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Abstract: Residential water use in urban areas directly affects household energy consumption and
associated carbon emissions. Reducing residential water use through water saving can lead to
substantial energy saving and lower carbon emissions. Household choices in water appliances and
fixtures and water-use behaviors shape water consumption patterns. This paper presents a study
in Shanghai, China, where the water consumption structure of households was analyzed through a
comprehensive survey. In addition, a season-differentiated water–energy–carbon nexus optimization
model with Monte Carlo simulation was built to minimize the costs associated with water and energy
usage while maximizing carbon emission reduction. The survey data revealed Shanghai’s water
demand structure, thereby highlighting the water-use influence in the city on urban household energy
consumption and carbon emissions, which are affected by seasonal temperature variations. The
results provide useful insights into the intricate relationships among water use, energy consumption,
and carbon emissions at the scale of urban households.
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1. Introduction

Currently, rapid economic development, population growth, and urbanization in
many countries and regions have led to challenging issues such as water scarcity and
energy shortage, thereby drawing global attention [1]. Global water scarcity is projected to
increase by 75% by 2050, with more than two thirds of the population anticipated to reside
in severely water-scarce regions [2]. Meanwhile, by the year 2035, the worldwide demand
for primary energy is anticipated to surge by 40% compared to 2010 levels [3]. Additionally,
the substantial carbon dioxide emissions stemming from fossil fuel consumption has
caused anthropogenic climate change. The intrinsic ties among water, energy, carbon
emissions, and urban sustainability underscore the pivotal role of prudently harnessing
water resources and energy to bolster urban resilience [4].

Water is intricately linked with energy and carbon emissions in urban systems. Pro-
cesses such as the supply, distribution, and treatment of water consume significant amounts
of energy, while energy extraction, processing, and distribution also entail substantial water
usage. In Spain, 5.8% of national electricity consumption is attributed to urban water sys-
tems [5]. The energy consumption associated with water systems represents a significant
source of urban carbon dioxide emissions, with considerable carbon dioxide production
stemming from the energy required for urban wastewater treatment, which subsequently
exacerbates the greenhouse effect [6]. The greenhouse effect induced by carbon dioxide, in
turn, leads to urban water scarcity, increased costs of electricity production, and elevated
urban energy consumption. This fact has underscored the urgent need for research on the
coupling of water resources, energy, and carbon emissions, thereby drawing increasing
attention from international organizations, national governments, and enterprises at all
levels [7].
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The residential end-use water sector plays a critical role in the urban water–energy–
carbon emissions system. The research on water–energy–carbon emissions, which has
been primarily focused on urban water systems, constitutes a significant research frame-
work encompassing the following four main stages: withdrawal, distribution, usage, and
wastewater treatment [8]. While past studies have predominantly concentrated on major
consumers such as desalination plants and water treatment facilities, recent reports from
California have emphasized the highest energy consumption intensity in the end-use water
sector [9]. Approximately 70% of energy consumption related to water is concentrated
in the end-use water sectors, with residential water usage constituting the highest en-
ergy consumption [10]. Notably, the energy consumption associated with water usage
in end-use water sectors is increasing as advancements in technology and management
lead to reductions in other energy consumptions. Within the residential end-use water
sector, energy consumption linked to water heaters holds the highest proportion. A market
survey on water heaters in the United States revealed that the energy expenditure for water
heating in residential homes accounts for 17% of total household energy consumption, with
this proportion steadily rising alongside improvements in residential living standards [11].
Moreover, it has been found that the residential end uses of water and related energy are
deeply influenced by geographical, cultural, and socio-economic factors [12]. The effective
utilization of water and energy resources in the residential end-use water sector is pivotal
for urban sustainable development [13].

Research on residential water–energy consumption historically falls into three cat-
egories: quantifying household water–energy usage, analyzing the correlation between
water (or energy) consumption and individual attributes, and developing optimized models
for enhancing residential water–energy efficiency [4]. In the primary classification, Kenway
closely monitored seven households using material flow analysis (MFA) to quantify water
and energy flow, thereby exploring their relationship [14]. Abdallah used data to compute
consumption probabilities, which are beneficial for the cost-effective water conservation
decisions of utility providers [15]. In the second classification, Yu analyzed 1017 surveys
in the second category, where they investigated how demographics and behaviors influ-
ence household water and energy use using statistical methods [16]. Different attributes
significantly impact consumption, thereby necessitating tailored water and energy-saving
measures. Arbues studied diverse water prices by focusing on residential water demand
estimation and econometric issues [17]. In the third classification, Zhou employed water
flow analysis to optimize urban water flow and energy consumption [18]. Escriva’s house-
hold model on water–energy–carbon footprints enhances policy insights yet overlooks the
budget constraints affecting water-saving practices [19].

Residential water–energy consumption research boasts a rich historical lineage and
holds vast potential for optimization and progression. Prior studies have mainly delved into
the intricate correlations among water, energy, and carbon emissions, with minimal focus on
integrated analyses involving carbon emissions [20]. Despite the intricate interdependencies
among these elements, comprehensive investigations into their interactions remain scarce.
Carbon emissions play a pivotal role in the urban water–energy–carbon framework, where
energy and water resources form the foundational pillars of urban operations [21]. Notably,
the carbon emissions that result from residential energy consumption associated with
water usage can be substantial. Incorporating carbon emissions into integrated frameworks
allows for a deeper comprehension of the interrelations among energy, water resources,
and carbon emissions, thereby providing nuanced decision-making support for carbon
reduction initiatives such as managing emission peaks. This integration also streamlines
the identification and evaluation of potential carbon mitigation opportunities [22]. By
quantifying the carbon emissions stemming from urban residential water and energy
consumption, essential emission reduction areas and processes can be pinpointed, thereby
leading to the development of tailored mitigation strategies.

This study gathered data on the water consumption among urban residents in Shang-
hai through a questionnaire survey. Shanghai represents the modernized large cities in
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China, and it is characterized by high water and energy consumption per capita. Ana-
lyzing the water–energy–carbon nexus in Shanghai can offer comprehensive insights for
sustainable urban water and energy management. Subsequently, the water use structure
was figured out and the relationship between water use and energy consumption was
quantified based on the questionnaire data. Following this analysis, a season-differentiated
water–energy–carbon nexus optimization model was introduced to optimize the water and
energy consumption in urban households [23]. Through simulating the water-saving and
energy-efficient behaviors among urban residents, this model aims to minimize water and
energy consumption while maximizing carbon emission reductions. Seasonal variations are
integrated into the model to identify the most effective conservation parameters for each
season [24]. Moreover, Monte Carlo simulations were employed to simulate the realistic
short-term conservation behaviors of residents, which were then incorporated into the opti-
mization model for scenario analyses [15]. Ultimately, based on the simulation outcomes,
recommendations are provided to the government and urban residents concerning water
resources and energy consumption.

2. Materials and Methods

Figure 1 shows the overall organization of the study, which started with a question-
naire survey to collect data of the water uses and associated energy consumption of urban
households in different districts of Shanghai, China. Using the survey data, the water-
use structure of urban households and the relationships between water uses and energy
consumption in urban households were quantified. Next, a water–energy–carbon nexus op-
timization model was set up to minimize water and energy consumption while maximizing
carbon emission reduction through taking water and energy conservation actions in urban
households. To incorporate seasonal factors, the model was assigned different parameter
values for the same short-term conservation action for each of the four seasons. A Monte
Carlo simulation framework was adopted to represent the uncertainties associated with
the short-term conservation behaviors of residents, with the water–energy–carbon nexus
optimization model being embedded in it, for scenario simulations. Finally, based on the
simulation results, recommendations were made for managing urban water use and related
energy consumption practices.
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2.1. Study Area

Shanghai, with a total population of 24.89 million and 5.68 million households in
2022, is the largest city in China. The average per capita gross domestic product is CNY
172.16 thousand. The city has a total available water resource of 5.86 billion m3 annually,
ranking 28th among the 31 provinces and municipalities in China. Shanghai’s annual per
capita water usage of 140.6 m3 significantly falls below the national average of 455 m3.
Considering the interconnected nature of water and energy resources, tackling the conflict
stemming from rising water demand amidst limited water supply in Shanghai is of utmost
significance for achieving sustainable development goals and for peaking carbon dioxide
emissions by 2030.

2.2. Questionnaire Survey

The survey questionnaire consists of 48 questions categorized into three sections. The
first section encompasses household characteristics, including household demography,
education, age, household income, water expenses, and associated energy costs. The
second section focuses on water conservation awareness, such as water consumption
and reactions to incentives for water-efficient household appliances. Responses to these
inquiries were quantified through the contingent valuation method. The third section looks
into household water consumption patterns and the details of water-related appliances.
The survey was conducted online in 16 municipal districts of Shanghai through the online
survey company Credamo (Beijing, China), which has over three million registered survey
participants domestically. Credamo has conducted other survey studies previously that
have led to published research findings [25]. To enhance the reliability of the questionnaire
data, controls were implemented in three key areas: quality assurance, sample attribute
configurations, and response parameters. We first issued 50 questionnaires at the pre-
survey stage, and we then improved the questionnaire design by analyzing the pre-survey
results. At the formal survey stage, 500 questionnaires were distributed to participants by
Credamo.

2.3. Optimization Model

The optimization model was parameterized with the data obtained from the ques-
tionnaire survey. The objective of this model was to minimize the economic costs of the
water and energy consumption of Shanghai households by implementing water and energy
conservation measures while maximizing reductions in carbon emissions. The model simu-
lates residential water and related energy uses for the entire population of Shanghai, which
totals 24.89 million. The categories of conservation measures that residents can implement
are listed in Table 1. We divided the conservation measures into two categories: long-term
measures and short-term measures. Short-term measures are influenced by seasonal factors.
The uncertainties of the short-term behavior parameters were represented with probability
distribution functions parameterized using survey data. Monte Carlo simulations were
repeatedly conducted through randomly drawing values of those short-term behavior
parameter values from the probability distribution functions to run the optimization model.

Table 1. List of the long-term and short-term conservation measures.

Duration Saving Type Conservation Measure Abbreviation

Long-term

Water
Showerhead upgrade 1 SHU
Faucet upgrade FU
Toilet upgrade TU

Energy Electric heater upgrade EHU
Gas heater upgrade GHU

Water and Energy Washing machine upgrade WMU
Dishwasher upgrade DU
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Table 1. Cont.

Duration Saving Type Conservation Measure Abbreviation

Short-term

Water

Reducing shower duration RSD
Reducing shower
frequency RSF

Reducing faucet duration RFD
Reducing faucet frequency RFF

Energy
Lowering temperature of
electric heater RFHT

Lowering temperature of
gas heater RGHT

Water and Energy Reducing cloth washing
frequency RCWF

1 “upgrade” means replacing the water-use equipment with a more efficient one.

(1) Objective function.

The objective function is shown below:

Minimizing Z = Ew + Ee + ∑
season

(
∑
sw

C̃sw × Xsw + ∑
se

C̃se × Xse + ∑
swe

C̃swe × Xswe

)
+ ∑

lw
Clw × Xlw

+∑
le

Cle × Xle + ∑
lwe

Clwe × Xlwe.
(1)

In Equation (1), Z is the total cost of household water and energy consumption after
conservation measures were implemented in the households of Shanghai City. Ew and Ee
are the annual total water and energy expenses, respectively. Clw is the unit cost of long-
term water conservation measures; Cle is the unit cost of long-term energy conservation
measures; and Clwe is the unit cost of long-term water–energy conservation measures.

C̃sw, C̃se, and C̃swe are the unit costs of short-term water, energy, and water and
energy conservation measures, respectively. The effectiveness and cost of short-term
conservation measures are influenced by the season in a year. Moreover, we used the Monte
Carlo simulation approach to incorporate the uncertainties of the short-term conservation
measure parameter values. The probability density function (PDF) of the cost of a short-
term conservation measure was found to observe the exponential distribution as follows:

f (x) =
1
b

e−(x−a), (2)

where x represents the cost of a short-term conservation measure, and a and b are the loca-
tion and scale parameters of the PDF, respectively. The associated cumulative distribution
function (CDF) of the above PDF is as follows:

F(x) = 1 − e[−
x−a

b ]. (3)

We conducted Kolmogorov–Smirnov tests on the distribution function of the short-
term actions, thereby verifying that the p-values for each function were greater than 0.05.
The results indicate a good fitting between the survey data and the distribution functions.
The parameter values of the PDF function for short-term conservation measures are shown
in Table 2.
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Table 2. Parameter values of the probability density function for short-term conservation measures.

Short-Term Conservation Measure a b

Reducing shower duration 14.48 2.13
Reducing shower frequency 14.96 2.20
Reducing faucet duration 14.00 2.07
Reducing faucet frequency 14.48 2.13
Lowering temperature of electric heater 14.59 2.15
Lowering temperature of gas heater 14.57 2.14
Reducing cloth washing frequency 13.49 1.96

(2) Constraints and supplementary equations.

Wsave ≤ Woriginal . (4)

In Equation (4), Wsave is the annual water saving and Woriginal is the original annual
water use of Shanghai households. Water saving includes long- and short-term water
saving, namely

Wsave = WsaveS + WsaveL, (5)

where WsaveS is the water saving achieved through short-term water conservation measures,
and WsaveL represents the water saving achieved through long-term water conservation
measures. Moreover, the expression of WsaveS is given as

WsaveS = ∑season

(
∑sw Qseason

sw × Xsw + ∑swe Qseason
swe1 × Xswe

)
, (6)

where Qseason
ws refers to the unit water conservation effectiveness of a short-term water

conservation measure, and Qseason
wes1 represents the unit water conservation effectiveness of

short-term water and energy conservation measures.

Esave ≤ Eoriginal . (7)

In Equation (7), Esave is annual energy saving, and Eoriginal is the original annual energy
use of Shanghai households. Esave includes similar components as Wsave, namely

Esave = EsaveS + EsaveL, (8)

in which the expression of short-term energy-saving term is

EsaveS = ∑season

(
∑se Qseason

se × Xse + ∑swe Qseason
swe2 × Xswe

)
, (9)

where EsaveS represents the energy saving achieved through short-term energy conser-
vation measures, and EsaveL represents the energy saving achieved through long-term
energy conservation measures. Qseason

es represents the unit energy conservation effective-
ness of the short-term energy conservation measures, and Qseason

wes2 represents the unit energy
conservation effectiveness of the short-term water and energy conservation measures.

Wsavl = Xl × (Ql |wld) + Xlr × (Ql |wlnd), (10)

Esavm = Xm × (Qm|eld) + Xmr × (Qm|elnd), (11)

Esavn = Xn × (Qn|ewld) + Xnr × (Qn|ewlnd), (12)

where Wsavl , Esavm , and Esavn represents the resources (i.e., water or energy) saved by
adopting certain short-term conservation measures. The index l represents short-term
water conservation measures; m represents short-term energy conservation measures; and
n represents short-term water–energy conservation measures. These short-term conser-
vation measures are dependent on certain long-term conservation measures. Therefore,
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the unit conservation effectiveness of these short-term measures vary according to actual
circumstances. Ql |wlnd represents the unit effectiveness of short-term water conservation
measures without certain long-term measures. Ql |wld represents the unit effectiveness
of short-term water conservation measures with certain long-term measures being im-
plemented. Xl and Xlr represent the quantity of corresponding short-term water-saving
behaviors.

RCE ≥ RCEtarget, (13)

where RCE represents reduced carbon emissions due to the household energy saving
associated with water and water-related energy conservation at the household level, and
RCEtarget represents the target of carbon emission reduction in Shanghai. The carbon
emission reduction per household in Shanghai is expected to exceed that of Shenzhen [26].
The expression of RCE is shown below:

Maximizing RCE = ∑le Ple × Xle + ∑lwe Plwe × Xlwe + ∑season

(
∑se Pse × Xse + ∑swe Pswe × Xswe

)
. (14)

Ple represents the carbon emission reduction effectiveness of the long-term energy
conservation measures. Plwe refers to the carbon emission reduction effectiveness of the
long-term water and energy conservation measures. Pse represents the carbon emission
reduction effectiveness of the short-term energy conservation measures. Pswe represents the
carbon emission reduction effectiveness of the short-term water and energy conservation
measures.

3. Results and Discussion
3.1. Analysis of the Questionnaire Survey Data

A total of 496 valid questionnaires were received, encompassing the households in
16 municipal districts in Shanghai, with statistics by district, as shown in Table 3. The
effective response rate of the questionnaire survey was 90.18%. Notably, the samples from
Pudong and Fengxian districts exceeded 100 each, with 132 samples from the Pudong New
Area and 100 samples from Fengxian District. By contrast, Chongming District had only
two completed questionnaires received; therefore, it was dropped from the analysis. The
sample sizes in the remaining 5 municipal districts varied from 5 to 100 questionnaires.

Table 3. The monthly water fee, from the survey results, by district in Shanghai.

Municipal District Number of Survey
Participants

Monthly Water Fee
(CNY)

Monthly Water Use
(m3)

Minhang 59 109.10 26.67
Changning 10 106.70 26.09

Jing’an 10 106.20 25.97
Chongming 2 105.50 25.79

Putuo 12 101.67 24.86
Xuhui 12 100.17 24.49

Songjiang 48 99.92 24.43
Fengxian 100 99.43 24.31
Huangpu 6 99.33 24.29
Pudong 132 98.01 23.96
Qingpu 27 97.00 23.72
Jiading 18 94.83 23.19

Baoshan 22 93.36 22.83
Jinshan 24 92.13 22.53

Hongkou 5 73.00 17.85
Yangpu 8 72.75 17.79

Figure 2 illustrates the distribution of the water consumption intensity across the
municipal districts of Shanghai. Hongkou District and Yangpu District exhibited the lowest
water consumption intensity, with monthly average water bills amounting to CNY 72.75
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and CNY 73.00, respectively. In contrast, the Jing’an, Changning, and Minhang districts
demonstrated the highest water consumption intensity, with monthly average water bills
of CNY 106.20, CNY 106.70, and CNY 109.10, respectively. Notably, Putuo District, with a
monthly average water bill of CNY 105.50, was dropped from the comparative analysis
due to data insufficiency. Generally, the water-use intensity was found to be higher in the
central areas than in the suburb areas.
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The household water-use structure in Shanghai is illustrated in Figure 3. These results
are in line with the results reported by most studies included in the review conducted
by Mazzoni [12]. Among the six categories of water consumption, shower water use had
the highest proportion at 30.08%, corresponding to a daily average use of 46.95 L per
person; the shares of toilet water and cloth washing water were 20.33% and 19.96%, with
their quantities being very close at 31.72 L and 31.15 L per person, respectively, while
cleaning and drinking water use had relatively small shares, accounting for 9.83% and
4.20%, respectively. Governmental statistics reveal that the average household water con-
sumption in Shanghai amounts to 200.26 m3/year, with structured water usage measuring
at 192.50 m3/year. The difference between the two accounts for 7.76 m3/year, representing
a ratio of 3.68%. This demonstrates the basic alignment of the residential water expenditure
structure with the research hypothesis.
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3.2. Residential Water–Energy–Carbon Emission Optimization Results

With Monte Carlo simulations, the urban residential water–energy–carbon optimiza-
tion model simulated all of the residential households in Shanghai, where 100 thousand
iterations were conducted, thereby producing a dataset containing 100 thousand entries.
The distribution of the optimized household energy costs in Shanghai is shown in Figure 4a.
The lowest overall water and energy cost for the Shanghai households was CNY 28.96 bil-
lion, thus indicating a 4.89% cost reduction due to optimization compared to the original
cost of CNY 30.45 billion, which resulted in an average annual saving of CNY 202.1 per
household. In contrast, the highest household energy expenditure in the city amounted to
CNY 298.3 billion, thus representing a 2.05% cost reduction due to optimization, which led
to an average yearly energy cost saving of CNY 84.60 per household.
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quency was CNY 6.94 billion, with a frequency number of 15.43%. For electricity costs, the 

Figure 4. (a) Distribution of the optimized water and energy cost in Shanghai households obtained
from Monte Carlo simulation; the green lines denote the quartile scores, dividing the data into four
equal parts. The red line represents the average score across the dataset. (b) percent contribution to
water and energy total cost savings in the households of Shanghai through appliance upgrades (GHU,
EHU, and SHU in the pie chart) and short-term behavior changes (“others” in the arc). SHU—shower
head upgrade; EHU—electric heater upgrade; GHU—gas heater upgrade; RSL—reducing shower
duration; RSF—reducing shower frequency; RFL—reducing faucet duration; RFF—reducing faucet
frequency; REHT—reducing temperature of electric heater; and RCWF—reducing cloth washing
frequency.

The median total cost for the Shanghai households amounted to CNY 29.35 billion, re-
flecting a 3.61% cost reduction due to optimization compared to the original total household
energy costs in the city. On average, each household could save CNY 149.42 in energy costs.
Upon further breakdown by sector, the optimized total water cost for the households in
Shanghai stood at CNY 68.56 billion, thereby showcasing a 15.92% cost reduction. The total
electricity expenditure amounted to CNY 169.64 billion, thus demonstrating a 1.10% cost
reduction; meanwhile, the natural gas costs totaled CNY 47.69 billion, thereby exhibiting a
7.22% cost reduction.

Figure 4b shows the cost saving for urban households in Shanghai in residential
water and energy uses through adopting each of the water- or energy-saving measure
derived from the optimization model. The abbreviation of each conservation measure is
given in Table 1. Overall, the long-term measure benefits accounted for 54.98%, whereas
the short-term measures accounted for 45.02%. Long-term saving measures included the
updating of showerheads, electric water heaters, and gas water heaters, which represented
26.20%, 8.07%, and 20.71%, respectively. Short-term measures included reducing shower
duration and frequency, minimizing faucet length and frequency, reducing electric water
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heater temperatures, and reducing cloth washing frequency. Specifically, the percentages
for reducing shower duration and frequency, which played vital roles in total cost savings,
were 12.53% and 18.85%, respectively.

Figure 5 illustrates the water and energy cost composition in the Shanghai households,
including water, electricity, natural gas, and saving behavior costs. Water costs ranged
from CNY 6.66 billion to CNY 7.38 billion. The water cost with the highest frequency was
CNY 6.94 billion, with a frequency number of 15.43%. For electricity costs, the range was
from CNY 16.96 billion to CNY 17.10 billion. The electricity cost of CNY 16.96 billion had
the highest frequency of 79.73%. Natural gas costs were distributed among three specific
values, with the high frequency at CNY 4.77 billion, CNY 4.82 billion, and CNY 4.78 billion.
The conservation cost observed a normal distribution, with a mean of 0.735 and a standard
deviation of 0.088. Overall, the electricity costs and natural gas costs showed a concentrated
distribution, while the water costs and costs related to optimized conservation measures
exhibited a normal distribution.
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tial users.

The correlation coefficients between the short-term conservation measures and water–
energy savings are shown in Figure 6, where positive values indicate a positive correlation,
and negative values indicate a negative correlation. We categorized the savings of short-
term conservation measures into three parts: water savings, electricity savings, and gas
savings. For water savings, five types of conservation behaviors, including reducing
shower duration, reducing shower frequency, reducing faucet frequency, reducing faucet
duration, and reducing cloth washing frequency, have the correlation coefficients of −0.64,
−0.54, −0.21, −0.2, and −0.16, respectively. For electricity saving, reducing cloth washing
frequency had the largest influence, with a correlation coefficient value of −0.9. For gas
saving, the correlation coefficient with reducing gas heater temperature was −0.94.
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Figure 6. Analysis of the correlations between short-term conservation measures and water–energy
savings. WSC—water saving cost; ESC—electricity saving cost; GSC—gas saving cost; RCWF—
reducing cloth washing frequency; RSL—reducing shower duration; RSF—reducing shower fre-
quency; RFL—reducing faucet duration; RFF—reducing faucet frequency; REHT—reducing tempera-
ture of electric heater; and RGHT—reducing temperature of gas heater.

3.2.1. Seasonal Factors

Figure 7a displays the season-specific distribution of the cost savings due to taking
short-term conservation measures in the households of Shanghai. Overall, the average
effectiveness of the short-term conservation measures in spring, summer, and fall were close,
with values of CNY 1315 million, CNY 1330 million, and CNY 1315 million, respectively. In
contrast, the average effectiveness in winter was relatively lower at CNY 841 million.
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Figure 7. (a) The seasonal efficiency distribution of short-term conservation behavior among house-
hold users in Shanghai. (b) The correlations between seasonal savings efficiency and short-term
conservation behaviors. RCWF—reducing cloth washing frequency; RSL—reducing shower duration;
RSF—reducing shower frequency; RFL—reducing faucet duration; RFF—reducing faucet frequency;
REHT—reducing temperature of electric heater; and RGHT—reducing temperature of gas heater.
The ‘×’ symbol indicates that there is no significant relationship between the two parameters.

Figure 7b shows the correlations between seasonal saving effectiveness and short-term
conservation measures. The size-differentiated red and blue circles in the figure reflect the
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strength of correlation between two parameters. The most strongly correlated parameter
to seasonal saving effectiveness in spring and fall was reducing shower duration, with a
correlation coefficient of −0.61. Moreover, the correlation coefficients of reducing shower
frequency and reducing cloth washing frequency were −0.59 and −0.27, respectively,
which ranked 2nd and 3rd. During the summer, reducing shower frequency and reducing
cloth washing frequency ranked 1st and 2nd in influencing conservation effectiveness,
with correlation coefficients of −0.56 and −0.45, respectively. In winter, the correlation
coefficient of reducing shower frequency and reducing shower duration were −0.52 and
−0.49, respectively.

To summarize, the crucial factors influencing seasonal saving effectiveness involved
reducing shower duration, reducing shower frequency, and decreasing cloth washing
frequency.

3.2.2. Carbon Emission Reduction

In the water–energy–carbon nexus optimization model for urban residents in Shang-
hai, carbon emission reduction targets were established, where the aim was for house-
holds to achieve carbon emission reduction goals. Figure 8a illustrates the distribution
of carbon-reduction potential of Shanghai households. The average carbon emissions
reduced by electricity conservation measures was 16.38 thousand tons (ranging from 7.87
to 17.82 thousand tons) of equivalent CO2. The average carbon emission reductions due to
gas conservation measures was 26.21 thousand tons. The distribution ranged from 23.25 to
26.79 thousand tons. The total reduced carbon emission distribution ranged from 31.12 to
44.61 thousand tons, with an average value of 42.59 thousand tons. The average carbon
emission reduction in Shanghai per household was 57.74 kg.
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Figure 8. (a) Carbon emission reduction distribution in the Shanghai urban households (GRCE
and ERCE refer to reduced carbon emission by implementing gas and electricity conservation
measures, respectively, and TRCE refers to total reduced carbon emission). (b) The carbon emission
reduction structure among Shanghai urban residents. EHU—electric heater upgrade; GHU—gas
heater upgrade; RCWF—reducing cloth washing frequency; REHTSP—reducing electric heater
temperature in spring; REHTS—reducing electric heater temperature in summer; REHTF—reducing
electric heater temperature in fall; and REHTW—reducing electric heater temperature in winter.

We disaggregated the carbon emission reduction to determine the efficiency of all
types of conservation measures, as illustrated in Figure 8b. We explain the abbreviations
of each type of conservation behavior in Table 1. Long-term behaviors included updating
electric water heaters, gas water heaters, washing machines, and dishwashers, while short-
term behaviors involved reducing the temperature of electric water heaters, reducing the
temperature of the gas water heaters, and decreasing cloth washing frequency. Overall,
the long-term conservation behaviors resulted in an 82.9% reduction in carbon emissions,
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while short-term conservation behaviors led to a decrease of 17.1% in carbon emissions.
Among the long-term conservation behaviors, gas heater updating reduced 933.99 tons
of carbon emissions, accounting for 66.3%; following this was electric heater updating,
which resulted in a decrease of 233.34 tons of carbon emissions, representing 16.6% of total
carbon reduction. Regarding short-term behaviors, reducing the temperature of electric
water heaters reduced carbon emissions by 9.3%, with corresponding percentages for
spring, summer, fall, and winter being 2.9%, 0%, 2.9%, and 3.4%, respectively; reducing
cloth washing frequency could lead to a 7.9% decrease in carbon emissions, but this
predominantly occurs during summer. From a seasonal perspective, summer possesses the
greatest potential for saving carbon emissions.

A study for Shenzhen found that residential electricity consumption accounted for
approximately 16% of the total electricity consumption in the city, thus making it a crucial
component in the carbon-inclusive ecosystem [26]. Between June 2022 and June 2023, there
were 805,000 household residents in Shenzhen that opened carbon accounts, and they
collectively achieved a CO2 emission reduction of 12,000 tons through engaging in carbon
reduction practices. On average, this amounts to a reduction of 14.91 kg of CO2 emissions
per household. The optimized carbon emission reduction derived from our optimization
model was 57.74 kg per household in Shanghai, which is 3.87 times the level of carbon
emission reduction per household reported for Shenzhen.

3.3. Potential Improvements in Future Research

This study explored the interconnections between urban residential water and energy
uses by building an optimization model with innovative strategies to tackle urban water-
and energy-saving challenges. Nonetheless, several potential improvements are worth
further exploration in future research endeavors:

(1) Data collection. The questionnaire survey was conducted online due to the COVID-19
pandemic. Although the 496 valid sets of responses displayed reasonable heterogene-
ity and distribution across participated households in different districts, an offline
survey with the same questionnaire may have broader coverage and diversity. For
instance, Chongming District lacked a reliable sample size in current survey results,
which potentially impacted the fidelity of the study results. In subsequent research
endeavors, we hope to conduct offline surveys to augment sample size and widen
the coverage of surveys, thereby enhancing the reliability and representativeness of
research findings.

(2) Water-saving awareness quantification. Subjective biases may be introduced into
the survey data with respect to water-saving awareness. Alternative methods for
quantifying water-saving awareness may be worth further exploration to enhance the
reliability of quantified awareness parameters.

(3) Factors influencing water and energy use. Seasonal factors were considered in this
study; however, other factors that influence residential water and energy use, such as
socioeconomic factors, geographical location, and the climate, require further analysis.

4. Conclusions

In this study, we built a season-differentiated urban residential water–energy–carbon
nexus optimization model to explore the potential of water- and energy-saving, as well as
associated carbon emission reduction. A survey on household characteristics, including
demographic, education and income aspects, household water appliances, and water- and
energy-using behaviors were conducted in Shanghai, China, to collect data for model
parameterization. Moreover, the optimization model was embedded into a Monte Carlo
simulation framework to account for the probability distributions of short-term conser-
vation behavioral parameters. The following are concluded based on survey data and
modeling results:
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(1) The survey data revealed that the intensities of water uses are higher in the central
areas than suburb areas in Shanghai. At the household level, bathing, toilet flushing,
and laundry are the top three water-using activities.

(2) The water–energy–carbon nexus optimization model results showed an annual po-
tential cost savings of CNY 149.42 per household in Shanghai, reflecting a 15.92%
reduction in water cost, 7.22% reduction for gas cost, and 1.10% reduction for elec-
tricity cost. Overall, the long-term conservation measures were more effective than
short-term ones. Water conservation was mostly effective for energy-saving, fol-
lowed by saving gas and electricity. Specifically, showerhead upgrades led to the
highest savings at 26.20%, followed by gas water heater upgrade at 20.71%. For short-
term conservation behaviors, reducing shower frequency and duration accounted for
18.85% and 12.53% of energy saving, which were ranked third and fourth, respectively.
Seasonal factors influenced the effectiveness of conservation efforts, with summer pre-
senting the greatest opportunity for water and energy conservation at the household
level.

Despite these findings, the study was subject to several limitations. Due to the COVID-
19 pandemic, we only collected 496 valid questionnaires online, thus resulting in a relatively
small survey sample size. The representativeness and reliability of survey data can be
improved by involving a larger number of survey participants and by conducting in-
person surveys. Secondly, implementing the optimization model on a larger scale provides
opportunities to illustrate broader environmental and economic benefits. Socioeconomic,
geographical, cultural, and climatic factors are key aspects influencing water and energy
use. Considering those main influencing factors can enhance the wide applicability of the
optimization model [12].

Overall, the empirical results derived from the questionnaire survey and the opti-
mization model represent a promising integrated approach for analyzing urban water and
energy conservation, as well as associated carbon emission reduction, at the household
level. The results provide useful insights for improving water and energy conservation at
the household level, which can be realized with appropriate incentives created by utilities
or through governmental policies. The findings are also useful for practitioners to better
understand household water and energy conservation potentials.
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Nomenclature

Variable Description, Unit

Z
Total cost of household water and energy consumption after conservation actions
implemented, CNY.

Ew Annual water expense, CNY.
Ee Annual energy expense, CNY.
Wsave Annual water saving of Shanghai households, CNY/household.
Woriginal Original water use of Shanghai households, CNY/household.
WsaveS Water saving of short-term water conservation actions, CNY/household.
WsaveL Water saving of long-term water conservation actions, CNY/household.
Esave Annual energy saving of Shanghai households, kgce 1.
Eoriginal Original energy use of Shanghai households, kgce.
EsaveS Energy saving of short-term energy conservation actions, kgce.
EsaveL Energy saving of long-term energy conservation actions, kgce.

RCE
Reduced carbon emission associated with household water and energy uses by
implementing conservation actions, kgCO2.

RCEtarget Target of carbon emission reduction in Shanghai, kgCO2.

Xsw
Number of households taking short-term water conservation measures,
household.

Xse
Number of households taking short-term energy conservation measures,
household.

Xswe
Number of households taking short-term water and energy conservation
measures, household.

Xlw Number of households taking long-term water conservation measures, household.

Xle
Number of households taking long-term energy conservation measures,
household.

Xlwe
Number of households taking long-term water and energy conservation measures,
household.

Xl
Number of households taking short-term water conservation measures when
certain long-term measures are conducted, household.

Xlr
Number of households taking short-term water conservation measures when
certain long-term measures are not conducted, household.

Xm
Number of households taking short-term energy conservation measures when
certain long-term measures are conducted, household.

Xmr
Number of households taking short-term energy conservation measures when
certain long-term measures are not conducted, household.

Xn
Number of households taking short-term water and energy conservation measures
when certain long-term measures are conducted, household.

Xnr
Number of households taking short-term energy conservation measures when
certain long-term measures are not conducted, household.

Parameter Description, Unit
C̃sw Unit cost of short-term water conservation actions, CNY/household.
C̃se Unit cost of short-term energy conservation actions, CNY/household.
C̃swe Unit cost of short-term water and energy conservation actions, CNY/household.
Clw Unit cost of long-term water conservation actions, CNY/household.
Cle Unit cost of long-term energy conservation actions, CNY/household.
Clwe Unit cost of long-term water–energy conservation actions, CNY/household.

Qseason
ws

Unit water conservation efficiency of short-term water conservation actions,
m3/household.

Qseason
wes1

Unit water conservation efficiency of short-term water and energy conservation
actions, m3/household.

Qseason
es

Unit energy conservation efficiency of short-term energy conservation actions,
kgce/household.

Qseason
wes2

Unit energy conservation efficiency of short-term water and energy conservation
actions, kgce/household.
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Ql |wld
Unit efficiency of short-term water conservation actions with certain long-term
actions being implemented, m3/household.

Ql |wlnd
Unit efficiency of short-term water conservation actions without certain long-term
actions being implemented, m3/household.

Qm|eld
Unit efficiency of short-term energy conservation actions with certain long-term
actions being implemented, kgce/household.

Qm|elnd
Unit efficiency of short-term energy conservation actions without certain
long-term actions being implemented, kgce/household.

Qn|ewld
Unit efficiency of short-term water and energy conservation actions with certain
long-term actions being implemented, kgce/household.

Qn|ewlnd
Unit efficiency of short-term water and energy conservation actions without
certain long-term actions being implemented, kgce/household.

Ple
Reduced carbon emission efficiency of long-term energy conservation actions,
kgCO2/kwh or kgCO2/m3.

Plwe
Reduced carbon emission efficiency of long-term water and energy conservation
actions, kgCO2/kwh or kgCO2/m3.

Pse
Reduced carbon emission efficiency of short-term energy conservation actions,
kgCO2/kwh or kgCO2/m3.

Pswe
Reduced carbon emission efficiency of short-term water and energy conservation
actions, kgCO2/kwh or kgCO2/m3.

1 “kgce” means kilogram of coal equivalent (energy intensity).

References
1. Lishan, Z. Analysis on the current situation and optimization countermeasures of water conservation management in residential

quarters of Shanghai. Evironment Manag. 2020, 2, 209–210. [CrossRef]
2. Escriva-Bou, A.; Lund, J.R.; Pulido-Velazquez, M.; Hui, R.; Medellín-Azuara, J. Developing a water-energy-GHG emissions

modeling framework: Insights from an application to California’s water system. Environ. Model. Softw. 2018, 109, 54–65.
[CrossRef]

3. Scott, C.A.; Pierce, S.A.; Pasqualetti, M.J.; Jones, A.L.; Montz, B.E.; Hoover, J.H. Policy and institutional dimensions of the
water-energy nexus. Energy Policy 2011, 39, 6622–6630. [CrossRef]

4. Meng, F.; Liu, G.; Liang, S.; Su, M.; Yang, Z. Critical review of the energy-water-carbon nexus in cities. Energy 2019, 171, 1017–1032.
[CrossRef]

5. Hardy, L.; Garrido, A.; Juana, L. Evaluation of Spain’s water-energy nexus. Int. J. Water Resour. Dev. 2012, 28, 151–170. [CrossRef]
6. Beal, C.D.; Bertone, E.; Stewart, R.A. Evaluating the energy and carbon reductions resulting from resource-efficient household

stock. Energy Build. 2012, 55, 422–432. [CrossRef]
7. Haseeb, M.; Kot, S.; Iqbal Hussain, H.; Kamarudin, F. The natural resources curse-economic growth hypotheses: Quantile–on–

Quantile evidence from top Asian economies. J. Clean. Prod. 2021, 279, 123596. [CrossRef]
8. Guan, D.; Hubacek, K. A new and integrated hydro-economic accounting and analytical framework for water resources: A case

study for North China. J. Environ. Manag. 2008, 88, 1300–1313. [CrossRef] [PubMed]
9. Griffiths-sattenspiel, B.; Wilson, W. The Carbon Footprint of Water. 2009. Available online: http://eec.ucdavis.edu/events/

documents/water-energy_rivernetwork_carbon-footprint-of-water.pdf (accessed on 22 December 2021).
10. Klein, G.; Krebs, M. California’ s Water–Energy Relationship Final Staff Report; Stanford University: Stanford, CA, USA, 2005.
11. Vieira, A.S.; Beal, C.D.; Stewart, R.A. Residential water heaters in Brisbane, Australia: Thinking beyond technology selection to

enhance energy efficiency and level of service. Energy Build. 2014, 82, 222–236. [CrossRef]
12. Mazzoni, F.; Alvisi, S.; Blokker, M.; Buchberger, S.G.; Castelletti, A.; Cominola, A.; Gross, M.P.; Jacobs, H.E.; Mayer, P.; Steffelbauer,

D.B.; et al. Investigating the characteristics of residential end uses of water: A worldwide review. Water Res. 2023, 230, 43–1354.
[CrossRef]

13. Chen, S.; Chen, B. Urban energy–water nexus: A network perspective. Appl. Energy 2016, 184, 905–914. [CrossRef]
14. Kenway, S.J.; Lam, K.L. Quantifying and managing urban water-related energy use systemically: Case study lessons from

Australia. Int. J. Water Resour. Dev. 2016, 32, 379–397. [CrossRef]
15. Abdallah, A.M.; Rosenberg, D.E. Heterogeneous Residential Water and Energy Linkages and Implications for Conservation and

Management. J. Water Resour. Plan. Manag. 2014, 140, 288–297. [CrossRef]
16. Yu, M.; Wang, C.; Liu, Y.; Olsson, G.; Bai, H. Water and related electrical energy use in urban households—Influence of individual

attributes in Beijing, China. Resour. Conserv. Recycl. 2018, 130, 190–199. [CrossRef]
17. Arbués, F.; García-Valiñas, M.Á.; Martínez-Espiñeira, R. Estimation of residential water demand: A state-of-the-art review. J.

Socio. Econ. 2003, 32, 81–102. [CrossRef]
18. Zhou, Y.; Zhang, B.; Wang, H.; Bi, J. Drops of energy: Conserving urban water to reduce greenhouse gas emissions. Environ. Sci.

Technol. 2013, 47, 10753–10761. [CrossRef] [PubMed]

https://doi.org/10.16647/j.cnki.cn15-1369/X.2020.04.120
https://doi.org/10.1016/j.envsoft.2018.07.011
https://doi.org/10.1016/j.enpol.2011.08.013
https://doi.org/10.1016/j.energy.2019.01.048
https://doi.org/10.1080/07900627.2012.642240
https://doi.org/10.1016/j.enbuild.2012.08.004
https://doi.org/10.1016/j.jclepro.2020.123596
https://doi.org/10.1016/j.jenvman.2007.07.010
https://www.ncbi.nlm.nih.gov/pubmed/17719717
http://eec.ucdavis.edu/events/documents/water-energy_rivernetwork_carbon-footprint-of-water.pdf
http://eec.ucdavis.edu/events/documents/water-energy_rivernetwork_carbon-footprint-of-water.pdf
https://doi.org/10.1016/j.enbuild.2014.07.007
https://doi.org/10.1016/j.watres.2022.119500
https://doi.org/10.1016/j.apenergy.2016.03.042
https://doi.org/10.1080/07900627.2015.1132195
https://doi.org/10.1061/(asce)wr.1943-5452.0000340
https://doi.org/10.1016/j.resconrec.2017.11.004
https://doi.org/10.1016/S1053-5357(03)00005-2
https://doi.org/10.1021/es304816h
https://www.ncbi.nlm.nih.gov/pubmed/23750633


Sustainability 2024, 16, 3529 17 of 17

19. Escriva-Bou, A.; Lund, J.R.; Pulido-Velazquez, M. Optimal residential water conservation strategies considering related energy in
California. Water Resour. Res. 2015, 51, 4482–4498. [CrossRef]

20. Ren, Z.; Chan, W.Y.; Wang, X.; Anticev, J.; Cook, S.; Chen, D. An integrated approach to modelling end-use energy and water
consumption of Australian households. Sustain. Cities Soc. 2016, 26, 344–353. [CrossRef]

21. Byers, E.A.; Hall, J.W.; Amezaga, J.M. Electricity generation and cooling water use: UK pathways to 2050. Glob. Environ. Chang.
2014, 25, 16–30. [CrossRef]

22. Venkatesh, G.; Chan, A.; Brattebø, H. Understanding the water-energy-carbon nexus in urban water utilities: Comparison of four
city case studies and the relevant influencing factors. Energy 2014, 75, 153–166. [CrossRef]

23. Escriva-Bou, A.; Lund, J.R.; Pulido-Velazquez, M. Saving Energy From Urban Water Demand Management. Water Resour. Res.
2018, 54, 4265–4276. [CrossRef]

24. Wu, J.; Li, C.; Zhang, X.; Zhao, Y.; Liang, J.; Wang, Z. Seasonal variations and main influencing factors of the water cooling islands
effect in Shenzhen. Ecol. Indic. 2020, 117, 106699. [CrossRef]

25. Friedrich, E.; Pillay, S.; Buckley, C.A. Carbon footprint analysis for increasing water supply and sanitation in South Africa: A case
study. J. Clean. Prod. 2009, 17, 1–12. [CrossRef]

26. Zhang, H. Enlightenment of Low Carbon Electricity Consumption and Carbon Justice for Shenzhen Residents on Electricity
Saving and Carbon Reduction in Shanghai. Shanghai Energy Sav. 2023, 10, 1400–1404. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/2014WR016821
https://doi.org/10.1016/j.scs.2016.07.010
https://doi.org/10.1016/j.gloenvcha.2014.01.005
https://doi.org/10.1016/j.energy.2014.06.111
https://doi.org/10.1029/2017WR021448
https://doi.org/10.1016/j.ecolind.2020.106699
https://doi.org/10.1016/j.jclepro.2008.03.004
https://doi.org/10.13770/j.cnki.issn2095-705x.2023.10.002

	Introduction 
	Materials and Methods 
	Study Area 
	Questionnaire Survey 
	Optimization Model 

	Results and Discussion 
	Analysis of the Questionnaire Survey Data 
	Residential Water–Energy–Carbon Emission Optimization Results 
	Seasonal Factors 
	Carbon Emission Reduction 

	Potential Improvements in Future Research 

	Conclusions 
	References

