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Abstract: Beer production consumes significant amounts of water, energy, and raw materials, and
results in the production of various by-products, including wastewater, brewers’ spent grain, yeast
and hop. To lower its environmental footprint, by-products may be reclaimed or valorized in agro-
food, cosmetic, material, chemical industries, etc. According to most recent research, breweries have
the potential to become biorefineries, as they can extract diverse valuable plant-based compounds
such as carbohydrates, proteins, lipids, phenolic compounds, platform chemicals, and biopolymers.
These biomolecules possess bioactive and physicochemical properties, which can be enhanced
through recovery processes. Brewery by-products may be utilized in various industries within the
bioeconomy frame. In agro-food systems, extracts can increase final products’ techno-functionalities.
Such additives can also help in creating marketing labels such as clean-label healthy, which can
further attract potential customers. Businesses can gain economic and socio-environmental benefits
by implementing sustainable practices, which can also improve their corporate image. This article
outlines recent advancements in the processing and valorization of brewery by-products, ultimately
defining an up-to-date, sustainable strategy for clean beer production.
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1. Introduction

In the future, the food supply chain is likely to come under strain due to the effects of
climate change, growth in population, and the subsequent surge in demand [1]. Further-
more, humanity will have to deal with resource shortages, including water, raw materials,
and energy. Thus, a more sustainable industry, taking account of the water–energy–food
nexus and its scarcity dimension [2], is required to meet the needs of future generations.

Fossil-based resources are widely used in the industrial world to provide energy and
chemical products. These have proven to be relatively cheap and convenient but also, as
a drawback, to have significant side impacts on human health and the environment [3].
Furthermore, the depletion of fossil resources is threatening the oil-dependent global
economy. In contrast to conventional linear economy, the circular economy attempts to
increase the eco-effectiveness of products [4]. The environmental damage here is minimized
and even a positive impact is possible. In this model, the reuse and recycling of by-products
would minimize waste production and stimulate their derivation into high-value products,
enhancing environmental performance and creating additional business profits [5]. As an
alternative to fossil-based economy, bioeconomy is a new model based on exploiting the
resources of plant origin and related products. Renewable feedstock can contribute to a
lower environmental footprint, e.g., resource depletion and global warming [6]. Within the
circular economy, chemicals can be extracted from agro-food waste and replace fossil-based
compounds to supply the needs of the emerging bioeconomy.

Liquid and solid wastes produced by food industries, including brewing, pose both
economic and environmental concerns [7,8]. Brewery solid by-products are mainly used
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as animal fodder, which is a positive alternative to incineration or disposal. However,
this approach does not reflect technological possibilities identified by research and the
true potential of waste valorization, such as human feed, bioactive compounds recovery,
bioconversion, etc. [9–11]. Regarding the wastewater produced, it is mainly treated and
released into the environment, resulting in the loss of freshwater [7].

Due to the large volumes of beer produced, with a global production of 190 million
m3 in 2022 [12], the brewery industry consumes large quantities of raw materials, water
and energy and produces significant amounts of liquid and solid by-products. Hence, the
beer industry may represent an adequate system for applying a circular bioeconomy model.
Brewery by-products were extensively studied for their valorization and application in
diverse industrial sectors. Figure 1 displays the number of research articles published over
the years that feature solid by-products, in combination with the term “application”, and
liquid by-products, along with the terms “reuse”, “biogas”, or “application”. Interestingly,
the proportion of studies dealing with brewery by-products that include the application of
extracts has increased more than the number of articles solely on brewery by-products.
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database. The mentioned percentages indicate the proportion of articles that focus on the practical
application aspect.

Some articles reviewed the brewery industry liquid and solid by-product manage-
ment and valorization [13–17]. These contributions are valuable for the valorization of
brewing by-products research; however, they tend to focus on specific by-products and
do not take a global and systematic approach to brewing industry sustainability, e.g.,
beer production conservation efforts, benefits for the brewing industry and strategies for
by-product valorization.

This article seeks to address these issues by exploring the potential for breweries to
engage in the multi-valorization of their by-products. It summarizes the opportunity for
the brewing industry to lower its environmental footprint through by-product valorization,
raw material substitution, energy recovery and water reclamation. This review aims to
cover the main solid by-products of the beer industry, including brewers’ spent grain (BSG),
brewers’ spent yeast (BSY), and brewers’ spent hop (BSH), as well as brewery wastewater
(BWW). The objective is to focus on the biomolecules extracted from specific by-products
but also to provide an overview of the potential for biorefining in the brewing industry.
Additionally, the benefits of implementing sustainable practices in brewing businesses
are addressed.
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After describing the generation of by-products from the brewing industry, the recent
advances in reusing raw materials, energy and water for further beer production are
detailed. The sustainability benefits of these practices for the industry are also discussed.
Brewing by-products may be applied directly to other systems, yet many techniques have
demonstrated their ability to extract biomolecules in a biorefinery paradigm. The impact of
these processes on recovered compound properties are discussed in view of application.
There are several sustainable paths and technologies available for the brewing industry.
As the choice of solution may vary depending on the size of the brewery and economic
background, decision-making strategies are also addressed in the manuscript. Strategies
to accelerate the transition to a sustainable brewery, with potential economic and socio-
environmental benefits, are also explored. Finally, a detailed scheme that outlines the paths
to the valorization of brewery by-products is presented, along with recommendations for
further research.

2. Raw Materials, Beer Production Process and Related By-Products
2.1. Main Constituents for Beer Production

The primary raw materials needed to brew beer are water, malt, hops and yeast. Water
is used in the brewing industry not only for extracting carbohydrates from malt, but also
for various requirements, such as equipment cleaning, bottle rinsing, etc. Water must be
potable, free from microbiological contamination and with a controlled chemical composi-
tion. Malt is a cereal that underwent germination and thermal transformation during an
operation known as malting. The cereal is first moistened to initiate germination, releasing
enzymes, such as α-amylase, β-amylase and dextrinase, and then heated to develop its aro-
mas. The temperature and duration of malting are decisive parameters for the organoleptic
characteristics of beer [18]. Barley is the prominent grain used for malting. Other cereals,
such as wheat and rye, can be added depending on the beer recipe. As regards the hops
used, there are two types: bittering and aromatic. Bittering hops bring α-acids, responsible
for beer’s bitterness after the isomerization performed during wort boiling. Aromatic hops
have a lower α-acid content and are richer in essential oils. In addition to their bittering
and aromatic properties, hops provide phenolic compounds, which are essential for the
microbiological stability of beer, and terpenes [19]. They are traditionally packaged in
cones and are gradually replaced by pellets or concentrated extracts. Yeasts are unicellular
organisms that transform monomeric carbohydrates into ethanol via alcoholic fermentation.
Brewers’ yeasts can be divided into lager-type and ale-type brewers’ yeasts, fermenting at
low (4–12 ◦C) and high (14–25 ◦C) temperatures, respectively. Their choice is decisive for
the organoleptic properties of beer. Saccharomyces cerevisiae and Saccharomyces pastorianus
yeast strains are used for ale and lager beers, respectively [20].

2.2. Beer Production and By-Product Generation

Beer is derived from plant-based materials, generating solid and liquid by-products
during the process. The general scheme of beer production is shown in Figure 2. The
milling stage involves malted cereal grinding. After the milling stage, starch and enzymes
contained in the malt are available for extraction during the brewing process. The first
step in the brewing process is the mashing stage, where milled malt is mixed with hot
water, i.e., in the range of 62 to 75 ◦C, at a single- or multi-temperature heating stage
of various durations to maximize the activation of the different enzymes responsible
for the hydrolysis of starch in fermentable and non-fermentable sugars. Fermentable
sugars come in monomeric form, namely glucose or fructose, or in dimeric form, such as
maltose. Non-fermentable sugars, called dextrins, result from the incomplete hydrolysis
of starch and are low-molecular-weight polysaccharides. Dextrins, however, contribute
to beer softness [21]. During this stage, proteins are also released and will play a role in
foam formation and stability. During the lautering step, beer wort is separated from the
solid residue, known as BSG. During this step, BSG is rinsed with hot water to increase
the recovery of fermentable and non-fermentable sugars in the beer wort. Bittering and
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aromatic hops are added at the beginning and end of the boiling step, respectively. The
liquid matrix is boiled until 100 ◦C to isomerize the α-acids, as previously mentioned,
but also to promote protein coagulation, remove the volatile undesirable compounds
such as aldehydes and dimethyl sulfide, and sterilize the beer wort. After boiling, the
whirlpool step separates the wort from the solid residues, i.e., trub and BSH. Yeasts carry
out alcoholic fermentation. The Saccharomyces species are mainly used in the industry [22].
Yeast type, temperature and fermentation time are decisive parameters for the organoleptic
characteristics of the finished product. Primary fermentation, where ethanol and carbon
dioxide are produced, lasts from 2 to 10 days, after which beer is transferred to low-
temperature storage tanks for one to several weeks to finish fermentation and refine the beer.
The yeast is cropped from fermenters after the end of fermentation. Several technologies are
available to remove residual yeasts and suspended solids, including centrifugation, frontal
filtration performance with diatomaceous earth, or tangential filtration. Fermented beer
includes compounds that can make it naturally cloudy [23]. Unlike in craft microbreweries
and most beer styles, turbidity is undesirable for marketing reasons in the brewing industry.
After removing suspended solids and yeasts, a colloidal stabilization step can also be
carried out, for instance, with polyvinylpolypyrrolidone filters. Conditioning is the final
production step and produces wastewater and solid wastes, such as glass bottles, labels,
and metal products. All production steps produce BWW.

Beer production is extensively water consumptive, with a water-to-beer ratio mid-
percentile of 2.79–4.11 L·Lbeer

−1 in 2020 [24]. According to the most recent environmental,
social and governance report of the Carlsberg group, for a water use to beer ratio of
2.53 L·Lbeer

−1, the breweries produced 144 g·Lbeer
−1 of solid waste and by-products and

1.45 L·Lbeer
−1 of wastewater in 2022 [25].
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3. Resource Conservation: Closing the Loop

The release of by-products can have a significant impact on the environment, which,
in turn, represents a cost for industries. One of the ways to deal with this issue is to reduce
the amount of waste generated. Moreover, the increasing demand for raw materials, water,
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and energy has a negative impact on the environment and is threatening the resilience of
the food supply system. In this context, one potential solution is to reclaim waste streams
from breweries either in the manufacturing process or by treating them to generate energy,
which promotes sustainability.

3.1. Raw Materials Substitution or Reuse

Yeast is an easy-to-reclaim waste. At the end of fermentation, BSY cells are harvested
and added to the next ferment [28]. This process is called repitching. However, yeast perfor-
mances seem to deteriorate with repitching. Therefore, serial repitching affects cell viability,
physiology and oxidation, thus affecting fermentation performances and beer quality [29].
Performance loss is likely higher in the case of S. cerevisiae compared to S. pastorianus. This
was recently explained with cell-wall modification induced by repitching stress; unlike
S. cerevisiae, S. pastorianus can create a resistant cell-wall structure composed of β1,4- and
α1,4-Glucan linkages [30]. This practice reduces yeast brewery needs.

BSG carbohydrate composition is likely too low for direct reuse for the next mashing
batch. However, malted grain consumption may be lowered using substitute material, as
shown in Figure 3. One of the most promising materials is bread residue. According to a
recent study, up to 50% of malt may be replaced by bread with similar physicochemical
properties of ale beer compared to the control, a 100% malt ale beer. Furthermore, the whole
wheat bread displayed higher antioxidant capacity, phenolic compounds concentration
and better organoleptic sensorial characteristics than the control [31]. Replacing malt with
bread has also been tested with lager beer. A small adjunct of residue bread, i.e., up to
30% of the malt ratio, showed higher organoleptic ratings than the control, whereas a ratio
higher than 30% showed lower ratings, with some taste flaws as salt, yeast and diacetyl
feelings [32]. Using bread surplus can reduce breweries’ malt consumption and improve the
environmental performance of classic bread waste treatment systems, mainly incineration,
anaerobic digestion (AD) or disposal [33]. A life cycle analysis showed that using surplus
bread in brewing may save 0.46 kgCO2eq·kgbread

−1 emission in the global warming category.
Replacing malt with bread had an environmental savings score, which was calculated
considering all environmental factors, of −24 mPt per kg of bread. This score was lower
than the savings achieved through source reduction (−49), animal feed (−30), and donation
(−28). However, it was higher than the savings from ethanol production (−17), incineration
(−3), and AD (0) [34]. Some fruits could also be used as a carbohydrates source due to their
high fermentable sugar content, such as cocoa [35].
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Dry hopping is a technique that has gained popularity over the last years. In contrast
to addition at the end of the boiling step, dry hopping is a cold extraction of hop at the end
of fermentation or during maturation. This technique improves aroma-related compounds
extraction, but also the oxidative stability of beer [36,37], making it a valuable tool for
breweries to increase resource conservation, e.g., enhancing the efficiency in the use of hops.
Hop pellets used for dry hopping may be reused for further hopping. Gasinski and co-
workers showed that beers with a hop from a previous dry hopping process contained lower
concentrations of some volatile compounds such as aromadendrene, α-terpineol, methyl
geranate, and α-caryophyllene, but similar total volatile compounds, phenolics compound
concentration, and antioxidant capacity, compared to the control, composed of fresh hop
pellets. In addition, panelists described beer with recycled hops as tasting better [38].
Optimization of dry hopping was also reported with several extraction techniques. For
instance, supercritical CO2 extraction reduces energy and solvent consumption during
hop extract production [39]. Alternatively, fractional condensation under vacuum allowed
hop amount and energy consumption reduction. Several fractions with different volatile
profiles were obtained, proving the versatility of this technology [40].

3.2. Energy Recovery

Energy, in biogas or in electricity form, can be recovered from solid and liquid residue
matrices (Figure 3). Solid by-products, such as BSG and BSY, can be processed through
AD to produce methane (CH4), hydrogen (H2), or a mix of these two gases, called bio-
hythane. Hydrogen production may be realized either with dark fermentation [41] or
photo-fermentation [42]. Fermentation process parameters, such as pH, culture type or
time, must be carefully optimized, as they influence biogas production and composition,
as well as by-products generation [43]. The optimization of operating conditions may be
performed with the help of statistical tools. For example, central composite design and
response surface methodology were successfully achieved in the AD of BSG, resulting in
optimal temperature (35 ◦C) and substrate concentration (18 gBSG·L−1) determination [44].
This energy flux can be sold to generate extra revenues or used directly on a brewery plant
to lower its consumption. Sganzerla and co-workers optimized dry BSG in AD to produce
methane, and obtained a yield of 10.53 LCH4·kgtotal volatile solids

−1. According to the latter
results, purified methane could generate electric and thermal energies in industrial heat
and power unit, which covers 7.38 and 6.86% of the electricity and heat required for beer
production, respectively. Thus, breweries may reduce their energy consumption and miti-
gate greenhouse gas through the AD of by-products [45]. Other brewery high-organic-load
by-products were tested for methane production with AD, such as whirlpool residue and
end-of-fermentation beer [46]. Results showed that BSG and BSY, with the addition of
biochar and granular activated carbon, yielded 486.9 LCH4·kgvolatile solids added

−1, and spent
grain, up to 356.2 LCH4·kgvolatile solids added

−1, respectively. The co-digestion of 70% BSY
and 30% BSG was tested and produced 447.7 LCH4·kgvolatile solids added

−1 with a synergistic
effect. With such productivity performance, this process would cover, respectively, 53.9 and
64.4% of the electric and thermal consumption of the brewery [46]. Second-generation
ethanol can be produced through micro-aerobic or anaerobic fermentation. Carbohydrates
can be released through acid hydrolysis with an average yield of 81–94% and ethanol
production of 0.227–0.251 Lethanol·kgBSG

−1 [47–49]. Other pretreatments exist, such as sub-
critical water, enzymatic hydrolysis, etc. Subcritical water resulted in higher productivity
and a lower amount of ethanol, namely 0.067–0.87 Lethanol·kgBSG

−1 [50]. Biofuel production
through algal cultivation and pyrolysis from BWW was also reported [51].

Most BWW is treated on-site with aerobic biological treatment and rejected to lakes or
rivers. BWW is mostly treated with aerated sludge processes, consuming a large quantity
of energy because of aeration [52]. Biogas production was also reported during BWW
AD treatment. This practice is emerging at an industrial scale, with 18 out of 84 sites
in the Carlsberg group [25]. Performances may be optimized with innovative processes
such as utilizing low voltage during fermentation. Adding 0.10 V appears to improve
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the performance of anaerobic digestion by increasing the conductivity of the sludge and
extracellular polymeric substances of cells, resulting in enhanced organic load degradation
and methane production [53]. The co-digestion of BWW and BSG for hydrogen production
was recently tested. A hydrogen productivity decrease was observed when 17.5% of
BSG was added to the matrix. This result was explained by the increase in nitrogen
content, which promoted ammonia inhibition [41]. This increase in nitrogen was also
observed during BSY and BSG co-digestion [46]. Apart from biogas production with
AD, another promising technique for low-energy sustainable wastewater treatment is
microbial fuel cell (MFC). This system uses microorganisms to degrade organic load while
generating electrical current and has gained attention in the last decades for real wastewater
treatment [54]. MFC was applied to BWW treatment, with chemical oxygen demand, total
dissolved solids, total nitrogen and total phosphorous removal of 79–87, 76–78, 66 and
75%, respectively [55,56]. Other works obtained similar chemical oxygen demand removal
performances during a one-year run. The techno-economic assessment was realized, and
the cost of the studied system was two orders lower than conventional activated sludge
systems. Authors suggested upcoming research developments such as higher flow rate
study, low-cost cathodic catalyst material or MFC connection in parallel or series [57]. The
energy consumption of MFC systems was 3 to 10 times lower than that of conventional
aerobic treatment systems [56,57]. According to a recent study, algal biomass may also treat
BWW with reduced energy consumption, up to 3-fold less [52]. In addition, algal processes
may allow for nutrient recovery, as discussed in Section 5.

3.3. Water Reclamation

Water reuse was performed for years in some breweries (Figure 3). Multiple pieces of
research focus on BWW treatment performance maximization with novel techniques, yet
few studies really consider water reuse in their process. The most promising techniques
are the coupling of anaerobic membrane bioreactor (AnMBR) and cross-flow filtration
processes, whose most classical technologies are microfiltration (MF), ultrafiltration (UF),
nanofiltration (NF) or reverse osmosis (RO), or the coupling of techniques. AnMBR-treated-
BWW processing with direct contact membrane distillation, NF and RO were compared
for water reclamation. RO and membrane distillation showed similar total organic carbon,
chemical oxygen demand, total nitrogen and total phosphorous rejection. Membrane
distillation performed an 86% recovery of high-quality water [58]. Biologically treated
BWW has also been processed with ozone/coagulation/MF/RO or UF/RO. As a result,
the MF and UF permeate complied with the requirements for industrial reuse, and RO
permeate met the requirement of national drinking water regulation [59]. As 30% of brewery
water is used for operations without product contact, wastewater may be recycled with
industrial use quality [60]. Verhuelsdonk and co-workers studied AnMBR/UF/RO system
performances with an economic study [61]. A combination of these technologies allowed for
the production of drinking water in compliance with the set of drinking water requirements,
with a recovery yield of 63.3%. These performances were obtained at a pilot scale on a
process operating for two years at a flow rate of 0.5–1.0 m3·h−1. The techno-economic
assessment was realized with a Monte–Carlo analysis with varying operating parameters,
i.e., membrane lifespan, RO recovery, and electrical energy, wastewater disposal, freshwater
and sludge disposal costs. Hence, 77.2% of the cases resulted in the economic viability of
the studied process, with a positive median value of 0.61 €·m−3 [61]. Techno-economic
analysis of a wastewater reuse project can be realized by brewing industries with its own
cost with such studies.

4. Direct Applications of Brewery By-Products
4.1. Current Use of Brewery By-Products

Among the by-products of the brewing industry, a large part is used for animal
feed. According to Carlsberg group figures, in 2022, approximately 83% of the total solid
waste consisted of BSG and BSY, with 97% used as animal fodder and 3% as fertilizer [17].
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Those practices seem to have environmental and economic benefits that could be increased
with human consumption [26]. The current use of brewery solid wastes as animal feed
does not reflect the technical possibilities of the more valuable valorization of these by-
products [51]. Similarly, BWW contains bioactive compounds that enable alternative
methods of valorization with greater value [62]. To understand brewers’ waste management
practices, 11 craft brewery businesses were surveyed in Brazil. BWW was mainly treated
and rejected. Ten out of 11 brewers utilized their solid waste for the agricultural sector,
and more interestingly, 4 out of 11 were not aware of alternative routes apart from using
it as animal feed [63]. Besides misinformation, the motivation of producers to embrace
sustainable approaches was identified as another factor limiting the emergence of a green
industry. Due to the various business and financial challenges that are inherent in the beer-
specific economic context, brewers seem to be facing difficulties in finding the motivation
to embrace environmentally friendly practices [64]. Thus, the brewing sector would benefit
from exploring more valuable ways to valorize its waste. Alternative paths to current
brewing by-products’ end of life, with innovative direct application and without major
modification, were recently investigated by researchers.

4.2. Solid By-Products

BSY is used as animal feed due to its high protein content or as flavoring products
and in human food products [65]. BSY possesses several physicochemical properties
enabling applications outside conventional valorization research fields, as displayed in
Figure 4. For instance, the BSY surface was characterized as “spindle and pointed egg-
shaped”, promoting the organic and inorganic pollutants adsorption from wastewater.
As a result, BSY was used as a biosorbent of Remazol Red F3B [66]. Another group
successfully realized the adsorption of another textile dye, Congo Red, with BSY. The use
of ultrasound in the desorption process yielded a 100% dye desorption with NaOH as the
desorption solvent [67]. Besides textile dye, brewery sludge was used for the removal of
metal compounds from wastewater [68]. Likewise, Zeolite was functionalized with spent
yeast from a microbrewery to recover platinum group metals from an aqueous solution.
Authors showed that operating parameters, such as flow rate, pH and column height,
allowed different adsorption behaviors, and thus, different performances in the separation
and recovery of Pd(III), Ir(III) and Rh(III) [69].
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Figure 4. Novel applications of brewers’ spent yeast and brewers’ spent yeast extract.

Another application of BSY is valorization as carrier material to encapsulate bioac-
tive compounds, like carotenoids from pumpkin peel extract [70] or curcumin [71]. En-
capsulation increased compounds’ stability and enhanced bioaccessibility with gradual
release during simulated gastrointestinal digestion [70]. BSY cell wall components such
as β-glucans and mannoproteins were the main compounds which encapsulated com-
pounds interacted with [71]. Brewery by-products can be used as feed for insect farming,
an alternative to cattle fodder. Brewery solid waste was investigated as black soldier fly
larvae feed, compared to chicken feed. The authors concluded that the solid waste that
was examined showed similar characteristics to other starch-rich materials in terms of
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how insects metabolize them [72]. This suggests that brewing by-products could be a
viable option for producing insect-based proteins, which could potentially help address
environmental challenges related to food production [73]. Brewery by-products were also
studied for raw materials substitution. In this framework, BSG use in formulation may add
nutritional values to noodles [74], candies [75], etc.

4.3. Brewery Wastewater

As described in Section 3, a major part of treated BWW is rejected in the environment.
Closing the water cycle with recycling and reuse is in accordance with the third target of
the United Nations Sustainable Development Goal 6, clean water and sanitation. Water
reclamation in brewery plants has been discussed earlier; nonetheless, recycling can be
achieved in other sectors, especially the agricultural sector. Indeed, AD-treated BWW
demonstrated fertilizing action on mustard greens, basil and lettuce crops [76]. Alayu
and co-workers investigated irrigation effects on tomato cultivation with two BWWs: AD-
treated BWW with and without additional constructed wetland treatment [77]. Both treated
wastewaters affected tomato growth, i.e., plant height, number of leaves, biomass and fruit
yield. These findings suggest that brewery output water stream may bring nutrients and
water to agricultural fields, a process called fertigation. Fertigation reduces both synthetic
fertilizers and freshwater needs. However, soil irrigated with AD-treated BWW showed
an increase in pH and exchangeable cation (Ca2+, Mg 2+, K+ and Na+) concentration. This
negative impact was lowered with additional constructed wetland treatment [77]. In
another study, soil modification was linked to a high salt concentration, or conductivity of
around 3–4 mS·cm−1 [78]. To mitigate this negative impact, Beta vulgaris, a salt-tolerant
crop, and Trichoderma asperellum, a fungus, were respectively used as cultivation species
and as soil amendments. This strategy decreased BWW impact on most salt accumulation
on soil, but to a lesser extent for Na+ [78].

By-products may be valorized in various fields. Functionality brought by brewery by-
products is often correlated to their organic content, i.e., carbohydrates, proteins, phenolic
compounds, etc. Hence, to suit their potential application framework even more, valuable
biomolecules from brewery by-products may be extracted, selected and modulated with
various processes in a biorefinery paradigm, as discussed in Section 5.

5. Brewery as Biorefinery

Brewery by-products, i.e., BSG, BSY, BSH and BWW, are a great source of biomolecules,
such as carbohydrates, lipids, proteins, lignin, etc. and other bioactive compounds, such
as phenolic compounds. The chemical composition differs for each by-product and is
depicted in Figure 5. Adequate extraction technologies allow for the recovery of targeted
biomolecules that can be used in various applications in food and biotechnology. Recently,
novel approaches have emerged where the extraction process may eventually be used to
modify the properties of the extract to suit specific applications better.

A literature survey has been carried out on bioactive compounds and biopolymers
recovery from brewery waste streams, and the most recent advances are summarized in
Table 1.
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Table 1. Recent advances in brewery by-product processing with the aim of biomolecules or biopolymers recovery.

By-Product Target Compounds Method Operating Conditions Outcome Reference

BSG Carbohydrates
Fungal solid-state fermentation,

ionic liquid extraction and
enzymatic hydrolysis

Fermentation: 30 ◦C; 1 × 106 gspore·gBSG
−1

of Aspergillus brasiliensis; 5 d
Extraction: 90 ◦C; 10 g of cholinium

glycinate; 16 h
Enzymatic hydrolysis: 50 ◦C; 160 rpm; 4 h

24.12 ± 2.07 glucan,
54.37 ± 2.34 xylan and 57.04 ± 2.22%

arabinan recovery yield
Ionic liquid recovery with similar

performances up to 5 cycles

[82]

BSG Carbohydrates Ionic liquid extraction

Extraction: 90 ◦C; 120 rpm; 5:100 BSG:IL
(w:w) with cholinium glycinate ionic liquid;

16 h
Antisolvent extraction: room temperature;

1:1 acetone:water (v:v); 30 min +
centrifugation at 2755× g; 30 min + filtration

0.45 µm

71% delignification with high glucan,
xylan and arabinan recovery [83]

BSG Enzymes Fungal solid-state fermentation
Fermentation: 25 ◦C; 75% relative humidity;

2 × 106 spore inoculate; 7 d
Extraction: 1:5 BSG:water (w:v)

Aspergillus ibericus:
300–313 Uxylanase·gdryBSG

−1 and
51–62 Ucellulase·gdryBSG

−1

Aspergillus niger CECT2088:
94 ± 4 Uβ-glucosidase·gdryBSG

−1

[84]

BSG Enzymes Fungal solid-state fermentation

Pretreatment: 121 ◦C; 1% NaOH:water (w:v);
1 h + 98–100 ◦C in water; 1 h

Fermentation: 30 ◦C; 80% relative humidity;
5 × 106 spore inoculate of A. niger

CECT2070; 7 d
Extraction: 1:10 BSG:water (w:v) with
50 mmol·L−1 citrate buffer at pH 4.8

1400.8 Uxylanase·gdryBSG
−1 and

6.23 Ucellulase·gdryBSG
−1 [10]

BSG Lignin Deep eutectic solvent extraction 120 ◦C; 5:1 lactic acid: choline chloride
(mol:mol); 5 h

Lignin extraction yield of 54.4 ± 2.6%
with >75% purity [85]

BSG Lignin Deep eutectic solvent extraction 80 ◦C; 1:20 biomass:DES (m:m); 1:10 choline
chloride:lactic acid (mol:mol); 24 h

Lignin extraction yield of 39.3% with
53% of β-O-4 inter-unit bonds [86]

BSG Lignin and carbohydrates Organosolv extraction and
centrifugation

Organosolv pretreatment: 180 ◦C; 1:1
ethanol:water (v:v); 120 min

Centrifugation: 4500× g; 5 min

Lignin fraction: 95% (w:w) with
58% yield

Glucan (cellulose) fraction: 39% (w:w)
with 60% yield

[87]
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Table 1. Cont.

By-Product Target Compounds Method Operating Conditions Outcome Reference

BSG Phenolic compounds Acid pretreatment and alkaline
hydrolysis

Acid pretreatment: 120 ◦C; 0.2% sulfuric
acid; 17 min

Alkaline hydrolysis: 120 ◦C; 1:20 BSG:NaOH
solution (w:v); 2% NaOH (w:v); 90 min

Extraction: 35.4% HCl addition; 80% ethanol
addition and evaporation

1.185 mgGAE·gdryBSG
−1 including

0.46 mg·gdryBSG
−1 of ferulic acid

extract
[88]

BSG Phenolic compounds Microwave assisted extraction
Microwave pretreatment: 600 W; 30 min
Extraction: 80 ◦C; 1:30 BSG:solvent (w:v);

70:30 ethanol:water (v:v); 60 min

13.23 mgferulicacidequivalent·gdryBSG
−1

extract rich in ferulic and
p-Coumaric acids

[89]

BSG Phenolic compounds and
proteins Ultrasound assisted extraction 47 ◦C; 20 kHz; 21.7 mLwater·gBSG

−1; pulse
mode (5 s/5 s); 0.5 h

Phenolic compounds:
3.28 ± 0.12 mgGAE·gdryBSG

−1

Proteins: 82 ± 1 mgprotein·gdryBSG
−1

[50]

BSG
Phenolic compounds, fatty

acids and nitrogen
compounds

Pyrolysis 25–700 ◦C; 1, 2 and 4 ◦C·min−1 heating rate;
50 mL·min−1 nitrogen flow

13.94% phenolic compounds, 23.95%
fatty acids and 25.10%

nitrogen-compounds release
[90]

BSG Platform
chemical—2,3-Butanediol Bacterial bioproduction

Pretreatment: 400 W; 10% BSG:water (w:v);
0.5% NaOH:water (v:v); 60 s

Enzymatic hydrolysis: pH 6.0; 50 ◦C; 10%
BSG:water (w:v); 2% enzyme:water (v:v)

Culture: 30 ◦C; 180 rpm; Enterobacter ludwigii
mutant strain inoculate; 12 h

batch: 16.4 gBDO·L−1 with
0.41 gBDO·gglucose

−1

fed-batch: 118.5 gBDO·L−1 with
0.43 gBDO·gglucose

−1

[91]

BSG Platform chemical—5-
hydroxymethylfurfural

Subcritical water hydrolysis and
liquid-liquid extraction

Subcritical water hydrolysis: 180 ◦C; 15 MPa;
22.5 gwater·gBSG

−1; 5 mL·min−1 water flow
Liquid-liquid extraction: pH 6.5; 35 ◦C; 1:2

hydrolysate:ethyl acetate (v:v)

73.85% of dry BSG
5-hydroxymethylfurfural recovery [92]

BSG Platform chemical—itaconate Fugal bioconversion

Hydroloysis pretreatment: 180 ◦C; 600 rpm;
1:8 BSG:water (w:v); 15 min

Enzymatic hydrolysis: pH 7.5; 50 ◦C;
70 gdry matter·L−1 BSG:water (w:v); 25 rpm;

72 h
Culture: pH 6.5; 30 ◦C; engineered Ustilago

maydis; 120 rpm

0.38 g·gcarbohydrates
−1 itaconate

productivity with 0.11 g·L−1·h−1

yield
[93]
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Table 1. Cont.

By-Product Target Compounds Method Operating Conditions Outcome Reference

BSG Platform chemical—VFAs Fermentation pH 9.0; 35 ◦C; 1:5 anerobic sludge:BSG
(volatile solids:volatile solids) inoculate; 10 d

9258 mgVFA·L−1 with high acetic
and butyric acids content

[43]

BSG Platform chemical—Lactic
acid

Simultaneous saccharification
and fermentation

pH 5.5; 37 ◦C; 100 rpm; Lactobacillus pentosus
TISTR 920 inoculate; cellulase and xylanase
enzyme cocktail converted from BSG; 72 h

59.3 ± 1.0 g·L−1 lactic acid
production with 0.297 g·gBSG

−1 yield
[94]

BSG Polyhydroxyalkanoates or
related biopolymer Bacterial bioproduction

50.12 gBSG·L−1; 0.22 gyeast extract·L−1; 24.06%
(v:v) salt concentration; Bacillus sphaericus

NCIM 2478 inoculate
916.31 mg·L−1 of PHB [95]

BSG Polyhydroxyalkanoates or
related biopolymer Bacterial bioproduction

pH 8.0–8.8; room temperature; microbial
mixed culture enriched with PHA

accumulating organisms

35.2 ± 5.5% (w:w) of PHA
accumulated [96]

BSG Proteins Alkaline extraction pH 11.0; 60 ◦C; 1:17 BSG:water (w:v); 3 h
with sequential centrifugation 87% protein yield [97]

BSG Proteins and plateform
chemical—VFAs

Alkaline pretreatment
and fermentation

Alkaline pretreatment: 70 ◦C; 455 mbar;
10 gdryBSG in 100 mL of 0.18 molNaOH·L−1;

1 h Fermentation: pH 8.0; 20 ◦C; 0.67
gvolatilesolids,substrate·gvolatilesolids,inoculum

−1

inoculate; 10 d

Amino acids recovery along with
6448.9 ± 328.9 mg·L−1 of VFA

production with 54.0 ± 0.1 of long
chain volatile fatty acids

[98]

BSG Proteins and fibers Enzymatic hydrolysis and
sieving

Enzymatic hydrolysis: pH 8.0; 60 ◦C;
20 µLenzyme·gBSG

−1; 4 h

Protein fraction: 42.8% (w:w) with
43.7% yield

Fiber fraction: 80.4% (w:w) with
56.4% yield

[99]

BSH Xanthohumol Deep eutectic solvent extraction

Extraction:60 ◦C; BSH:DES 1:50 (w:w);
choline chloride:propylene glycol

1:2 (mol:mol); 1 h
Antisolvent extraction: water:DES 3:1 (v:w)

2.30 mg·gBSH
−1 of xanthohumol [100]

BSH Xanthohumol, terpene
derivatives, α- and β-acids Supercritical fluid extraction 50 ◦C; 300 bar; 50 kgCO2·kgBSH

−1

Concentrate of xanthohumol,
terpene derivatives, α- and β-acids
with 11.4% yield with antibacterial,

antiproliferative towards cancer cells

[101]
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Table 1. Cont.

By-Product Target Compounds Method Operating Conditions Outcome Reference

Trub Biosurfactant Bacterial bioconversion
30 ◦C; 200 rpm; 4.18% (v:v) trub; 6 g·L−1

yeast extract; 0.8 g·L−1 peptone; Bacillus
subtilis ATCC 6051 inoculate; 72 h

62.74 ± 2.09 mg·L−1 of surfactin [102]

Trub Bitter substances Cross-flow filtration

Microfiltration in diafiltration mode: 25 ◦C;
4–5 bar; 0.2 µm PVDF membrane

Nanofiltration: 25 ◦C; 20 bar; 150–300 and
300–500 Da PIP membrane

Concentration of bitters substances:
permeation of 81% with

microfiltration and retention of 90%
with nanofiltration

[11]

BSY Amino acids, glutathione,
protein, and β-glucans

Pulsed electric field assisted
extraction, incubation and

autolysis

Pulse electric field: 15 kV·cm−1;
39.8 to 159.3 µs

Incubation: 25 ◦C; 24 h
Autolysis: pH 7.0; 11 d

Amino acids: 114.91 ± 2.86;
gluthatione: 7.08 ± 0.64; proteins

187.82 ± 3.75 in mg·gdryBSY
−1

After incubation, β-glucans:
275–300 mg·gdryBSY

−1;
After autolysis, manose:

1.7–2.2 g·L−1

[103]

BSY Bioflocculant Alkaline hydrolysis 100 ◦C; 2 mol·L−1 NaOH; 2 times; 1 h

Fraction with 46% of proteins and
29% of carbohydrates used as

bioflocculant: treatment of
recalcitrant dyes from

textile wastewater

[104]

BSY Fatty acids Algal bioproduction with dairy
wastewater

Pretreatment: lactase and protease
hydrolysis of dairy wastewater and mix

with BSY
Culture: 28 ◦C; 400 mgdry weight·L−1

Aurantiochytrium mangrovei inoculate;
15.34 gglucose·L−1; 3.22 gBSY·L−1

Biomass production of
3.35 ± 0.08 g·L−1·d−1 with

38.9 ± 0.88% lipid and 29.8%
docosahexaenoic acid of dry weight

[105]

BSY Fatty acids and sterols Fungal bioconversion
Incubation: 22–25 ◦C; 1:30 (v:v)

Pleurotus ostreatus inoculate; 5–7 weeks
Fruiting: 15 ◦C, 80–90% relative humidity

Lipids content:
89.5–173.5 µg·gbiomass

−1 with high
polyinsatured fatty acid content

Phytosterols: 257–416 µg·gbiomass
−1

[106]

BSY Peptides Autolysis and enzymatic
hydrolysis

Autolysis: 70 ◦C; 5 h
Enzymatic hydrolysis: 70 ◦C; 4% (v:v)

enzyme; 4.5 h

Antihypertensive biological activity
peptides which can be concentrated

by NF; final IC50:
75.1 ± 10.5 µgprotein·mL−1

[107]
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Table 1. Cont.

By-Product Target Compounds Method Operating Conditions Outcome Reference

BSY Peptides Cross-flow filtration pH 8.0; 50 ◦C; 5 bar; 30 kDa RC membrane 66% peptide retention with limited
fouling [108]

BSY Yeast extract Flash hydrolysis 240 ◦C; 10% dry yeast:water (w:v); 10 s Yeast extract: 66.5% carbon, 70.4%
nitrogen and 61.0% yeast recovery [109]

BSY + BSG Platform
chemical—Lactic acid BSY and BSG co-fermentation

Enzymatic pretreatment: hydrolysis at acid
pH, addition of 50 gBSY·L−1

Fermentation: pH 6.2; 37 ◦C; 5% (v:v) of
Lactobacillus rhamnosus ATCC 7469 inoculate;

36 h

0.89 g·L−1·h−1 lactic acid
productivity with 89% yield

[110]

BWW Phenolic compounds Algal bioproduction

Culture: 23–25 ◦C; 43.2 µmolphotons·m−2·s−1

fluorescent light; Scenedesmus obliquus
Subcritical waster extraction: 200 ◦C; 35 bar;
1000 rpm; 1:10 biomass:water (w:v); 10 min

1.016 ± 0.005 mgGAE·mL−1 of total
phenolic content including

0.167 ± 0.003 mgcatechin equivalent·mL−1

of total flavonoids

[51]

BWW Phenolic compounds Cross-flow filtration

Ultrafiltration: variable pH; 60 ◦C;
2.2–2.3 bar; 5 m·s−1; 15 kDa TiO2-ZrO2

membrane
Nanofiltration: variable pH; 50 ◦C; 23 bar;

600 L·h−1; 200 Da TFC membrane

Total phenolic content rejection: 8%
and 0% during ultrafiltration and

84% and 88% during nanofiltration,
for pH 6.5 and

13.5 respectively—mainly flavonoids
compounds

0.167 ± 0.003 mgcatechin equivalent·mL−1

of total flavonoids

[111]

BWW Phenolic compounds Cross-flow filtration and
ion-exchange process

Ultrafiltration: pH 6.5; 60 ◦C; 2.3 bar;
5 m·s−1; 15 kDa TiO2-ZrO2 membrane
Ion-exchange: pH 6.5; 25 ◦C; 160 rpm;
SCAV4 resin with OH− as counter ion;

50 gdryresin·L−1; 24 h

Adsorption capacity: 35.4 ± 0.8 mg
mggallicacid equivalent·L−1

(corresponding to 84% of initial
phenolic compounds) with a

selectivity factor of
5.86 ± 0.97 compared to

carbohydrates

[112]

BWW Platform chemical—Volatile
fatty acids

Co-fermentation with cheese
whey

pH 6.0; 40 ◦C; 100 gCOD·L−1; 4 d hydraulic
residence time

16 g·L−1·d−1 of total carboxylic
acids with

0.66 gCODdigested·gCODfed
−1 yield

[113]
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Table 1. Cont.

By-Product Target Compounds Method Operating Conditions Outcome Reference

BWW Polyhydroxyalkanoates or
related biopolymer Bacterial bioproduction 30 ◦C; 200 rpm; Cupriavidus necator inoculate;

5 d

P3HB-co-P3HV copolymer with
2.3 and 0.65 g·L−1 of P3HB and

P3HV respectively
[114]

BWW Polyhydroxyalkanoates or
related biopolymer Bacterial bioproduction

Fed batch of acidified or anaerobically
treated brewery wastewater: 30 ◦C;

microbial mixed culture enriched with PHA
accumulating organisms; 105 d

44% (w:w) of PHA accumulated [115]

BWW Proteins, carbohydrates and
bioactive compounds

Photosynthetic bacterial
bioproduction

5–32 ◦C; 125 W·m−2; 1.0 g·L−1·d−1 organic
loading rate; 1200 mg·L−1 inoculate size;

72 h HRT; 440 d

483.5 mg·Leffluent
−1·d−1 biomass

production with 420.9 protein,
177.6 polysaccharides,

2.53 carotenoid,
10.75 bacteriochlorophyll and

38.6 mg gbiomass
−1 coenzyme Q10

[116]

AD: Anaerobic Digestion; BDO: 2,3-Butanediol; BSG: Brewers’ Spent Grain; BSH: Brewers’ Spent Hop; BSY: Brewers’ Spent Yeast; BWW: Brewery Wastewater; DES: Deep Eutectic
Solvent; GAE: Gallic Acid Equivalent; IL: Ionic Liquid; PHA: Polyhydroxyalkanoates; PHB: Polyhydroxybutyrate; VFAs: Volatile Fatty Acids.
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5.1. Non-Starch Polysaccharides

Major components of brewery waste matrices are carbohydrate polymers: arabinoxy-
lan, β-glucans, pectin, cellulose, etc. Those constituents are non-starch polysaccharides,
also known as resistant starch or dietary fibers. Recovery of these compounds needs de-
polymerization, which can be realized with commercial or self-produced enzymes [10], or
through fermentation. β-glucans are glucose polymers with β-(1–3), β-(1–4) and β-(1–6)
linkages, which are primarily present in the BSY cell wall, and are in low proportion in
BSG. These chemicals were reported as prebiotic, immunomodulating, antitumoral and
antioxidant. These properties allow for the agro-food sector application of β–glucans to
develop healthier food [117]; nevertheless, BSY components extraction remains difficult.
For example, BSY β-glucan polymers can be fractionated from other compounds with
pulsed-field extraction, yielding 275–300 mg·gdryBSY

−1 [103].
Arabinoxylan is a major compound of the BSG cell wall, composed of β-(1–4) linkage

xylose and pentose. Outeiriño and co-workers focused on the deconstruction of BSG
polysaccharides. Solid-state fermentation and the further use of produced enzymes were
applied to BSG with the Aspergillus brasiliensis strain. The developed procedure yielded
57.04 ± 2.22% of arabinan, 54.37 ± 2.34% of xylan, and 24.12 ± 2.07% of glucan recovery [82].
The separation of non-starch polysaccharides and depolymerization is challenging due
to the complexity of plant and yeast matrices. Another strategy is to separate dietary
fibers from other compounds, namely proteins and lipids, without further purification of
each polymer. Enzymatic hydrolysis and sieving procedures showed protein separation
from fibers in BSG with an 84% efficiency, resulting in an 80.8% (w:w) fiber fraction with a
56.4% yield [99]. Subcritical water was recently used for the treatment of biopolymer from
BSG. This treatment improved extract functionality and gut fermentability, increasing its
potential for food and nutraceutical applications [118].

5.2. Proteins and Peptides

Proteins are essential components for biological system construction, function and
maintenance. The plant-based diet proved to have lower adverse effects on human
health and the environment than meat-based products [73]. Brewery by-products that
are rich in protein, such as BSG, BSH, or BSY, can be used as a substitute for the amino
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acids found in meats. Furthermore, these protein extracts may have additional bioac-
tive properties, making them attractive for food application. Protein extraction from
the brewing industry has been extensively studied in recent years. Another review pa-
per demonstrated that the appropriate pretreatment and development of new methods,
such as deep eutectic solvent (DES), microwaves or ultrasound-assisted extraction, im-
proved protein quality and yield [119]. BSG ultrasound-assisted extraction achieved suc-
cessful protein extraction (82 ± 1 mgprotein·gdryBSG

−1), along with phenolic compounds
(3.28 ± 0.12 mgGAE·gdryBSG

−1) [50]. DES extraction was used on BSH with water antisol-
vent precipitation. According to the authors, this yielded a fraction with both proteins and
xanthohumol, a “dual function” product. A second methanol precipitation followed this to
produce a high-content protein fraction (64%) [120]. Naibaho and co-workers investigated
the effect of enzyme hydrolysis on the antioxidant capacity and techno-functionality of a
protein extract. BSG was treated with and without protease enzymes at pH 8.5 and 50 ◦C
for 3 h, followed by 90 ◦C heating. Protease treatment enhanced the ORAC and ABTS an-
tioxidant capacity of BSG protein extract and phenolic compounds in the second sediment
fraction. The recovered protein fraction with 0.5% protemex contained 37.5% of protein and
demonstrated improved techno-functionality with higher oil holding capacity, foaming
formation capability and foaming stability and a lower emulsion activity index [121]. BSG
proteins were also recovered with alkaline extraction. Changes in operation conditions,
namely temperature and pH, were demonstrated to modulate protein content and the
techno-functionality of these proteins, with varying solubility, emulsifying and gelling
properties [97]. Furthermore, based on a recent study, protein can be extracted from BSG
without affecting its fermentative potential for volatile fatty acid (VFA) bioproduction. This
dual valorization of protein and VFA maximized the potential revenue ($37,909.00 per ton
of BSG), compared to a VFA-only model ($258.80 per ton of BSG) [98].

The main source of BSY proteins are mannoproteins, which are glycoproteins and repre-
sent 35–40% of cell walls [117]. Mannoproteins appeal to food applications due to bioactive
properties, such as angiotensin-converting enzyme-inhibitory (ACE-I) effects [107]. Still,
serial repitching seems to be a process that influences BSY characteristics, with increasing
protein content and diminishing values of ACE-I and protease activities. Hence, repitch-
ing must be considered in the valorization strategy [9]. Mannoproteins can be recovered
through hydrolysis processes [107,109]. Level ACE-I activity can be modulated with operat-
ing parameters, such as hydrolysis time and enzyme–substrate ratio [107]. The nutritional
quality of BSY could also be enhanced with an appropriate fermentation process. The
use of Propionibacterium freudenreichii improved essential amino acids, vitamin B12, and
the short-chain fatty acid content of BSY [122]. Hence, protein properties can be tailored
with innovative and versatile technology development to fit food industry applications.
The adequate fractionation of proteins with enhanced techno-function and health-benefit
properties would ultimately lead to an attractive final product, facilitating valorization.

5.3. Lipids and Fatty Acids

Fatty acids and lipids are recovered from brewery by-products, mainly with bioconver-
sion techniques. As for proteins, the structure and properties of extracted lipids influence
their techno-functions and determine industrial application potential [123]. Boukid and
co-workers produced an unsaturated fatty acid-rich extract with the fungal fermentation
of BSG. The fungal bioconversion process reduced cholesterol compared to the initial
matrix. Furthermore, bioactive molecules like ergosterol were present in the extract. With
high concentrations of unsaturated fatty acid, low cholesterol and bioactive compounds,
the derived product showed potential health-promoting effects [106]. Lipid production
capacity from BWW with various algal species during 10 d was investigated. Chlorella sp.
UTEX1602 showed the best performance with a productivity lipid of 42.5 mg·L−1·d−1 and
46.5% dry cell weight [124]. Brewery waste may be used as a nitrogen source for media
elaboration with other food waste, as demonstrated with BSG [113] and BWW [105]. A
mix of mozzarella-stretching wastewater and BWW was used to investigate the polyun-
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saturated fatty acid production during 96 h with microalgae (Aurantiochytrium mangrovei),
with central composite design optimization. The optimized condition process resulted
in 10.14 gdryweight·L−1 production with 38.9% lipids and 29.8% docosahexaenoic acid, a
polyunsaturated fatty acid [105].

5.4. Phenolic Compounds

Phenolic compounds are specialized metabolites widely found in the vegetal world,
which are synthesized for plant defense against oxidation, micro-organisms, etc. [125].
These compounds are in a polymeric form, such as lignin, and can be found bound to plant
cell walls or in a free form. Phenolic compounds were extensively studied for their antioxi-
dant effects and related health benefits with action against inflammation [126], tumor [127],
cardiovascular and neurodegenerative disorders [128], etc. The clever use of by-product
valorization processes likely represents a factor for product quality enhancement. Phenolic
compounds were extracted from phenolic-rich solid by-products, especially for BSG with
microwave or ultrasound-assisted extraction [88–90]. BSY and BSH phenolic compounds
were studied to a lesser extent as these by-products seem to show lower concentrations
of phenolic compounds, limiting economically viable extraction process development.
Based on an analysis of 20 phenolic compounds using HPLC-ESI-MS/MS, Cortese and
co-workers reported a barley husk (BSG) phenolic concentration of 340.0–969.2 µg·L−1;
in comparison, the concentrations were 8.0–22.0 and 12.5–56.7 µg·L−1 for BSH and BSY,
respectively [129]. The recovery of phenolic compounds from BSY and BSH should be
integrated with a comprehensive valorization process with other valuable compounds such
as nitrogenous compounds, essential oils, etc.

BWW was identified as an attractive medium for the recovery of phenolic compounds,
which are mostly flavonoids and display antioxidant, antibacterial and antitumor activ-
ity [62]. These compounds can, for instance, be recovered through algal phytoremediation.
Ferreira and co-workers grew microalgae in BWW and extracted bioactive compounds
with a subcritical water process, i.e., 1.016 mgGAE·mL−1 of TPC and 0.167 mgCE·mL−1 of
total flavonoids. After pyrolysis, algal biomass was also yielded in energy streams, biohy-
drogen, bio-oil and biogas, and biochar, which can be used as fertilizer [51]. These outputs
were identified as valuable products that could sustain the implementation of the subcriti-
cal water extraction process. Further research showed that using CO2 during subcritical
water extraction increases the extraction of phenolic compounds to 1.767 mgGAE·mL−1

and highlights the microbial safety of extracts [130]. A more efficient strategy may be
phenolic compound recovery through a phenolic-rich stream screening. Specific brew-
ery cleaning-in-place residue was identified as a phenolic-rich waste stream [111]. This
brewery wastewater was processed with UF and NF as clarification and concentration
steps, respectively. Phenolic compounds mostly passed through the UF membrane and
were rejected by the NF membrane. Phenolic compounds were retained according to their
chemical structure and affinity with membranes. Some phenolic classes, such as flavonoids,
were selected among other compounds as single hydroxyl group phenolic acids. Thus,
the designed UF/NF process allowed for tuning the NF retentate antioxidant profile. In
addition, permeate was an alkaline-clarified water that could be reused for further cleaning
in place operations [111].

Various methods have been developed to extract phenolic compounds from brewery
waste streams. The suitability of these compounds for specific application fields, such as
the pharmaceutical or cosmetic industries, may necessitate their purification, thus requiring
further downstream processing. However, in cases where unpurified high antioxidant
extracts are expected, such as in the food or material sectors, phenolic compounds obtained
from brewery by-products may be applied directly without any additional processing.

5.5. PHA and Related Biopolymers

Plastic has negative environmental impacts. Biopolymers are bio-based materials that
are promising alternatives to petroleum-based products, aiming to be biodegradable and
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have similar mechanical and physicochemical properties [131]. Polyhydroxyalkanoates
(PHA) and related biopolymers, such as poly-3-hydroxybutyrate, are types of polyester that
are produced by various microorganisms. These substances are accumulated inside cells
when the microorganisms experience a nutrient stress condition, which is typically caused
by feast/famine cycles [132]. These microorganisms can grow on synthetic media or carbon-
rich by-products, such as food-processing waste streams. Two strategies are commonly
used during brewery waste processing: pure culture [95,114] and mixed-microbial culture
(MMC) [96,115]. Amini and co-workers produced PHA from BWW with an added carbon
source (maltose) with the commonly used Cupriavidus necator strain. Operating conditions,
especially the nutrient C/N/P ratio, were optimized to modulate the biopolymer produc-
tion. Indeed, it was demonstrated that an optimal nutrient ratio of 100:2:15 C/N/P led
to a high production of PHA, including a Poly(3-hidroxybutyrate)-3-co-(hydroxyvalerate)
copolymer [114]. This copolymer seems to possess interesting physicochemical properties,
which suggests its application as a packaging material, such as a food packaging film [133].

Biobased plastics can be produced from food waste, including beer production by-
products. However, the bottleneck in this technology lies in the downstream processes
required to have low- or high-grade biopolymers before their application. The conventional
use of organic solvents in these processes decreases their environmental and economic per-
formances. Thankfully, sustainable extraction technologies have been developed recently,
such as using surfactants or fusel alcohols, a by-product of ethanol biorefinery, to address
these issues [134].

5.6. Other Biomolecules

As an alternative to petroleum-based chemical products, innovation demonstrated
that a plant-based equivalent can technically be used as a substitute. However, the cost of
such sustainable solutions is often higher than the cost of oil-based solutions. To overcome
this limitation, using by-products as a cheap source may be a way forward. The gap
between waste stream valorization and green chemistry applications can be filled with
platform chemicals, or “building blocks”. Platform chemicals are primary compounds used
in chemical and related industries for multiple operations. VFAs are two- to six-carbon fatty
acids, which are fermentable to produce PHA or biogas. Due to their chemical function,
VFAs are the starting base for the production of various organic compounds, making them
essential building blocks. VFAs were produced through biological routes with the fed-batch
co-fermentation of cheese whey and BWW, resulting in 30 gVFA·L−1 [113]. Short-chain fatty
acids produced from BWW can be converted to medium-chain fatty acids with extended
fermentation time and biogas production [43]. Lactic acid was recently produced from BSG
with a maximum concentration of 59.3 ± 1.0 g·L−1 with a simultaneous saccharification
and fermentation strategy [94]. Amraoui and co-workers pretreated BSG with a microwave-
assisted alkaline process followed by enzymatic hydrolysis. A mutant Enterobacter ludwigii
strain was grown on BSG hydrolysate, and yielded 118.5 g·L−1 2,3-Butanediol with the pro-
ductivity and yield of 1.65 g·L−1·h−1 and 0.43 g·gglucose

−1, respectively [91]. 2,3-Butanediol
and its derivatives have great potential in the cosmetic, agro-food, material and chemical in-
dustries [135]. Other platform chemicals were recently produced or extracted from brewery
wastes, such as 5-hydroxymethylfurfural [92], itaconate [93], etc. Although bioconversion
techniques are adaptable and can produce various compounds, downstream processes for
purifying the produced chemicals are rarely investigated. Systems that can simultaneously
produce and separate platform chemicals should be developed.

In addition to phenolic compounds, various bioactive and functional compounds were
recovered from waste streams. BSH and hot trub seem to be rich sources for biomolecule
extraction. Xanthohumol recovery was successfully achieved from BSH with DES ex-
traction [100] and supercritical fluid extraction [101]. Membrane processes were used to
fractionate bitter substances, such as lupulones, iso-α-acid and humulones [11]. In ad-
dition, glutathione was extracted from BSY at 7.08 ± 0.64 mg·gdryweight

−1 with a pulsed
electric field, along with proteins and amino acid [103]. BWW bioconversion processes
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represent ways to recover bioactive compounds such as carotenoids, chlorophyll or en-
zymes [105,116,124].

6. By-Product Extract Applications

Researchers recently developed processes to increase the applicability of the beer
industry by-products, especially in the food sector. As an example, it has been demon-
strated that BSY is a by-product rich in compounds, with potential application in food
products [136]. A common use is in the form of BSY-derived products for salads, e.g.,
yeast powder. Taking advantage of their properties, recovered biomolecules can enhance
application matrices’ techno-functionality even more than direct application (Figure 4).
A salad dressing was prepared with BSY mannoproteins and compared with a dressing
formed with soy lecithin. Results showed that the dressing created with BSY exhibited
enhanced flavor, color and taste scores after 28 d of storage [137] due to the preservative
power of the BSY extract. Reis and co-workers investigated β-glucans and mannoproteins
in the formulation of clean-label mayonnaise with the following different extractions from
BSY: alkaline hydrolysis with 1–4 mol·L−1 KOH during 2 h or subcritical water extraction
at 200 ◦C during 2 min using microwaves. These two treatments yielded fractions rich in
N-linked and O-linked type mannoproteins, respectively. Mannoprotein conformations
conditioned emulsion performances. The BSY extract from the 4 mol·L−1 alkaline hydroly-
sis procedure was incorporated in a mayonnaise formulation at a 1% (w:w) concentration,
which resulted in firmness, consistency, cohesiveness and the work of cohesion values of
66, 64, 55 and 51% compared to the standard formulation with 3% egg yolk and modi-
fied starch [30]. In another study, mannoproteins and β-glucans extracted from BSY with
enzymatic hydrolysis and alkaline/acid hydrolysis, respectively, were added to bread
formulation. β-glucan-fortified bread showed 39% higher dietary fiber content, enhancing
nutritional value, whereas mannoprotein-fortified bread showed a slight increase in protein
but with lower volume [138].

Solid-state fermented BSG was studied for sourdough bread baking. Sourdough bread
with 10% fermented BSG scored better in color, structure and taste according to 17 panelists;
however, it scored lower in aroma compared to the control, namely bread without BSG [139].
BSG was also valorized in various food products, improving nutritional values of high-fiber
content beverages [140] and fish burgers through encapsulation [141]. In order to improve
bioactive and nutritive compounds from brewery by-products, further processes, such
as extrusion, may be implemented before formulation. The effects of this process on the
physicochemical properties of BSG were determined with optimized operating conditions.
Extrusion yielded an increase of 61% of soluble dietary fiber, protein quality comparable to
egg, soy or milk, lower sugars and digestible starch. It was considered microbiologically
safe, making extruded BSG an even more attractive substitution product [142]. The latter
was incorporated in the sweet biscuits recipe and commercial fructo-oligosaccharides
with respective 17 and 15.2% (w:w) ratios. This addition brought multiple nutritional
claims, such as reduced sugar reduction, high dietary fiber and protein source, and health
improvements, e.g., antioxidant, anti-inflammatory, antidiabetic and promoted intestinal
health effects, compared to traditional biscuits [143].

In order to achieve successful applications, some adaptation processes may be needed
for some brewing by-products, such as hot trub or BSH, whose bitter characteristics may
be restrictive for food products. Hence, debittered trub substituted up to 10% (w:w) durum
wheat semolina without significant change in organoleptic quality, with fortified protein
and a lower glucose content in the final product [144].

Active film packaging prepared from phenolic compounds from brewery waste stream
showed increased stability in edible products, with performances similar to those of com-
mercial antioxidants [145]. Recently, a film material was fabricated with BSG arabinoxylans
and nanocomposite nanocellulose film. The film demonstrated good mechanical and ther-
mal properties and has been functionalized with feruloylated arabinoxylo-oligosaccharides
or ferulic acid. The final packaging material acted as a UV barrier, displaying significant
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activity against bacteria and fungi, and represented a promising solution for active pack-
aging [146]. Besides food applications, brewery extracts showed potential in cosmetic
industry applications due to their bioactive content. To maximize its biological effects,
the optimization of the operating conditions of BSH solid–liquid extraction with water
and plant-based propanediol mixture was conducted. The extract showed antioxidant
capacity and elastase inhibition effects, mainly due to hop-related compounds, i.e., cis-iso-
α-cohumulone and 8-prenylnaringenin [147]. BSG aqueous extract showed skin whitening,
tyrosinase inhibition and antioxidant capacity activities [148]. As depicted in Figure 4, the
BSY extract may also be used in cosmetic formulations with favorable bioactivity character-
istics such as antioxidant capacity, improved mitochondrial activity, keratinocyte oxidative
stress prevention, healthy metabolite production enhancement, and with no cytotoxic
effects [149,150].

Brewery by-products showed potential applications in various other sectors. A mass
of 3 g of BSY was hydrolyzed in a 2 mol·L−1 NaOH solution at 100 ◦C for 1 h, and the
supernatant was tested as flocculants after a 5 min centrifugation at 500 rpm. As a result,
80% to 90% of recalcitrant rhodamine and flavin were removed from synthetic systems,
enhancing biodegradability and rhodamine removal from wastewater [104]. In addition to
irrigation use, the biostimulant potential of BWW was investigated, like with the microalgae
Scenedesmus obliquus grown in this waste stream. Downstream-processed biomass yielded
biostimulant effects, such as germination or root formation improvement, on watercress
seeds, mung bean and cucumber species [151]. Finally, BSG was carbonized in microwaves
to prepare carbon dots. This nanoparticle showed excellent optical properties and metal
detection capability, with potential in the water treatment and food control sector [152].

Figure 6 presents a controlled and successful brewery by-product valorization process.
Brewery by-products can be directly used in various sectors with adequate formulation
and application (Section 4). The process of recovering biomolecules through pretreatment
and extraction can help the extracts better fit the application. As discussed in Section 5, the
nature and operation of the recovery process allow the tuning of the biomolecule compo-
sition of brewery by-product extracts. With an appropriate formulation and application
development, this tailored chemical composition affects bioactivity and physicochemical
properties, ultimately providing a healthy, sustainable and clean label for the final product.
This is a crucial step of the valorization process, as it would bring a marketable message
that is appealing to the consumer, as highlighted in Section 7.
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7. Strategy for Efficient By-Product Management
7.1. Sustainable Economic Model Implementation Strategies

Sustainable practices in the brewing industry are unlikely to be implemented solely
through innovative and efficient process development. When selecting sustainable tech-
nologies for brewing businesses, it is critical to consider the economic background of the
company. The suitability of a given solution may vary depending on the size of the brewery,
ranging from small craft breweries to large industries. In order to transition towards a
circular bioeconomy, it is essential to have a thorough understanding of the economic
context of the brewing business. To facilitate sustainable practices, Bonato and coworkers
developed a new conceptual model for beer production waste management to facilitate
sustainable practice based on literature surveys, brewers and expert interviews [8]. This
model displayed new BSG valorization possibilities and their integration into craft brew-
eries’ value chains. Such a model could be reused for the other types of by-products and
help breweries define a sustainable waste management strategy in compliance with their
business plans. The authors stated that appropriate organizational adjustment in cultural
and operational practices should support this transition [8]. A sustainable path must align
with the business background and size to be successfully implemented. Additionally, the
sustainability value of by-product processing must be evaluated through tools such as life
cycle analysis.

It is important to navigate tensions and tradeoffs among diverse stakeholders in sus-
tainable development to create opportunities for win–win outcomes and synergies [153].
One way to achieve this is through a fruitful waste management strategy that induces
shared responsibilities among all actors involved. However, in some cases, implementing
a sustainable waste management strategy may not be seen as a win–win situation by
all the stakeholders. A recent study established that a collaborative approach to waste
management decision-making was necessary for a brewery waste management strategy
to be successful [154]. Without a collective effort, the strategy was not seen as benefi-
cial for all parties involved. This collective approach yielded a successful outcome as
circular processes between actors emerged to handle brewing waste correctly. The shared-
responsibility methodology also enabled stakeholders to see that the benefits of sustainable
waste management were not only socio-environmental but also economic [154]. By-product
valorization represents additional income for the producer but can also be economically
advantageous for the by-product user [155].

7.2. Sustainable Practices as a Marketing Tool

Business images are positively affected by environmentally friendly actions [154]. A
sample of 487 online participants was surveyed to investigate water conservation messages’
influence on purchase intention. Both craft and industrial beer consumers reacted positively
when a company purchased offsets or reclaimed water with a purchase intention raise [156].
In another study, 159 panelists evaluated a cereal bar formed with BSG against one without
BSG. Organoleptic and sensory attributes of the BSG bar were scored at a lower level
compared to the commercial bar. However, the mention of “rich in fiber” and “produced
using byproducts” increased the consumers’ purchase intent. As a result, the interference
point considered the “normal price” of BSG (1.36 €) as close to the well-known commercial
bar (1.41 €), supposedly because of the perception of a BSG bar as a natural product [157].
Developing a sustainable production process contributes to lower environmental impacts
of beer production. In addition, it is also likely to enhance the marketing performance of
companies, ultimately generating further income.

7.3. Global Strategy for an Environmentally Friendly Brewing Industry

Many valuable compounds can be extracted from brewing industry by-products in a
biorefinery concept. The extraction process, formulation and application may modulate
extracts’ physicochemical, bioactive and techno-functional characteristics and, ultimately,
the final product. These by-products are largely under-utilized and may enhance the
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social, economic, and environmental performance of the beer sector. A proposed schematic
representation of the main findings of the present article is shown in Figure 7.
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8. Concluding Remarks and Perspectives for Future Research

In order to fit the requirements of a sustainable industrial world needed for envi-
ronmental transition, the brewing industry can modify its linear production method. Re-
cent research demonstrated the technical feasibility of various processes for reclaiming
biomolecules, energy and water. Food, material, cosmetic, agriculture and chemical indus-
tries have been highlighted as output sectors for these recovered resources with diverse
applications adapted to by-product processing. According to this literature review, envi-
ronmentally friendly actions lower the corporate footprint, and are also beneficial from an
economic point of view.

Some examples of the substitution of raw materials were demonstrated. Ingredient
reuse (yeast, bread, hop, etc.) for beer production has been described. However, research
on optimizing and modifying brewing processes and recipes is needed to use new raw
materials, i.e., residues from other industries or reuse by-products, without altering the final
product quality. Responses to water scarcity issues were given in the frame of the brewing
industry. The brewing process must be adapted to accept water reclamation with industrial
quality, and agricultural research is needed on fertigation with industrial wastewater. Ex-
tensive research has been conducted on brewing by-products’ bioconversion with microbial
or microalgae to produce biomass containing valuable biomolecules, such as carbohydrates,
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proteins, lipids, biopolymers (PHA) or phenolic compounds. Downstream processes must
be developed to fractionate and extract compounds. A wide range of applications was
reported in food sectors, with the ability to modulate the chemical composition and, thus,
the physicochemical, techno-function and bioactive properties of the final product through
recovery. These direct or indirect applications have been implemented with food and
beverage formulations and have shown to be clean-label, healthy, functional and able to
supply proteins of plant origin. Brewing by-products have also proven potential in the
cosmetic industry, yet there needs to be more formulation and application in real products.
In addition, just as studies related to food promote their products using organoleptic tests
carried out by panelists, cosmetics studies have to prove that the materials developed
with brewing by-products provide healthy properties, are clean-label and attractive to
the consumer.

Some technologies were implemented directly in plants as membrane-based systems
to reuse water with an evaluation of their economic viability. The emerging technologies
developed need scale-up and techno-economic assessment studies to prove their viability.
Facing the variety of recovery solutions, life cycle analysis would allow for the evaluation
of the environmental performance of each process, and thus, be a decision-making tool
development for the design of brewing by-products’ valorization strategy. To ensure the
sustainability of breweries, a comprehensive waste management approach is necessary.
Such plans should involve the recovery, reuse, and valorization of every aspect of by-
products, including water, energy, sugar, protein and other bioactive compounds. The
primary goal of this approach is to achieve the maximum alignment of valorization pro-
cesses with conservation, circular bioeconomy, green chemistry and economic viability
paradigms. The by-product valorization strategy enables new value chain creation and
additional revenue for the producers. More studies are expected on the implantation of
circular alternatives, but also on its environmental footprint and financial income impacts
on businesses, compared to existing valorization ways.
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100. Grudniewska, A.; Popłoński, J. Simple and Green Method for the Extraction of Xanthohumol from Spent Hops Using Deep
Eutectic Solvents. Sep. Purif. Technol. 2020, 250, 117196. [CrossRef]
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122. Kruk, M.; Varmanen, P.; Edelmann, M.; Chamlagain, B.; Trząskowska, M. Food By-Product Valorisation in Nutrients through
Spent Brewer’s Yeast Bioprocessing with Propionibacterium freudenreichii. J. Clean. Prod. 2024, 434, 140102. [CrossRef]

123. Hashemi Gahruie, H.; Mostaghimi, M.; Ghiasi, F.; Tavakoli, S.; Naseri, M.; Hosseini, S.M.H. The Effects of Fatty Acids Chain
Length on the Techno-Functional Properties of Basil Seed Gum-Based Edible Films. Int. J. Biol. Macromol. 2020, 160, 245–251.
[CrossRef]

124. Song, C.; Hu, X.; Liu, Z.; Li, S.; Kitamura, Y. Combination of Brewery Wastewater Purification and CO2 Fixation with Potential
Value-Added Ingredients Production via Different Microalgae Strains Cultivation. J. Clean. Prod. 2020, 268, 122332. [CrossRef]

125. Tsimogiannis, D.; Oreopoulou, V. Classification of Phenolic Compounds in Plants. In Polyphenols in Plants; Elsevier: Amsterdam,
The Netherlands, 2019; pp. 263–284. ISBN 978-0-12-813768-0.

126. Fernandes, J.; Fialho, M.; Santos, R.; Peixoto-Plácido, C.; Madeira, T.; Sousa-Santos, N.; Virgolino, A.; Santos, O.; Vaz Carneiro, A.
Is Olive Oil Good for You? A Systematic Review and Meta-Analysis on Anti-Inflammatory Benefits from Regular Dietary Intake.
Nutrition 2020, 69, 110559. [CrossRef]

127. Martinez-Gomez, A.; Caballero, I.; Blanco, C.A. Phenols and Melanoidins as Natural Antioxidants in Beer. Structure, Reactivity
and Antioxidant Activity. Biomolecules 2020, 10, 400. [CrossRef]

128. Potì, F.; Santi, D.; Spaggiari, G.; Zimetti, F.; Zanotti, I. Polyphenol Health Effects on Cardiovascular and Neurodegenerative
Disorders: A Review and Meta-Analysis. Int. J. Mol. Sci. 2019, 20, 351. [CrossRef] [PubMed]

129. Cortese, M.; Gigliobianco, M.R.; Peregrina, D.V.; Sagratini, G.; Censi, R.; Di Martino, P. Quantification of Phenolic Compounds in
Different Types of Crafts Beers, Worts, Starting and Spent Ingredients by Liquid Chromatography-Tandem Mass Spectrometry.
J. Chromatogr. A 2020, 1612, 460622. [CrossRef] [PubMed]
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