regularization parameter (C) is employed to enhance the ELM’s ability to
generalize beyond the training data to find this balance. Introducing this parameter is
meant to improve the model’s performance on new, unseen data, thereby extending the
capabilities of the standard ELM approach.

The training error (e = y − Kγ) can be treated as a measure of sparsity to improve the
modeling effectiveness when outliers are present. The ℓ0-norm more accurately represents
the sparsity compared to the ℓ2-norm [33]. Detailed information about sparsity can be
found in Bonakdari et al. [30]. ORELM aims to find an output weight (γ) with a minimal
ℓ2-norm, ensuring that the training error remains sparse. The loss function of the ORELM
is defined as follows:

EORELM = Cmin
γ

∥y − Kγ∥0 + ∥γ∥2
2 (15)

The output weight is calculated using the following equations [30]:

βk+1 = (KTK + 2/CµU)
−1

KT(y − (e)k + λk/µ) (16)

ek+1 = shrink(y − Kγk+1 + λk/µ, 1/µ)
∼= max{|y − Kγk+1 + λk/µ| − 1/µ, 0} ◦ sign(y − Kγk+1 + λk/µ)

(17)

λk+1 = λk + µ(y − Kγk+1 − ek+1) (18)

where µ = 2n/∥y∥1, and U is the unit matrix.
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Ebtehaj and Bonakdari [34] highlighted that over two-thirds of the adjustable parame-
ters in the ORELM consist of the input weights and biases of hidden neurons, which are
generated randomly and greatly influence the model’s outcomes [34]. Incorrect settings
for these parameters can diminish the model’s ability to generalize. To address this, the
study introduces two enhancements to the standard ORELM: (1) the implementation of an
orthonormal basis for the distribution of input weights and bias within the hidden neuron
matrices and (2) the inclusion of an iteration parameter. These modifications led to an
enhanced version of ORELM, termed Improved ORELM (IORELM). The process for this
refined model, IORELM, is depicted in Figure 3.
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The modeling process begins with the initialization phase, where the structure of the
IORELM is outlined, specifying the number of hidden nodes and randomly assigning input
weights and biases to these nodes. In this study, the maximum number of iterations and
number of hidden neurons were considered as the maximum value that can be taken. These
values were calculated using Equation (19) [31].

MaX_NHN = Training samples/(InV + 2) (19)
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where MaX_NHN is the maximum number of allowable hidden neurons, and InV is the
number of input variables.

For the regularization parameter, the optimal value was determined to be 0.1 based on
iterations. This value was found to provide the best balance between fitting the training
data well and avoiding overfitting, resulting in improved generalization performance on
unseen data [34].

Following this, the forward pass phase involves processing the entire training set
through the hidden layer, utilizing the randomly determined weights, biases, and a chosen
activation function to compute the outputs of the hidden layer. Subsequently, output
weights are determined by leveraging the Moore–Penrose generalized inverse to address
the least squares problem, ensuring the output weights are optimally aligned with the
desired outcomes. In the testing and validation phase, test data are passed through the
established hidden layer—retaining the initially set weights and biases—and then through
the output layer, employing the calculated output weights to generate predictions.

The final stage focuses on assessing the IORELM model’s efficacy, thereby quantifying
its performance and capability to generalize over unseen data. From initialization to
performance evaluation, this comprehensive approach encapsulates the ELM’s modeling
process, emphasizing systematic progression and rigorous validation to ensure the model’s
robustness and effectiveness.

Following this, the outcomes of each iteration are recorded, and the process is repeated
for the predetermined maximum number of iterations. Subsequently, the most optimal
model is selected based on the computed statistical indices, concluding the iterative and
evaluative phases of the IORELM modeling process.

2.6. Metrics for Assessing the Performance of Methods

In this study, we assess the efficacy of the proposed techniques for Drought estimation.
The development and deployment of binary classification models demand a comprehensive
understanding of their performance, often evaluated using metrics such as Precision,
Classification Accuracy (CA), Recall, Area Under the Curve (AUC), and F1-Score [35].

Precision (Equation (20)) measures the proportion of true positive predictions out of
all positive predictions, indicating the model’s ability to avoid false positives [36].

Classification Accuracy (Equation (21)) assesses the overall correctness of the model’s
predictions by comparing the number of correctly predicted instances to the total number
of instances. Recall (Equation (22)), also known as sensitivity, evaluates the proportion of
true positive predictions out of all actual positives, indicating the model’s ability to identify
all relevant instances [2,37].

The F1-Score (Equation (23)) also harmonizes Precision and Recall, offering a bal-
anced measure of the model’s overall accuracy by considering both false positives and
false negatives. Understanding these performance metrics is crucial for effectively de-
veloping, evaluating, and deploying binary classification models in diverse real-world
applications [38].

Precision =
True Positive

True Positive + False Positive
(20)

Recall =
TruePositive

True Positive + False Negative
(21)

Accuracy =
Number of Correct Predictions

Total Number of Predictions
(22)

FlScore =
Precision + Recall
Precision × Recall

(23)

In binary classification, four potential prediction outcomes may arise [39]. “True
positive” signifies accurately predicting the presence of drought, indicating that the model
correctly identifies instances of drought. “True negative” denotes the correct prediction of
the absence of drought, meaning the model accurately identifies instances where drought
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does not occur. Conversely, a “false positive” occurs when the model incorrectly predicts
drought when none is present, leading to a false alarm. Similarly, a “false negative” arises
when the model fails to predict drought when it does occur, indicating a missed detection.
These four outcomes are essential for evaluating the performance and reliability of binary
classification models, particularly in domains where accurate identification of positive and
negative instances is critical, such as drought prediction and mitigation efforts [40].

AUC measures the ability of the model to discriminate between positive and negative
instances across various threshold values. It plots the true positive rate (sensitivity) against
the false positive rate (1-specificity) and provides a single scalar value representing the
model’s performance [41].

3. Results

Following the methodology outlined in reference [30,31,34], the SPI and standard soil
moisture index (SSI) are computed using the corresponding precipitation and soil moisture
datasets. To investigate the MSDI across a time scale (daily), SPI and SSI are calculated
for identical durations to allow for cross-comparison. Across various grid areas, three
copula functions (Frank, Gumbel, and Clayton) are selected, as these copula functions are
commonly employed in drought studies [42–44].

The effectiveness of different copula models in accurately representing the relationship
between rainfall and soil moisture. Among the options, Gumbel Copula emerges as the
preferred choice for the majority of cases, as presented by Masud et al. [45]. A copula model
is retained if its corresponding p-value is equal to or higher than 0.05 (5% significance level).
These tests are conducted to maintain consistency with SPI and SSI analyses.

In this study, a total of 14 inputs, as outlined in Table 2, were utilized in various
combinations. The total number of data for each input was 1523. The data were suffi-
cient for drought prediction using the ML technique [10,40]. These inputs generated a
comprehensive dataset comprising 16,383 distinct combinations for modeling purposes.
Among these inputs, a primary focus was placed on two key parameters of MSDI, which
encompassed precipitation (P(t)) and soil moisture (SM(t)) variables. These parameters
were derived using a range of lag intervals, spanning from a one-day lag to a six-day
lag (P(t − i) and SM(t − i)). This study aimed to capture varying temporal relationships
between the input variables and target outcomes by incorporating different lag intervals.
This extensive exploration of input combinations facilitated a thorough examination of the
predictive performance of ML models across a diverse array of environmental conditions
and temporal contexts.

Table 2. Description of the different inputs for ML.

Input Name Description

P(t) Total Precipitation
P(t − 1) 1-day lag of total precipitation
P(t − 2) 2-day lag of total precipitation
P(t − 3) 3-day lag of total precipitation
P(t − 4) 4-day lag of total precipitation
P(t − 5) 5-day lag of total precipitation
P(t − 6) 6-day lag of total precipitation
SM(t) Soil moisture

SM(t − 1) 1-day lag of soil moisture
SM(t − 2) 2-day lag of soil moisture
SM(t − 3) 3-day lag of soil moisture
SM(t − 4) 4-day lag of soil moisture
SM(t − 5) 5-day lag of soil moisture
SM(t − 6) 6-day lag of soil moisture

The modeling process involved classifying MSDI values for four distinct stations using
different combinations of the inputs listed in Table 2. In this table, P(t − i) shows the
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ith lag of the total precipitation, and SM(t − i) is the ith lag of the soil moisture. These
combinations ranged from utilizing as few as one input to incorporating all 14 inputs
simultaneously. Each input represents a specific variable relevant to the MSDI, such as
precipitation and soil moisture, with variations in time intervals captured through lag inter-
vals ranging from one month to six days. By exploring these diverse input combinations,
the study aimed to comprehensively analyze how different combinations of variables and
temporal relationships influence the classification of MSDI values across the four stations.
This approach allowed for a thorough examination of the predictive capabilities of the
ML models under various scenarios, enabling insights into the most influential factors
impacting MSDI classification across different spatial and temporal contexts.

To assess the performance of ML classification considering the best statistical sets of
inputs and evaluate how efficiently these models can predict the MSDI drought index using
precipitation and soil moisture data, we applied five evaluation tests (Precision, CA, Recall,
AUC, and F1-Score). Here is a brief explanation of each of the five-evaluation metrics used.

Precision metric measures the proportion of positive identifications that were actually
correct. It is the number of true positives divided by the total number of positive predictions
(the sum of true positives and false positives) [46]. Recall (Sensitivity) assesses the propor-
tion of actual positives that were identified correctly. It is calculated by dividing the number
of true positives by the sum of true positives and false negatives [47]. This metric is critical
when the cost of missing a true positive is significant. The F1-Score is the harmonic mean
of Precision and Recall [48]. It conveys the balance between the precision and recall metrics,
providing a single score that reflects the robustness of the model’s ability to classify positive
instances correctly. It is particularly useful when one needs to take both false positives and
false negatives into account. CA is the overall percentage of correct predictions, both true
positives and true negatives, among the total number of cases examined [49]. It is the most
intuitive performance measure, simply a ratio of correctly predicted observations to the
total observations. AUC provides an aggregate measure of performance across all possible
classification thresholds. It measures the ability of the model to discriminate between
positive and negative classes [50]. An AUC of 1 indicates perfect prediction, while an
AUC of 0.5 suggests no discriminative power [51]. Moreover, the optimum results of all
five tests for the four stations in the study area were also evaluated, which allowed for a
comprehensive assessment of the accuracy of the classification results.

In the following section, the evaluation of each test result for the four stations situated
within the study area is depicted in Figure 4. These figures provide a comprehensive
overview by presenting the average value of each metric derived from the modeling during
the test phase. Each station’s performance is discussed separately, allowing for a detailed
analysis of the model’s efficacy across various locations within the study area.

From the results of the precision test for the four stations based on Figure 4a, we can
deduce that the Pitt Meadows station has the highest precision score, suggesting that, for
that specific station, the model made the most relevant classifications out of the four. The
lowest precision score is for the West Vancouver station, suggesting it had relatively more
false positives or fewer true positives in comparison to the others.

Regarding the location of these stations within the study area and the effects of
proximity to different geographical features, such as the ocean (to the southwest) or moving
north or south within the basin, those stations closer to the ocean may be influenced by
more stable and higher humidity conditions due to the proximity of the water body. This
could potentially affect the MSDI drought index because factors like precipitation and
soil moisture may have different patterns near coastal areas versus inland areas [52,53].
Moreover, stations located in the northern part of the study area might experience different
weather patterns influenced by the terrain and distance from the ocean, which could result
in variations in precipitation and soil moisture levels. Similarly, these factors could also
affect areas in the southern part of the case study, along with potential human activities
that might influence local climate conditions.
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To evaluate the average results of the CA test values for the four stations, we analyzed
Figure 4b, which represents the average of the provided CA values. The average CA value
for the four stations is approximately 0.702. A higher average CA would indicate that the
model has a good overall prediction rate [54]. However, it is essential to note that while
high CA is desirable, it is not the only metric to consider, especially in datasets that might
have an imbalance between classes. Other metrics like Precision, Recall, F1 score, and AUC
can provide a more nuanced understanding of the model’s performance, especially in terms
of its ability to handle false positives and false negatives.

With the provided CA values, we can see that they are high, suggesting that the model
has a decent prediction capability across the study area for the MSDI drought index, which
uses precipitation and soil moisture as inputs [55]. It would also be beneficial to look at the
other metrics to obtain a comprehensive view of the model’s performance.

In Figure 4c, AUC represents a degree of separability. It indicates how much the model
is capable of distinguishing between classes. Higher AUC values typically indicate better
model performance [50]. The average AUC value for the four stations is 0.745. For the
analysis of the AUC values in relation to the geographic location of the stations, stations
closer to the ocean (West Vancouver and Vancouver stations) have higher AUC Values.
This means coastal regions may have more consistent patterns of precipitation and soil
moisture due to marine influence. This could lead to a more consistent signal in the data
from which the ML model can learn, potentially resulting in higher AUC values. Hence, a
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higher AUC value indicates better separability between classes, suggesting that the model
can distinguish well between drought and non-drought conditions. This could be due to
the clearer patterns in climatic data near the coast.

In addition, stations closer to the North or South (away from the ocean), might present
more varied AUC values due to diverse microclimates and a wider range of influences on
precipitation and soil moisture, such as elevation, terrain, and distance from moderating
oceanic effects. In summary, the AUC values suggest that the classification model is fairly
good at distinguishing between classes across the stations in the study area. The minor
differences in AUC values may reflect the subtle influences of local geography and climate.
The model must be trained on diverse data that capture the full spectrum of conditions
across the study area to maintain high performance in all locations.

Figure 4d includes the Recall test values for four stations within the study area, the
Lower Mainland Basin in British Columbia. The average Recall value for the four stations
is approximately 0.361. For the analysis of the Recall values in relation to the geographic
location of the stations, stations closer to the ocean (West Vancouver and Vancouver stations)
have more predictable moisture patterns due to the proximity to large bodies of water,
which could lead to higher Recall as the model may better identify actual drought events.
However, suppose drought patterns are less common because of the marine climate. In
that case, the Recall might be lower since there are fewer drought events to identify, which
can affect the model’s ability to learn from such events. Furthermore, those stations away
from the ocean may experience more variable weather patterns and potentially have less
predictable soil moisture levels due to terrain and elevation, leading to a lower Recall if the
model fails to identify all positive cases.

Alternatively, consider a situation where drought occurrences are more frequent, and
the model has been adequately trained on a substantial dataset that accurately represents
these conditions. This means that the model has been exposed to ample instances of drought
events during its training phase. As a result, it possesses a thorough understanding of
the patterns and characteristics associated with droughts. This enhanced training enables
the model to better predict and analyze drought-related phenomena, offering valuable
insights into their causes, impacts, and potential mitigation strategies. In that case, the
Recall might be higher as the model would have learned to identify the signs of drought
more effectively. The relatively low Recall values across the stations suggest that the model
may be missing a significant number of actual drought events. This could be due to a
variety of factors, including imbalanced datasets (where the number of non-drought events
far exceeds drought events), insufficient representation of drought characteristics in the
features used for training, or complex interactions between climatic variables that the
model is not capturing [56].

Figure 4e includes the F1-Score test values for four stations within the study area. The
average F1-Score value for the four stations is approximately 0.583. Considering Figure 4e,
stations closer to the ocean have more consistent and measurable precipitation and soil
moisture patterns due to the marine influence, leading to clearer patterns for the ML model
to learn from. This could potentially result in higher F1-Scores due to better model precision
and Recall.

As the primary visual tool in this current study, violin plots have been used to show
the distribution of the index values regarding all stations and models. This decision is
underpinned by the plots’ unique ability to provide a comprehensive overview of the data,
merging the insights into central tendencies and dispersion, characteristic of box plots,
with the distributional shape information offered by density plots [28,29]. The depiction
of density estimates on both sides of the central box plot is especially valued, revealing
potential multimodality or skewness in the data—a nuanced detail that might remain
hidden under alternative plotting methods. Such a feature is deemed invaluable in the
comparative analysis across multiple groups of models, where discerning and illustrating
distributional differences and similarities with immediacy and clarity is paramount [30,36].
Despite concerns over potential redundancy in data representation, it is asserted that this
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aspect of violin plots actually facilitates a clearer conveyance of distribution shapes to the
readership, which may not be extensively familiar with density plots [30]. Furthermore,
the employment of a bootstrap methodology in deriving these probability distributions is
highlighted, emphasizing the robustness of the approach and ensuring that estimations
of distributional characteristics are well founded on empirical evidence [28,29]. Thus,
with additional exposition on the rationale for selection and the statistical foundations
of the analysis, any reservations regarding the use of violin plots are intended to be
addressed, advocating for their effectiveness in enhancing both the efficiency and clarity of
our comparative study.

Figure 5 shows violin plots illustrating the distribution of various metrics across dif-
ferent stations. These plots utilize density curves to represent the numeric data distribution
within each group, with the width of the curves reflecting the approximate frequency of data
points in respective regions [57]. By employing density curves, these plots offer a visual
depiction of the data’s spread and concentration, aiding in identifying patterns and outliers
across stations. Additionally, an overlaid chart type, such as a box plot, is often included
to offer further insights accompanying each density curve. This combination provides a
comprehensive understanding of the data’s central tendency and variability, facilitating
comparative analysis and informed decision making regarding station performance and
characteristics [58].

In Figure 5, each violin plot illustrates the prediction error distribution for different
input combinations during the test phase. The numbers displayed inside the violin plots
represent the values of performance metrics, including Precision, Recall, Accuracy, F1
score, and AUC. The x-axis of the plots is divided into four coordinate points, representing
four distinct stations. By examining the prediction error distribution across these stations,
insights can be gained into the performance variation in the input combinations across
different spatial contexts. The violin plots show how different combinations of input
variables influence prediction accuracy and variability across stations. By analyzing the
shape and spread of the violin plots, patterns and trends in prediction error distribution
can be identified, aiding in evaluating and comparing model performance under various
input conditions. This comprehensive visualization facilitates a deeper understanding of
the predictive capabilities of the models and the impact of input combinations on their
performance across different station locations.
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Figure 5a examines the Precision metric across four stations through a violin plot.
The median Precision values, which represent the middle point of the data distribution,
remain consistent across stations, hovering between 0.6 and 0.63. Pitt station boasts the
highest median Precision, while West Vancouver exhibits the lowest. The distribution of
data points around the median and the first quartile (Q1) follows a similar pattern across
stations, indicating a clustering of values within this range. Moving from Pitt to Langley,
we observe a gradual decrease in the third quartile (Q3), maximum, and minimum values,
which are 1.5 times the interquartile range (IQR). This suggests a reduction in variability as
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we move along this path. Interestingly, Langley stands out with the maximum value of
Q1 at 0.55, whereas West Vancouver records the lowest at 0.51. Despite this variation, the
values of Q1 remain relatively stable overall. Comparing the differences between Q1 and
Q3, we notice a consistent pattern in Pitt and Vancouver, whereas West Vancouver exhibits
a significant difference of almost 0.11, indicating greater variability in this station. The
maximum (Q4) and minimum (Q0) values follow a similar trend across all stations, ranging
from 0.8 to 0.76 for Q4 and from 0.4 to 0.36 for Q0. West Vancouver boasts the highest Q4
value, while Vancouver records the highest Q0. On the other hand, Langley demonstrates
the lowest values for these quartiles. These findings provide valuable insights into the
distribution of Precision metrics across the stations, highlighting variations in performance
and variability. Understanding these patterns can aid in identifying factors that influence
model performance and guide decisions to improve predictive capabilities.

Figure 5b showcases a violin plot representing the Recall metric across four stations.
The median Recall values remain consistent across stations, ranging from 0.35 to 0.37. Like
Precision, Pitt station records the highest median, while Vancouver exhibits the lowest.
Most data points cluster around the median and the Q1, indicating a common pattern across
stations. However, Vancouver shows a deviation with distributed data around the median
and the Q3. Moving from Pitt to Langley, we observe changes in the Q3, maximum, and
minimum values, which are 1.5 times the IQR. The maximum of this value is observed in
Pitt, while Vancouver and Langley display the minimum. However, the maximum of the Q1
occurs in Pitt (0.35), with Vancouver recording the lowest at 0.32. The differences between
Q1 and Q3 vary across stations. In Pitt and West Vancouver, the difference ranges from
0.34 to 0.39, while Vancouver exhibits the largest difference of almost 0.16. The maximum
(Q4) and minimum (Q0) values follow a consistent pattern across stations, ranging from
0.48 to 0.55 for Q4 and 0.25 to 0.3 for Q0. Pitt station records the highest Q4 value, while
Vancouver exhibits the highest Q0. Conversely, Vancouver displays the lowest values
for these quartiles. These insights shed light on the distribution of Recall metrics across
the stations, highlighting variations in performance and variability. Understanding these
patterns can offer valuable guidance for improving model performance and predictive
capabilities across different spatial contexts.

Figure 5c examines the Accuracy metric across four stations through a violin plot. The
median Accuracy values vary across stations, ranging from 0.68 to 0.73. Once again, Pitt
station records the highest median, while West Vancouver exhibits the lowest, mirroring the
patterns observed in Precision. Most data points cluster around the median and the Q1 in
Pitt, West Vancouver, and Langley. However, Vancouver displays a different pattern, with
values distributed around the median and the Q3. Moving from Pitt to Langley, we observe
a gradual decrease in the Q3, maximum, and minimum values, which are 1.5 times the
IQR. The maximum of this value is observed in Pitt, while the lowest is in West Vancouver.
The maximum of the Q1 occurs in Pitt (0.71), with West Vancouver recording the lowest
at 0.66. The differences between Q1 and Q3 remain approximately constant in Pitt and
Vancouver, but West Vancouver displays the largest difference. The Q4 and Q0 values
follow a consistent pattern across stations, ranging from 0.81 to 0.78 for Q4 and from 0.59
to 0.66 for Q0. Pitt station records the highest Q4 value, while West Vancouver exhibits
the highest Q0. Conversely, West Vancouver displays the lowest values for these quartiles.
These insights offer valuable information on the distribution of Accuracy metrics across
the stations, highlighting variations in performance and variability. Understanding these
patterns can serve as a guide for improving model performance and predictive capabilities
across different spatial contexts.

Figure 5d depicts the violin plot representing the F1-score metric across four stations.
The median F1-score values remain constant, ranging from 0.59 to 0.6. Similar to previous
metrics, Pitt station records the highest median, while West Vancouver exhibits the lowest.
The majority of data points cluster around the median and the Q1, indicating a consistent
pattern across stations. However, moving from Pitt to Langley, we observe a gradual
decrease in the Q3, maximum, and minimum values, which are 1.5 times the IQR. Despite
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this, Pitt station shows the maximum Q1 value (0.68), while West Vancouver records the
lowest at 0.54. The differences between Q1 and Q3 are relatively constant in Vancouver
and West Vancouver but slightly different in Pitt and Langley, with their ranges lower
than those of Vancouver and West Vancouver. Vancouver exhibits the largest difference
of almost 0.08. The Q4 and Q0 values exhibit diverse patterns across all stations, ranging
from 0.74 to 0.8 for Q4 and from 0.41 to 0.56 for Q0. Pitt station records the highest Q4
value, while West Vancouver exhibits the highest Q0. Conversely, Vancouver displays the
lowest values for these quartiles. These observations provide insights into the distribution
of F1-score metrics across stations, highlighting variations in performance and variability.
Understanding these patterns can inform strategies to enhance model performance and
predictive capabilities across different spatial contexts.

Figure 5e shows the violin plot representing the AUC metric across four stations.
Similar to other metrics, the median AUC values remain constant, ranging from 0.64 to
0.66. Interestingly, West Vancouver station displays the highest median, while Vancouver
records the lowest. Most data points cluster around the median and the Q1, indicating a
consistent pattern across stations. However, as we move from Pitt to Langley, we notice
a gradual decrease in the Q3, maximum, and minimum values, which are 1.5 times the
IQR. An exception is observed in West Vancouver station, where the maximum value of Q3
occurs. The Q1 remains relatively constant, ranging from 0.7 to 0.72, with Pitt and West
Vancouver showing the highest values and Vancouver and Langley displaying the lowest.
The differences between Q1 and Q3 remain relatively constant across all stations. The Q4
and Q0 values follow a consistent pattern across all stations. These findings provide insights
into the distribution of AUC metrics across stations, indicating variations in performance
and variability. Understanding these patterns can inform strategies to enhance model
performance and predictive capabilities across different spatial contexts.

The results presented in Table 3 offer valuable insights into the best input combinations
for each station, optimizing the model’s performance.

Table 3. The best input combination for each station.

Station Input Combination

Pitt Meadows P(t − 2) + P(t − 4) + SM(t − 1) + SM(t − 3) + SM(t − 4) + SM(t − 5) + SM(t − 6) + P(t)
Vancouver P(t − 3) + SM(t − 1) + SM(t − 2) + SM(t − 3) + SM(t − 4) + SM(t − 6) + SM(t)

West Vancouver P(t − 1) + SM(t − 1) + SM(t − 2) + SM(t − 3) + SM(t − 4) + SM(t − 5) + SM(t − 6) + SM(t)
Lanfley P(t − 5) + SM(t − 1) + SM(t − 3) + SM(t − 4) + SM(t − 5) + SM(t − 6) + P(t) + SM(t)

In Pitt Meadows, the combination comprising past precipitation values at specific
time lags (t − 2, t − 4) and soil moisture values at adjacent time lags (t − 1, t − 3, t − 4,
t − 5, t − 6), along with current precipitation, underscores the significance of recent and
relevant historical data in accurately predicting drought conditions. Similarly, in Vancouver
and West Vancouver, the focus on recent soil moisture values at multiple time lags and a
single past precipitation value highlights the crucial role of soil moisture data from various
recent periods in forecasting drought conditions. This emphasis on recent soil moisture
data underscores their importance in predicting drought conditions accurately. Conversely,
in Langley, the optimal combination includes past precipitation values at specific time lags
(t − 5), along with soil moisture values at adjacent time lags (t − 1, t − 3, t − 4, t − 5,
t − 6) and current precipitation. This blend of past precipitation and soil moisture data,
emphasizing recent periods, contributes to precise drought prediction in Langley. Overall,
the selected input combinations emphasize the importance of incorporating precipitation
and soil moisture data at various time intervals for effective drought prediction across
different stations. These findings provide valuable insights for enhancing the model’s
performance and its ability to mitigate the impacts of drought in these regions.

For classification tasks in ML, relying solely on the precision metric fails to convey
the complete overview [59,60]. It should be evaluated in the context of other metrics like
Recall, F1-score, CA, and AUC to determine the model’s overall performance. Each of these
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metrics gives different insights into the true positives, false positives, true negatives, and
false negatives and how these relate to the various thresholds used in the classification
process. For example, a station with high Precision but low Recall might be very accurate
when it predicts a certain class but fail to identify all actual instances of that class [61]. By
contrast, a high F1-score indicates a balance between Precision and Recall [49].

Figure 6 represents the best test values from all five evaluation metrics for four Lower
Mainland Basin, British Columbia stations. The values indicated on the map for the best
test values of each station are shown in Table 4:
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Table 4. The best values of all five metrics for each station in the test phase.

Station Recall CA AUC F1-Score Precision

West Vancouver 0.453 0.764 0.869 0.789 0.539
Vancouver 0.413 0.718 0.843 0.753 0.412

Pitt Meadows 0.417 0.533 0.774 0.602 0.174
Lanfley 0.417 0.761 0.762 0.574 0.362

The performance metrics provided in Table 4 offer valuable insights into the effec-
tiveness of the detection system across various monitoring stations. West Vancouver and
Vancouver stand out with higher recall values of 0.453 and 0.413, respectively, indicating
their superior ability to correctly identify positive instances of the monitored event. By
contrast, Pitt Meadows and Lanfley exhibit lower recall values, suggesting a potential for
missing a significant number of positive instances. Regarding the CA, West Vancouver
leads with a CA of 0.764, closely followed by Lanfley at 0.761. These stations demonstrate
relatively higher accuracy in classifying both positive and negative instances. By contrast,
Pitt Meadows shows the lowest CA at 0.533, indicating lower overall accuracy in classifi-
cation. Regarding the AUC, West Vancouver and Vancouver show higher values of 0.869
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and 0.843, respectively, indicating better overall performance in distinguishing between
positive and negative instances. Conversely, Pitt Meadows and Lanfley display lower
AUC values, suggesting a weaker discrimination ability at these stations. The F1-Score,
which balances Precision and Recall, is highest for West Vancouver (0.789) followed by
Vancouver (0.753). These stations achieve a better balance between identifying true positive
instances and minimizing false positives. Pitt Meadows and Lanfley, however, show lower
F1-Scores, indicating a trade-off between Precision and Recall that could impact overall
performance. Moreover, West Vancouver and Vancouver demonstrate higher precision
values, implying a lower false positive rate compared to Pitt Meadows and Lanfley. This
suggests that the detection systems at these stations are better at accurately identifying true
positive instances without misclassifying negative instances.

By analyzing the values of all five metrics in Figure 6, we found that the stations closer
to the ocean are likely to have less extreme and more predictable weather patterns due to
the moderating effect of the water, which could lead to higher values in AUC and CA. These
metrics might reflect a model’s better ability to discriminate between classes and accurately
classify the current state due to less variability in the input data. However, the precision
and recall values might vary depending on the specific climate characteristics influenced
by the ocean. For instance, if drought events are less frequent due to marine climates, the
Recall might be lower, as there are fewer positive instances to predict. Additionally, stations
located further inland (north or south) might have a greater range of weather conditions,
potentially leading to more varied test scores. AUC and CA might be lower if the model
has difficulty generalizing across the diverse conditions present in these locations.

In conclusion, the analysis underscores variations in performance across different
monitoring stations, with West Vancouver and Vancouver exhibiting relatively stronger
performance across multiple metrics compared to Pitt Meadows and Lanfley. These findings
emphasize the importance of considering station-specific performance when evaluating
detection systems and may guide future efforts to optimize monitoring capabilities at
specific locations. The specific occurrences of drought conditions might influence Precision.
If drought events are more sharply defined inland due to less maritime influence, the
Precision could be higher when predicting these events.

Figure 7 shows the violin plot of targets and outputs of the best model for each station.
Figure 7a–d depict violin plots illustrating the targets and outputs of the best model for

each station. The values represented in these plots correspond to three classes denoted as 3,
4, and 5, indicating the drought severity in each station during the specified time interval.
Across all stations, the value of Q1 is consistently 3, serving as the median as well. This
consistency arises from the nature of the target and output values, which can only assume
one of the three values: 3, 4, or 5. Therefore, it is possible for the median to align with the
boundaries of the interquartile range due to the discrete nature of the data. Additionally,
the abrupt truncation of the distribution for high values of the random variable is not
due to a limitation in the method but rather a consequence of the discrete nature of the
data. Since the values are constrained to 3 to 5, any outliers or extreme values beyond this
range would not be present in the distribution. In Pitt, Vancouver, and Langley, there is a
noticeable difference between Q1 and Q3 in output and target values, indicating that the
model tends to overestimate during the test phase. However, this issue is less prominent
in the West Vancouver station. Additionally, in all stations, the value of Q0 of outputs
exceeds that of targets, suggesting a tendency for the model to predict higher severity levels
than observed. The data distribution around the Q1, which shares the same value as the
median, follows a predictable pattern [58,62,63]. This distribution is expected due to the
limited range of class tags, resulting in the majority of data points clustering around these
values across all stations. These findings provide insights into the model’s performance
in predicting drought severity levels across different stations. The observed tendencies
towards overestimation and the consistent distribution of data points highlight areas for
potential refinement in the model’s predictive capabilities. The decreased accuracy of the
ML model in forecasting drought suggests that it did not comprehend the drought-related
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data as effectively as it did with non-drought training samples. As a result, it tended to
overestimate drought conditions [40,64]. To mitigate the model’s tendency to overestimate
drought severity levels and bolster the reliability of our findings, a comprehensive potential
solution can be refining the feature selection process and optimizing the model architecture;
parameter tuning offers promise in alleviating overestimation, as we did by adding the lag
of data as new inputs, and defining the most sophisticated network architecture can be
effective. Moreover, exploring various algorithms, integrating bias correction techniques,
or post-processing methods into the modeling can be undertaken [14–16].
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4. Conclusions

In this study, we address a critical gap in hydrological drought forecasting by de-
ploying an innovative application of IORELM. Our research aims to overcome current
limitations in drought prediction by exploring novel modeling approaches. This study
extensively investigated various input combinations based on the MSDI parameters to
identify the most reliable combination for ML techniques. Our results demonstrate the pro-
ficiency of the ML model in distinguishing between drought and non-drought conditions,
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with consistently high AUC values observed across different stations. Furthermore, we
evaluated Precision and Recall metrics, revealing a potential trade-off between the two, as
commonly encountered in classification tasks. Depending on the station, the model may
prioritize conservatism in predicting drought conditions (higher Precision) or greater sensi-
tivity in detecting them (higher Recall). The moderate F1-Score across stations indicates
further improvement in model performance to achieve a balanced Precision/Recall trade-
off. Notably, the high Correct CA for some stations highlights the commendable overall
accuracy of the model in classifying all conditions. In conclusion, our findings underscore
the promising capabilities of ML techniques in hydrological drought forecasting within
British Columbia. While our models exhibit strengths in distinguishing between drought
and non-drought conditions, further refinement is necessary to optimize performance,
particularly in achieving a balance between Precision and Recall. In addition, the results
show the types of models that rely on satellite and gridded climate data because of their
consistent spatial coverage and frequent data collection, allowing for prompt updates on
drought conditions across extensive areas [65]. These insights hold significant implications
for enhancing water resource management practices and fostering sustainability amidst
increasing water scarcity challenges.

Numerous studies have employed a variety of ML techniques, including ANN and its
hybrid forms such as ANN-PSO, ANN-BBO, and ANN-GOA [17], as well as ANFIS [66,67],
SVM [68–70], and RF [71,72], to forecast drought indices like SPI, SPEI, and MSDI. Studies
indicate that direct models perform well in predicting drought indices at longer time scales,
while recursive models exhibit effectiveness at shorter time scales [10]. Additionally, many
studies have reported the successful utilization of wavelet ANFIS [73]. In the case of MSDI
prediction, employing ML models such as SVM [74] and hybrid ANN [75] has been found
to enhance accuracy and outperform other methods. Furthermore, using NCEP data as a
data source for SPI and SPEI prediction has yielded reliable results, as confirmed in our
study [76]. Moving forward, continued research and development efforts in this domain
are essential to advance the effectiveness of drought prediction models and compare the
results with existing studies to reach support informed decision making for water resource
management in British Columbia and beyond.
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