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Abstract: Computer Numeric Control (CNC) five-axis milling plays a significant role in the machining
of precision molds and dies, aerospace parts, consumer electronics, etc. This research aims to explore
the potential of the machine learning (ML) technique in improving energy efficiency during the CNC
five-axis milling process for sustainable manufacturing. The experiments with various machining
parameters, forms of toolpath planning, and dry cutting conditions were carried out, and the data
regarding energy consumption were collected simultaneously. The relationship between machine
parameters and energy consumption was analyzed and built. Subsequently, a machine learning
algorithm was developed to classify test methods and identify energy-efficient machining strategies.
The developed algorithm was implemented and assessed using different classification methods
based on the ML concept to effectively reduce energy consumption. The results show that the
Decision Tree and Random Forest algorithms produced lower Root Mean Square Error (RMSE)
values of 4.24 and 4.28, respectively, compared to Linear, Lasso, and Ridge Regression algorithms.
Verification experiments were conducted to ascertain the real-world applicability and performance
of the ML-based energy efficiency approach in an operational CNC five-axis milling machine. The
findings not only underscore the potential of ML techniques in optimizing energy efficiency but
also offer a compelling pathway towards enhanced sustainability in CNC machining operations.
The developed algorithm was implemented within a simulation framework and the algorithm was
rigorously assessed using machine learning analysis to effectively reduce energy consumption, all
while ensuring the accuracy of the machining results and integrating both conventional and advanced
regression algorithms into CNC machining processes. Manufacturers stand to realize substantial
energy savings and bolster sustainability initiatives, thus exemplifying the transformative power of
ML-driven optimization strategies.

Keywords: energy efficiency; sustainable manufacturing; machine learning methods; energy
consumption

1. Introduction

The Industrial Internet of Things (IIoT) is the next level of Internet of Things (IoT)
technology, and it is unique in its manufacturing transformation [1–3]. However, this
increase in production and efficiency has not come without environmental consequences.
The simultaneous escalation of energy consumption has underscored the urgent need for
sustainable manufacturing practices that minimize resource utilization, improve energy
efficiency [4,5], and promote environmentally friendly methodologies. Through a series of
carefully designed experiments conducted on a CNC five-axis milling machine, this study
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investigates the complex interaction between various machining parameters, innovative
toolpath planning strategies, and consequential energy consumption patterns.

The main goal is to develop a thorough and multidimensional plan that incorporates sev-
eral components, including energy efficiency and calculation. By using these strategies, the
aim is not only to benefit the environment but also to promote more efficient and responsible
manufacturing practices. A key focus of the research lies in predicting and calculating energy
consumption in machining processes. The use of machine learning emerges as a robust
methodology to understand the intricate and dynamic nature of machining operations [6,7].
Advanced algorithms enable the identification of patterns, optimization of parameters, and
refinement of predictions, ultimately contributing to more accurate estimations of energy
usage. In the field of machining, the research emphasizes that spindle speed plays a central
role in determining overall energy consumption, surpassing even cutting energy. These meth-
ods enable us to understand the complex relationships between different factors to enhance
energy efficiency in machining processes. By incorporating the principles of the Taguchi
analysis, the research aims to enhance the precision and reliability of energy consumption
predictions [8,9]. Through comparisons with Decision Tree analysis, valuable insights are
gained into the factors significantly influencing energy consumption [10].

Calculating and forecasting energy consumption is very important, especially for the
CNC machining process [11–13]. It has become obvious that power consumption changes
depending on the toolpath as the number of axes on machine tools has risen and the motion
of machines has become more sophisticated. Unique milling circumstances of a machining
operation, such as the spindle motor speed and feed rate, as well as its predicted electrical
energy consumption and the maximum electrical power in watts during the operation
duration, are referred to as the processing mode. Researchers have also tackled a conceptual
issue by creating an energy-load profile with the goal of reducing the profile length, and they
have talked about how their method may be used as the foundation for green manufacturing
processes. We provide a theoretical framework, mostly using machine learning tools, for
processes that are energy-efficient in a five-axis machine. On the basis of actual machining
data, our system employs energy-load profiles and the processing modes of machine tools.

Machine learning regression techniques have emerged as powerful tools to understand
and predicting complex relationships within manufacturing processes [14–18]. In the
context of CNC machining, various research parameters, such as spindle speed, feed
rate, depth of cut, material properties, and tool characteristics, affect the resulting energy
consumption. A basic method called Linear Regression assumes a linear connection
between the input and output variables (in this case, energy consumption). It provides
valuable insight into how changes in individual parameters affect energy use. Lasso
regression, which combines regression analysis with regularization, promotes the selection
of important variables while penalizing less significant one [19–21]. This technique is
crucial when dealing with datasets where some parameters might have a negligible impact.
Ridge regression, similar to Lasso, incorporates regularization. It is particularly useful in
the presence of multicollinearity, where input variables are highly correlated [22,23]. Ridge
regression helps mitigate the impact of correlated variables on the model. Decision Trees, a
non-linear regression technique, break down the data into hierarchical structures, enabling
the modeling of complex relationships. Decision Tree Regressors are adept at capturing
intricate patterns within the data [24,25]. Finally, like another type of statistic modelling,
we know that Random Forests, an ensemble technique, utilize multiple Decision Trees to
enhance predictive accuracy. By averaging the output of numerous trees, Random Forest
Regressors reduce overfitting and improve the robustness of predictions [26,27].

This research significantly contributes by thoroughly examining energy optimization
strategies in five-axis CNC machining through the lens of machine learning. We conducted
careful experiments and applied advanced regression techniques to gain practical insights
into the complex relationships between machining parameters and energy consumption.
The central hypothesis guiding our work is straightforward: employing machine learning
methods like Linear Regression and Decision Trees will improve our capacity to predict
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and optimize energy usage. This, in turn, contributes to the advancement of sustainable
and efficient practices in manufacturing. The recent focus on machine learning in various
research projects underscores the significance of machining operations’ efficiency. The
exploration of optimization methodologies using machine learning gains more attention as
the volume of data expands exponentially and the complexity of the model increases [28].
The essence of future manufacturing lies in incremental optimization that extends from
the supply chain to the final products. Critical to cost savings and heightened overall
profitability per production run, the optimization of CNC machine tool operations is
essential for boosting productivity and minimizing defects in manufactured components.
By integrating motion system kinematics, a sophisticated motion-cueing algorithm is
developed to improve simulator performance. This algorithm focuses on enhancing the
precision of coupled movements by limiting actuator extensions. This restriction plays
a crucial role in the refinement of the overall operation, ensuring smoother and more
accurate machining processes. As a result, the implementation of this optimal motion-
cueing algorithm contributes to increased efficiency and reduction in defects during the
manufacturing of components [29].

Critical for advancing the precision and efficiency of CNC machining operations in com-
ponent manufacturing are optimization techniques for machining parameters and machine
tool performance, as emphasized in reference [30]. The utilization of artificial intelligence
and machine learning with real-time production data facilitates automated optimization,
consequently increasing the accuracy of machined components and the productivity of part
manufacturing through optimized machining parameters [31]. A comprehensive method
for multi-response machining processes is established, utilizing a combination of machine
learning and genetic algorithms. The incorporation of a multi-objective evolutionary algo-
rithm during CNC machining operations enhances both the convergence speed and the
part production performance [32]. Part production processes may be made more efficient
by utilizing the machine learning method to improve the optimization process on the shop
floor during CNC machining operations. An in-depth analysis is conducted on the utiliza-
tion of machine learning in CNC machine tools, with the aim of improving the stability of
component production and reducing the likelihood of unforeseen failures.

2. Materials and Methods
2.1. Machine Learning Alhgorithm

Machine learning algorithms can analyze historical data to identify optimal tool-
paths for specific materials and geometries. By minimizing unnecessary movements and
milling strategies, these algorithms reduce machining time and subsequently lower energy
consumption and lifecycle analysis. Therefore, our design is shown in Figure 1.
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Linear Regression models build the relationship between independent variables or
factors that explain or influence a phenomenon x1, . . . , xk−1 (predictors) and a dependent
variable y through the equation

[y = b0 + b1x1 + · · ·+ bkn−1xkn−1 + ϵ] (1)

In this context, ϵ is understood as a random observational error or fluctuations. When
measurements are performed n times, producing n values of y for n sets of xj, the model
for each observation (i-th observation) can be expressed as:[

yi = b0 + b1xi1 + · · ·+ bkn−1xi(kn−1) + ϵi, i = 1, . . . , n
]
. (2)

In this formulation yi is the observed value of the dependent variable for the i-th
set of observations. b0, b1, . . . , bkn−1 are the parameters to be estimated. xij is the i-th
observation of the j-th predictor variable. ϵi represents the unobserved random error for
the i-th observation. Ridge and Lasso regression methods offer regularization of estimated
coefficients, addressing some drawbacks of the Ordinary Least Squares (OLS) estimator,
particularly in scenarios with a large number of predictors relative to the sample size
(kn > n) [33]. In situations where the relationship between variables is nearly linear and
the number of predictors is significantly less than the sample size (kn << n), OLS may
perform well. However, when k is not substantially smaller than n, estimates obtained
through Ordinary Least Squares (OLS) are prone to high variance and diminished accuracy.
Regularization techniques, such as Ridge and Lasso, come into play when dealing with high-
dimensional data. They effectively mitigate the problem of high variance in OLS estimates
by introducing a controlled amount of bias, which ultimately leads to improved prediction
accuracy. In cases where the number of predictors exceeds the sample size (kn > n), OLS
fails to produce a unique solution, resulting in infinite estimate variance. Regularization
methods help stabilize and enhance predictive performance in such situations.

A classification technique, often referred to as a classifier, is a systematic method for
creating classification models based on a provided input dataset [34–36]. Different examples
of classification techniques encompass Decision Tree classifiers, rule-based classifiers, neural
networks (NNs), SVM, and Naïve Bayes classifiers. The initial strategy explicitly computes
the generalization error, taking into account both the training error and a penalty term
addressing the complexity of the model. This resulting generalization error serves as a
pessimistic assessment of the effectiveness of the model. As an illustration, consider n(ti),
which denotes the number of training records classified by node t, and e(ti), representing
the count of incorrectly categorized data entries. The pessimistic error estimate, denoted as
eg(T), for a Decision Tree T is calculated as follows:

eg(T) = ∑kp
i=1 [e(ti) + Ω(ti)]÷ ∑kp

i=1 n(ti) =
e(T) + Ω(T)

Nt
(3)

Here, kp represents the number of leaf nodes, e(T) denotes the overall training error
of the Decision Tree, Nt represents the number of training records, and Ω(ti) signifies the
penalty term attributed to each node ti.

When the machine tool is turned on, it starts to use the energy. The preparatory stage
requires energy to position the tool and workpiece in optimal milling positions, while
also setting the spindle speed. Subsequently, during the actual material removal process,
milling energy becomes imperative. The assignment of a numerical value to this enables
the modeling of the corresponding emissions.

E = (P0 +kq·Q
)

t2 (4)



Sustainability 2024, 16, 3569 5 of 20

where the total power consumption of a machine tool, denoted as P0, is determined by the
specific milling energy for a given workpiece material, represented by kq, multiplied by the
material removal rate (Q) and the cutting time (t2).

ETotal= ESpindle+EFeed+ETool+ECoolant+EFix (5)

ESpindle encompasses the energy consumption of the spindle, accounting for the energy
needed for material removal from the workpiece. EFeed pertains to the energy consumption
associated with the axis feed, while ETool refers to the energy consumption during tool
changes. ECoolant corresponds to the energy usage of the coolant equipment, and EFix is
indicative of the energy consumption of the fan motor and servo system.

2.2. Experimental Setup
2.2.1. Electrical Connection

The circuit diagram can be seen in Figure 2. This research uses three PA-310 3P3W-3CT
power meters manufactured by Arch Meter Corporation, Hsinchu, Taiwan. Each power
meter measures three electrical lines to obtain current and voltage data. Clamp-on current
sensors are used in this experiment to read the current on each line. The voltage value on
each line is measured directly using a power meter. The first power meter in Figure 2a
measures the current and voltage of the X-axis, Y-axis, and Z-axis servo motors via one
of the 3 phase lines (wires A, B, C) on each axis. The second power meter measures the
voltage and electric current of the servo motor on one line from the C-axis, namely line
W, and two lines from the A-axis, namely lines U and V. Each phase provides electrical
power, and the phases are typically labeled as U, V, and W; these represent the three phases
of alternating current. Connecting the A-axis to lines U and V helps maintain a balanced
power distribution. In a three-phase system, distributing the load evenly across all three
phases ensures efficient and stable operation. Spindles in CNC machines are responsible for
the actual milling or cutting process. They often require higher power output compared to
servo motors. Distributing the power across three phases helps in achieving higher torque
and speed, contributing to better machining performance, like in the case of the A-axis,
where connecting the motor to three phases helps balance the load across the power supply.
This balance is crucial for stable and reliable operation. Spindle speed and rotation direction
are critical parameters in machining. Connecting to three phases allows for precise control
over these parameters, enabling the CNC machine to achieve accurate and efficient milling
processes. The last power meter measures the voltage and current on three spindle lines,
namely S1, S2, and S3. The purpose of measuring each axis of the CNC machine is to
determine the energy profile of each axis when carrying out the milling process.

As in the example of the circuit for the X-axis shown in Figure 2b, it can be seen that
the clamp-on sensor is connected to one of the three-phase X-axis lines, namely line W, and
then the clamp-on is connected to the input ports 1 and 2 of the power meter. Furthermore,
a parallel circuit from the same line is connected to input port 14 to obtain the voltage value
on that line. The same connection pathway is also applied to the Y- and Z-axis. Furthermore,
the power meter output ports 11 and 12 are connected to the computer via the RS-485 cable
manufactured by Belden Inc., Belden Suzhou, China to collect the measurement results.

Figure 3a depicts the LCD display of the PA310 Clip-on CT Smart Power Meter. The
LCD display serves as the user interface, providing real-time data and information re-
garding energy consumption, voltage, current, power factor, and other relevant electrical
parameters. It offers a user-friendly interface for navigating through different menus, con-
figuring settings, and viewing energy usage data. The display may include various features,
such as backlighting for readability in various lighting conditions, numeric and graphical
representations of data, and navigation buttons for ease of use. Figure 3b showcases the
PA310 Clip-on CT Smart Power Meter as part of the Smartmeter line. This device is de-
signed for accurate measurement and recording of both AC (alternating current) and DC
(direct current) electrical parameters. It is equipped with advanced clip-on CT technology,
allowing for non-intrusive installation and measurement of electrical currents without
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interrupting the circuit. The Smartmeter line may include various models and configu-
rations tailored to different energy monitoring needs, with the PA310 being a prominent
example. These meters are capable of monitoring power usage, voltage levels, current flow,
power factor, and other critical parameters, enabling users to track and analyze energy
consumption effectively for improved efficiency and cost management.
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As show in Table 1, the line stands out for its extensive range of specifications, designed
to cater to a diverse array of energy-monitoring requirements across various industrial
and commercial settings. One of its key strengths lies in its adaptable voltage input,
spanning from 10 V to 480 V, ensuring compatibility with a wide range of electrical systems
encountered in different environments. This versatility extends to current input options,
where users can choose between internal CTs rated at 5 A or opt for clip-on CTs available
in various diameters, accommodating currents ranging from 10 mA to a substantial 1000 A.
Additionally, the auxiliary power support for X-, Y-, Z-, A-, and C-axes further enhances
its usability, offering a voltage input range of 100–240 VAC while consuming only 1 A
and 5 VA. In particular, the kWh accuracy of the PA310 Smartmeter line is exceptional,
boasting precision levels of less than 0.5% for unity power factor and maintaining accuracy
below 1% for power factors between 0.5 and 1, exceeding the stringent requirements set
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by IEC 62053-21 standard [37]. With such comprehensive features and high-level accuracy,
the PA310 Smartmeter line emerges as a dependable solution for a wide range of energy-
monitoring applications, providing users with reliable data for efficient energy management
and optimization strategies in their operations.

Table 1. Meter specifications of the PA-310 Smartmeter line.

Subject Detail Specification

Voltage input 10–480 V

Current input Internal CT: 5 A, Clip-on CT: CT Φ10 (10 mA~10 A or 30 mA~60 A), optional in CT Φ16
(50 mA~120 A) Φ24 (80 mA~200 A, Φ31.6 (0.5 A~400) Φ50.8 (1 A~1000 A)

AUX. Power (X/Y/Z/A/C) 100–240 VAC, 1 A, 5 VA

kWh Accuracy pf = 1, <0.5%, pf = 0.5, <1%, better than IEC 1036

In other research, the implementation of PA-310 power meters also maintains better
accuracy of 1% even under low-current conditions (<5 A); thus, it can still be used in a
medium- to high-voltage system [38], and it was undertaken to systematically monitor
the entirety of electricity consumption [39]. The power meters were positioned inside
the machine panel box. Furthermore, the amount of power was recorded and collected
every five seconds during the experiment. Figure 4 illustrates the installation of the
system in the electrical panel, including four distribution boards (these are panels that
distribute electrical power to various components in the CNC machine), three PA-310
power meters (they provide information about the current, voltage, power factor, and other
electrical parameters), and a dedicated server (which could be responsible for data storage,
processing, and possibly communication with other manufacturing systems).
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(c) Hartford 5A-25R 5-axis Machining Center manufactured by SHE HONG INDUSTRIAL Co., Ltd.,
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At the beginning, the current transformer (CT) sensor was installed on the cable of
the motor that would be monitored, and then the monitoring and data collection were con-
ducted. It is noteworthy that each PA-310 power meter integrates three current transformers,
enabling the concurrent monitoring of three circuits. This thoughtful design ensures compre-
hensive knowledge of the patterns of power use inside our experiment while simultaneously
improving operating efficiency and facilitating targeted data collection.

2.2.2. Cutting Path and Parameters

While power consumption monitoring in CNC machining has indeed been explored
by various researchers, the distinctive aspect of our study lies in the careful consideration
given to the comprehensive monitoring of power consumption across multiple axes and
the spindle motor. Rather than solely emphasizing the overall power consumption, our
research delves into the nuanced power dynamics of individual axes and the spindle motor
during real processes. This granularity allows us to uncover specific energy consumption
patterns, offering a more detailed understanding of how power is utilized in the context
of different machining operations. Our approach leverages the capabilities of a 3D model
from NX simulation, allowing us to measure and analyze power consumption with respect
to each parameter. In order to improve the accuracy of the observations, the simulation data
are considered, offering better insight into the relationship between machining parameters
and power usage. Therefore, it will provide a comprehensive perspective on the energy
usage in CNC machining operations.

Furthermore, we varied the cutting parameters to study their impact on power con-
sumption. We experimented with different widths of cut of 1–3 mm, depths of cut of
0.5–1.5 mm, and spindle speeds of 4000, 6000, and 8000 rpm during the cutting process, as
shown in Figure 5. The top-right view allow us to observe how the tool engages with the
workpiece along the patterns, which is essential for comprehending the power requirement,
and these variations allowed us to analyze power consumption patterns under different
cutting conditions. We designed a circular cutting path to involve the C-axis cutting. The
cutting tool follows circular paths in the C-direction until the entire surface is completely
cut. Throughout this process, the base of the turning table continuously rotates in the
C-axis, allowing us to observe the power consumption in this axis. The obtained experi-
mental results present the power consumption values of the X-, Y-, Z-, A-, and C-axes of
the servo motor and the spindle motor and illuminate the specific energy requirements of
each component during machining.
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a detailed understanding of how power is utilized in the context of different machining operations.
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2.3. Materials and Equipment

The Hartford 5A-25R 5-axis Machining Center is a high-performance and versatile
industrial machine designed for precision machining tasks [40]. With advanced features and
specifications, this machine is engineered to meet the demands of modern manufacturing
processes. The X- and Y-axes are equipped with 2.18 kW drive motors each, ensuring
smooth and controlled movements along the longitudinal and cross-travel directions. The
Z-axis features a powerful 3.5 kW drive motor for vertical movements, allowing efficient
machining operations at varying depths. The detail specifications of the machine are shown
in Table 2.

Table 2. Harford A-25R 5-axis Machining Center.

Subject Detail Specification

Electric Power Consumption 20 kva

Machine Weight 3300 kg

Motor Rated Output
(X/Y/Z/A/C)

Spindle Drive Motor 7.5 kw
X-, Y-, Z-, A-, C-Axis Drive Motor 2.18 kw/2.18 kw/3.5 kw/

1.2 kw/1.7 kw

Stroke

X-axis (longitudinal travel): 350 mm
Y-axis (cross-travel): 300 mm

Z-axis (vertical travel): 250 mm
A-axis (inclined): −120◦~+30◦

C-axis (rotation): 360◦

Feed (Rapid Traverse)
(X/Y/Z/A/C) 36,000 (OP: 40,000) mm/min

Spindle Speed 12,000 rpm

For the CNC 5-axis machine line adhering to Industry 4.0 principles, the Harford
5A-25R, depicted in Figure 5, is equipped with connectivity features enabling seamless
communication with other manufacturing systems. This connectivity enhances automation
capabilities, allowing seamless integration into smart manufacturing environments. Ex-
tensive scrutiny is applied to the integration of machine learning in CNC machine tools,
with the aim of improving component production stability and minimizing the risk of
unexpected failures. The optimization of cutting parameter settings in turning processes is
accomplished by employing a response surface approach and machine learning technology.
In end milling operations, a machine learning methodology, specifically the Nelder–Mead
simplex method, has been developed to optimize the machining variables.

The Micro Grain Carbide End mill series of the CEXV30600 cutter tool manufac-
tured by Hon Jan Cutting Tools Co., Ltd., Taichung, Taiwan with a diameter of 6 mm and
3 Flutes was used for the experiment, as shown in Table 3. With a well-designed cutting
edge, this tool delivers efficient material removal and contributes high precision, perfor-
mance, and efficiency for aluminum machining applications [41]. The aluminum alloy
6061-T6 manufactured by Crown Aluminum Co., Ltd., Kaohsiung, Taiwan with dimen-
sions of 100 × 35 × 50 mm and properties as shown in Table 4 was used as the workpiece
material [42–45]. With favorable characteristics like good thermal conductivity, moderate
hardness, and excellent machinability, it allows for efficient material removal and precise
machining operations on 5-axis CNC machines. The Erowa PowerChuck clamping system
with model ER-045076 and uniholder ER-129071 were used in the experiment. Erowa
PowerChuck ER-045076 has a diameter of 100 mm and a repeatability of 2 µm, and it is
operated by air pneumatic; it was used to hold Erowa uniholder ER-129071. The aluminum
workpiece was attached to the uniholder with the M8 threaded and then installed on the
powerchuck, as shown in Figure 4b.
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Table 3. Tool specifications for CEXV30600.

Subject Value

Tool Type Square
Diameter (mm) 6

Number Of Cutting Flutes 3
Shank Diameter (mm) 6
Cutting Length (mm) 18

Table 4. Workpiece material, aluminum alloy 6061-T6.

Property Value

Density (g/cc) 2.7
Hardness (Brinell) 95

Tensile Yield Strength (MPa) 276
Modulus of Elasticity (GPa) 68.9

Fatigue Strength (MPa) 96.5
Shear Modulus (GPa) 26
Shear Strength (MPa) 207

Thermal Conductivity (W/m-K) 167

The choice of using aluminum alloy 6000 series in this research can be attributed to
several key properties that make this alloy suitable for machining processes, especially in
the context of CNC milling. Aluminum alloys like 6111 are commonly employed in the
production of automotive exterior or body panels. Inner body panels utilize aluminum
alloys, such as 5754 and 5083, whereas bonnets are crafted from 6111 [46]. It is relatively easy
to cut, drill, and machine, making it suitable for CNC milling processes. This is essential in
achieving precision and intricate shapes in the machining operations. The alloy 6000 series’
significant advantage lies in their high strength-to-weight ratio and their ease of fabrication,
making them an excellent choice for replacing steel and cast-iron components [47,48]. It
provides sufficient strength for structural applications while remaining lightweight. This
characteristic is particularly important in industries like the aerospace and automotive
industries, where reducing overall weight without compromising strength is crucial. It is
also versatile, and it can be heat-treated to achieve varying levels of strength. This allows for
tailoring the material properties to meet specific requirements in different applications The
corrosion-resistant properties of aluminum alloys make them ideal for marine applications.
They are used in boat construction, shipbuilding, and various marine components due to
their durability in saltwater environments [49].

3. Results and Discussion
3.1. Energy Data Analysis

In this research, a deliberate selection has been made of four key factors carefully
chosen to be the focus of the investigation ((1) spindle speed, (2) feed rate, (3) width of cut,
and (4) depth of cut) as the focal points of the investigation, with each of these parameters
explored across three distinct levels, as detailed in Table 5.

In the conventional experimental approach to measuring compressive strength, re-
searchers typically consider four factors, each at three different levels. Using a full factorial
design in this context would entail conducting a considerable 243 experiments. In the
machine learning experiment, we use 243 datasheets divided into 162 datasets for training
and 81 datasets for testing. This approach not only optimizes resource utilization but
also ensures a comprehensive understanding of the factors affecting compressive strength.
Extending beyond the experimental results, we applied various regression methods to
predict power consumption for each axis and the spindle motor based on the cutting pa-
rameters. The subsequent step involves a thorough comparison between the predictions
generated by each regression method and the actual power consumption observed during
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real milling processes. This comparative analysis aims to evaluate the accuracy and relia-
bility of each regression method in predicting power consumption for different machine
components. The ensuing discussion will delve into the strengths and limitations of each
regression method, providing insights into their effectiveness in capturing the intricate
relationships between cutting parameters and power consumption in CNC machining. This
comprehensive approach not only contributes valuable empirical data but also enhances
our understanding of the predictive capabilities of regression models in the realm of energy
consumption monitoring in CNC machining.

Table 5. L9 orthogonal array for energy calculation.

Spindle Speed
(rpm)

Feed Rate
(mm/min)

Width of Cut
(mm)

Depth of Cuth
(mm)

Machining Time
(minutes) Energy Cons (Wh)

4000 300 1 0.5 15 50.46
4000 500 2 1.0 20 47.56
4000 700 3 1.5 25 40.62
6000 300 2 1.5 18 21.38
6000 500 3 0.5 22 47.57
6000 700 1 1.0 16 33.20
8000 300 3 1.0 12 12.74
8000 500 1 1.5 19 22.81
8000 700 2 0.5 14 26.39

The provided data seem to represent the energy consumption (in Wh) and time (in
seconds) associated with different machining configurations for the X-axis motor, Y-axis
motor, A-axis motor, C-axis motor, and Z-axis motor under various feed rates. Each row
corresponds to a specific machining scenario denoted by the tool type (X), the feed rate,
and the specific configuration within that category (spindle speed 6000 rpm). The provided
data appear, as shown in Figure 6, to be a tabular representation of various machining
parameters and energy consumption values for different machining processes and tools.
Upon analysis, it is evident that each row corresponds to a specific machining scenario,
denoted by a code indicating the type of cut (e.g., A, C, X, Z), the specific tool used, and
additional parameters, such as feed rate and time.
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The time required for each machining scenario also varies. Longer machining times are
generally associated with higher energy consumption, but this relationship is not strictly linear.
The data indicate that energy consumption in machining is influenced by various factors,
including the type of motor, feed rate, and specific machining configuration. Analyzing these
patterns can contribute to efficient machining processes for overall performance.

The Lifecycle Assessment (LCA) conducted in this research extends its focus beyond
immediate energy efficiency calculations, aiming to comprehensively evaluate the envi-
ronmental implications across the entire lifespan of the machining system. This involves
a thorough analysis of critical factors, such as material sourcing (6061-T6), production
processes (cutting tools, cutting path), transportation, machine utilization (time), and end-
of-life management. Aligned with the core objectives of LCA, this study underscores its
commitment to sustainability, providing a robust framework for assessing the environmen-
tal impact of CNC machining operations. In future research endeavors, there is potential to
leverage LCA methodologies in quantifying the complete lifecycle. This assessment can
guide decisions towards more environmentally responsible practices in CNC machining
processes. This research places emphasis on the material removal rate (MRR) during spe-
cific milling operations, recognizing its pivotal role in the overall environmental impact.
The established correlations between electricity consumption, MRR, and environmental
impact per functional unit contribute depth to the analysis.

One significant finding underscores the consistent contribution of the cutting tool,
ranging from 98% to 99%, to the total environmental impact. This highlights the crucial
role of the cutting tool in the environmental footprint of machining operations, prompt-
ing considerations for optimizing tool usage and understanding the factors influencing
tool-related emissions. The detailed exploration of the electricity consumption and environ-
mental impact mix further emphasizes the dominance of electricity-related greenhouse gas
emissions in the milling process. The discussion of electricity-linked impacts reveals that
milling accounts for 92.6%, with machine idling contributing 7.4%. This insight provides a
fundamental understanding of the key contributors to environmental consequences in ma-
chining operations. Importantly, the research encourages informed decision making aimed
at mitigating lifecycle analysis of CNC machining processes. By fostering more sustainable
and environmentally conscious manufacturing practices, this study contributes to the
broader goal of reducing the environmental impact associated with machining operations.

The exploration of impact contributions and environmental considerations extends
to the comparison between solid cutting tools and inserted cutters, shedding light on
potential avenues for emission reduction in machining processes. In a brief simulation
using a 40 mm diameter tool equipped with six inserted cutters, each possessing four
cutting edges and weighing 2 g, the environmental impact was assessed [50]. The tool,
along with the inserted cutters, is constructed from tungsten carbide, aligning with the
material used in the solid cutting tools. The total weight of the 40 mm tool with inserted
cutters is 168 g. The simulated electricity consumption of this process with inserted cutters
is reported to be 9.70 Wh, resulting in a calculated impact of 0.31 g (market-based) and
0.58 g (location-based) CO2-eq. Notably, the inserted cutters experience a marginal 0.22%
reduction in tool life. The specific impact attributed to the inserted cutters is quantified at
0.36 g CO2-eq. In comparison to the experimental results obtained from the solid cutting
tool, the total environmental impact is significantly lower at 0.67 g (market-based) and
0.94 g (location-based) CO2-eq.

3.2. Statistical Analysis

The data presented in Table 6 encapsulate the R-squared goodness-of-fit derived
from a full factorial design based on data that we have mentioned before, involving a
comprehensive dataset of 243 data points across various factors. The remarkable fit of
87.21% signifies the model’s proficiency in elucidating the variations in energy consumption
(Y), the dependent variable in this context. A higher R-squared value, approaching 1 or
100%, attests the model’s robustness in capturing the nuanced relationship between the
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factors considered and energy consumption. Of particular significance is the statistically
significant role of spindle speed within our Linear Regression analysis, evident from a
p-value below 1 percent. This underscores the substantial impact of spindle speed on energy
consumption, emphasizing its pivotal role in the model. For instance, an increase in spindle
speed every 2000 rpm correlates with a noteworthy reduction in energy consumption by
12 Wh, as observed in experiment 1.

Table 6. Regression analysis of each factor with three repetitions.

Term
Experiment 1 Experiment 2 Experiment 3

Coef. T-Value Coef. T-Value Coef. T-Value

Constant 80.5 5.87 * 63.2 4.60 * 76.5 4.38 *
Spindle Speed −0.006 −4.56 * −0.004 −3.55 * −0.006 −3.41 *

Feed Rate 0.013 0.93 0.003 0.22 0.008 0.46
Width of Cut −0.920 −0.33 −0.280 −0.10 −3.400 −0.95
Depth of Cut −13.20 −2.35 ** −6.020 −1.07 −4.600 −0.64

R-Square 87.21% 77.52% 76.72%
R-Square (Adj) 74.43% 55.03% 53.44%

Note: *, ** indicate significance at the α levels of 1% and 10%.

Additionally, variations in the width of cut and depth of cut by 1 mm and 0.5 mm
result in reduced energy consumption by 0.92 Wh and 6.60 Wh, respectively. Furthermore,
alterations in feed rate by 300 mm/min contribute to an increase in energy consump-
tion by up to 3.90 Wh. Notably, the combined impact of the spindle speed (increased
every 1000 rpm), feed rate (set at 300 mm/min), width of cut (increased by 1 mm), and
depth of cut (increased by 0.5 mm) synergistically leads to a substantial reduction in en-
ergy consumption by 9.6 Wh. This comprehensive analysis provides valuable insights
into the intricate dynamics of the factors influencing energy consumption within the
experimental framework.

While the other factors show some influence on energy consumption, their effects
are not statistically significant. Examining the graphical representation of the data reveals
noticeable distinctions between trial 1 and trial 3. In particular, when assessing the rela-
tionship between residuals (predicted values) and percentages (true values), the proximity
of data points to the regression line is indicative of the modeling regression’s quality.
A close alignment between the dots and the regression line suggests a robust and accu-
rate representation of the relationship between the factors and energy consumption. The
findings underscore the importance of spindle speed in influencing energy consumption,
emphasizing its significant role in the model.

In the Taguchi analysis, the consideration of “smaller is better” is informed by extensive
literature review findings, which highlight that lower energy consumption correlates
with reduced manufacturing costs. This design philosophy aligns with sustainability
goals, making it imperative to minimize the environmental impact and economic expenses
associated with energy usage in manufacturing processes. The concept of response noise,
depicted in Figure 6, serves as a measure of robustness. Robustness is crucial in identifying
control factor settings that mitigate the influence of external variability or noise on the
response. This emphasis on robustness ensures that the designed system or process remains
resilient and consistent in its performance, even in the presence of uncontrollable factors.
The interpretation of Figure 7 involves assessing the main effects of control factors on the
response. When the line is horizontal and parallel to the X-axis, it indicates the absence of a
main effect. In this scenario, each level of the factor has a uniform impact on the response,
and the mean response remains consistent across all factor levels. On the other hand, when
the line deviates from horizontal, a main effect is present. Different levels of the factor
exert varying influences on the response. The slope of the line provides insight into the
magnitude of the main effect; a steeper slope signifies a more pronounced impact on the
response variable.
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In this research, built upon the current milling process data using a CNC five-axis
machine, the correlation coefficients between the considered four factors are depicted in
Figure 7. It is notable that for certain factors, such as the spindle speed, feed rate, width
of cut, and depth of cut, positive correlations are represented by darker shades of blue
and negative correlations are represented by lighter shades of blue to conduct a more
comprehensive assessment of the performance of the machine learning models. The results
of the correlation analysis show that two factors have a strong correlation: spindle speed
and energy consumption.

3.3. Machine Learning Analysis

To conduct a more comprehensive assessment of the performance of the machine learn-
ing models, the results of the correlation analysis show that there is has strong correlation
between spindle speed and energy consumption. Multiple regression analysis can be con-
ducted due to the robust correlation of other factors with energy dissipation. The spindle
speed should be given greater attention compared to other factors in the optimization of
energy consumption calculations. This observation suggests that the variable we previously
referred to as height variation significantly influences the predictive efficacy of machine
learning models. We provide a graphical representation that aids in comprehending the
interrelationships and dependencies among variables, offering valuable insights into the
dataset’s structure and potential predictors, as shown in Figure 8.

The evaluation of various regression algorithms for predicting power consumption in
the five-axis CNC machining process, as detailed in Table 7, highlights the dominant efficacy
of the Decision Tree Regressor and the Random Forest Regressor. While linear models
exhibit commendable performance, as seen in Table 7, the Mean Squared Error (MSE) of the
Decision Tree and Random Forest models showed 17.97 and 18.28, almost half of the MSE
values of Linear Regression, Lasso Regression, and Ridge Regression, which were 35.78,
39.78, and 35.91, respectively. Meanwhile, the Root Mean Square Error (RMSE) value also
exhibited lower values for both Decision Tree and Random Forest Regression, which were
4.24 and 4.28, respectively. Regarding the Mean Absolute Error (MAE) values, the similar
trend of lower values for Decision Tree and Random Forest models was also displayed.
Consequently, the Decision Tree and Random Forest models produce better accuracy in
prediction results. In addition to the lower RMSE, the MSE and MAE values implied higher
accuracy of the regression model. However, the coefficient of determination (R-squared,
Rsq) values that represent the proportion of the variance in the dependent variable were
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used for explaining how well the independent variable in the Linear Regression models
explains the variability in the dependent variable. A higher value of R-squared is considered
desirable. As shown in Table 7, the Decision Tree and Random Forest models exhibited
87%, which was higher than the values of Linear Regression (74%), Lasso Regression (72%),
and Ridge Regression (74%). The higher R-squared value is evidence of their robustness in
elucidating the variability in power consumption. This resilience to non-linear relationships
is particularly crucial in the complex CNC machining process, where the Decision Tree
and Random Forest models showcase a more profound understanding of the system’s
complexities. Their practical applicability is further emphasized by their potential for
accurate prediction in real-world scenarios, making them compelling choices for evaluating
energy efficiency in five-axis CNC machining processes.

Sustainability 2024, 16, 3569 16 of 22

Figure 8. This graphical representation aids in understanding the interrelationships and dependen-

cies among the variables, providing valuable insights into the dataset’s structure and potential pre-

dictors. 

The evaluation of various regression algorithms for predicting power consumption 

in the five-axis CNC machining process, as detailed in Table 7, highlights the dominant 

efficacy of the Decision Tree Regressor and the Random Forest Regressor. While linear 

models exhibit commendable performance, as seen in Table 7, the Mean Squared Error 

(MSE) of the Decision Tree and Random Forest models showed 17.97 and 18.28, almost 

half of the MSE values of Linear Regression, Lasso Regression, and Ridge Regression, 

which were 35.78, 39.78, and 35.91, respectively. Meanwhile, the Root Mean Square Error 

(RMSE) value also exhibited lower values for both Decision Tree and Random Forest Re-

gression, which were 4.24 and 4.28, respectively. Regarding the Mean Absolute Error 

(MAE) values, the similar trend of lower values for Decision Tree and Random Forest 

models was also displayed. Consequently, the Decision Tree and Random Forest models 

produce better accuracy in prediction results. In addition to the lower RMSE, the MSE and 

MAE values implied higher accuracy of the regression model. However, the coefficient of 

determination (R-squared, Rsq) values that represent the proportion of the variance in the 

dependent variable were used for explaining how well the independent variable in the 

Linear Regression models explains the variability in the dependent variable. A higher 

value of R-squared is considered desirable. As shown in Table 7, the Decision Tree and

Random Forest models exhibited 87%, which was higher than the values of Linear Regres-

sion (74%), Lasso Regression (72%), and Ridge Regression (74%). The higher R-squared 

Figure 8. This graphical representation aids in understanding the interrelationships and dependencies
among the variables, providing valuable insights into the dataset’s structure and potential predictors.

Table 7. Performance metrics with different algorithms.

Model RMSE MSE MAE Rsq

Linear Regression 5.98 35.78 4.71 0.74
Lasso Regression 6.31 39.78 5.03 0.72
Ridge Regression 5.99 35.91 4.72 0.74

Decision Tree Regressor 4.24 17.97 3.23 0.87
Random Forest Regressor 4.28 18.28 3.33 0.87
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The performance comparison across different algorithms is visually represented in
Figure 9. Each algorithm’s effectiveness in predicting outcomes is assessed by comparing
the experiment data (depicted by the blue dots) against the predicted data (visualized
as the black dashed line). As seen in Figure 9, the Random Forest and Decision Tree
algorithms exhibit the most favorable results, indicating the lowest error between the
actual and predicted data. The success of the Random Forest and Decision Tree methods
in achieving optimal results can be attributed to their inherent strengths in capturing
complex relationships within the dataset and handling non-linear patterns and intricate
dependencies among variables. These models excel in situations where relationships
between predictors and the dependent variable are dynamic and multifaceted, which is
often encountered in real-world datasets. The selection of the algorithm depends on the
nature of the dataset and the specific characteristics of the relationship between variables.
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Model RMSE MSE MAE Rsq 

Linear Regression 5.98 35.78 4.71 0.74 
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Ridge Regression 5.99 35.91 4.72 0.74 

Decision Tree Regressor 4.24 17.97 3.23 0.87 

Random Forest Regressor 4.28 18.28 3.33 0.87 
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The broader comparison of machine learning regression and classification methods
introduces a noteworthy observation—most classification approaches surpass expectations
in regression and show lower errors. The subsequent exploration of Decision Tree and
Random Forest classifiers in constructing predictive models for power consumption and its
independent variables reveals their viability. In particular, the significance of spindle speed
is underscored in Figure 10, which demonstrates a substantial deviation in its importance
compared to other features. This implies that analyzing results solely based on spindle
speed can provide valuable insights; however, the experiment emphasizes the imperative
of a comprehensive examination of all features. This underscores the nuanced interplay
between spindle speed, width of cut, feed rate, and depth of cut, reinforcing the importance
of evaluating features’ importance comprehensively for a holistic understanding of their
collective impact on overall information comprehensiveness. In essence, these analyses
deepen our understanding of the intricacies involved in selecting and interpreting machine
learning models and features, providing valuable insights for predictive accuracy in the
context of energy consumption prediction in CNC machining processes.
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4. Conclusions

In order to achieve sustainability as a whole, every aspect, from energy calculation to
lifecycle analysis, is essential. This all-encompassing strategy seeks to improve industrial
techniques that are more responsible and efficient while also helping the environment.
Using machine learning to estimate energy consumption in machining operations seems to
be a reliable and successful approach. The complicated and dynamic nature of machining
operations can be better understood and predicted through advanced algorithms, contribut-
ing to more accurate estimations of energy usage. By employing machine learning, we
can discern patterns, optimize parameters, and refine predictions, ultimately establishing
a comprehensive and reliable method for energy consumption forecasting in machining.
The comprehensive exploration of energy consumption in a five-axis CNC machining
process has yielded profound insights into the intricate dynamics governing power usage.
A meticulous measurement setup involving three power meters strategically positioned
across the X-, Y-, Z-, A-, and C-axes provided a granular understanding of the energy profile
during milling operations. The integration of clamp-on current sensors and direct voltage
measurements exhibits a commitment to precision in capturing the nuances of current and
voltage on each axis.

The emphasis on designing cutting paths for individual axes, particularly the A-axis,
with its distinctive 20◦ curved surface milling, illuminated the machine’s working space
limitations and the consequential impact on power consumption. The deliberate variation
of cutting parameters, including the width of cut, depth of cut, and spindle speeds, served
as a controlled experimentation ground. These variations unveiled discernible patterns
in power consumption, establishing a foundational understanding of how these parame-
ters influence energy dynamics. The conventional regression analysis, with a remarkable
goodness-of-fit of 87.21%, underscored the significance of spindle speed as a pivotal factor
influencing energy consumption. The linear relationship demonstrated a tangible reduction
of 6 Wh for every 1000 rpm increase in spindle speed, providing a quantitative measure
of its impact. Furthermore, the Taguchi analysis reinforced the importance of minimizing
energy consumption, aligning with broader sustainability goals by acknowledging the envi-
ronmental and economic implications of manufacturing processes. The correlation analysis
unveiled a strong positive correlation between spindle speed and energy consumption,
affirming its central role in the energy dynamics of the CNC machining process. The subse-
quent application of machine learning models, notably the Decision Tree Regressor and
Random Forest Regressor, demonstrates their prowess in predicting power consumption
with superior accuracy. This not only validated the findings from the regression analysis but
also highlighted the potential of advanced computational approaches in energy efficiency.
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The methodological breadth of this study, spanning energy calculation efficiency
and lifecycle analysis, offers immediate practical applications for industry professionals.
The meticulous measurement setups showcased provide a detailed overview of energy
profiles during milling operations, thus enabling manufacturers to optimize machining
precision and efficiency. The recognition of cutting path design impacts, particularly for axes
with distinctive features, emphasizes the importance of thoughtful planning for refining
paths, minimizing energy consumption, and enhancing operational efficiency. However,
acknowledging the study’s limitations is crucial, with the controlled experimentation’s
scope possibly not fully capturing real-world variations, prompting the need for broader
scenarios in future research. Additionally, focusing on a specific five-axis CNC machine
raises considerations of machine-specific factors, suggesting the incorporation of diverse
machine models for a more comprehensive understanding. Future research directions
involve a Lifecycle Assessment (LCA) for a holistic environmental view, comparative
studies guiding sustainable decision making, and exploration of real-time monitoring
systems for adaptive methods. These avenues aim to bridge research findings with practical
applications, ensuring a holistic and sustainable approach to energy consumption in CNC
machining processes.
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Nomenclature

eg(T) Error for the Decision Tree T E Total energy consumed

e(T)
Count of incorrectly categorized
data entries

P0 Baseline or initial power consumption

Ω(T) Penalty complexity of the model T kq
Specific milling energy for a given
workpiece material

Nt Total number of training records Q Material removal rate
kn Number of nodes in the Decision Tree t2 Cutting time

n(ti)
Number of training records classified
by node t

y Dependent variable

e(ti) Count data entries for node t b0
Parameter estimation for
Linear Regression

k
∑

i=1

i takes values from 1 to k (inclusive) x1 Independent variables

ϵ Fluctuations yi Observed value of dependent variable

ϵi
Unobserved random error for the
i-th observation

xij
i-th observation of the j-th
predictor variable

kp Number of predictors n Sample size
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