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Abstract: Xinjiang is located in the arid region of northwestern China, and agriculture accounts for
an absolute share of total water use. Resource-based, engineering, structural, and managed water
shortages coexist. Therefore, it is of great significance to vigorously develop water conservation
technology and improve the efficiency of water transmission and distribution in canal systems. This
research aims at addressing the problems of difficult manual regulation and the overall optimization
of the final canal system, low-water-resource utilization efficiency, and management efficiency. Taking
the branch-double two-stage canal system of Dongfeng branch canal in Mangxiang, Jinghe irrigation
district, as a case study, and the rotation irrigation group and irrigation duration as decision variables,
canal distribution is modeled with the goal of minimizing seepage losses. The improved grey wolf
algorithm combined with particle swarm optimization is used for the first time and compared with the
traditional grey wolf algorithm, genetic particle swarm optimization fusion algorithm, and northern
goshawk algorithm. The results show that (1) on the basis of meeting the water discharge capacity and
water demand requirements of the canal system, the diversion time of the water distribution scheme
obtained by using the improved grey wolf algorithm is shortened from 11 d to 8.91 d compared with
the traditional empirical water distribution scheme. (2) The improved grey wolf algorithm converges
to the optimal value within 10 generations compared to the remaining methods, and the total water
leakage is reduced from 16.15 × 104 m3 to 11.75 × 104 m3. (3) The number of gate adjustments is
reduced, and the canal gates are opened and closed at the same time within each rotational irrigation
group. The grey wolf algorithm improved by its combination with particle swarm has stronger
optimization ability and convergence, which can better meet the requirements of efficient water
resource allocation in irrigation canal systems, as well as a high application value.

Keywords: irrigation district; canal system; optimized water distribution; grey wolf algorithm;
improved particle swarm optimization algorithm; northern goshawk algorithm

1. Introduction

As the foundation of China’s national economy, the development of agriculture has
always been highly valued. To ensure the stable production of grain, China has been
committed to the development of irrigated agriculture, which uses more water than other
industries. Especially for Xinjiang, which is located in the arid inland area of Northwest
China, the utilization efficiency of irrigation water resources has seriously affected the
development of agriculture; therefore, the efficient utilization of agricultural water re-
sources has become an important guarantee for the sustainable development of agriculture.
By the end of 2021, the area of water-saving irrigation for crops in Xinjiang had reached
296.55 × 104 km2, accounting for 56.57% of its total area of cultivated land, making Xin-
jiang the province with the largest area of water-saving irrigation in China [1]. With the
implementation of continuous support projects and water-saving reconstruction projects
in irrigation districts, the hardware facilities of water transmission and distribution and
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water supply regulation systems in most irrigation districts in Xinjiang have improved, and
field-efficient water-saving irrigation technology is becoming increasingly mature and has
achieved improved results. The irrigation water utilization factor increased from 0.480 in
2012 to 0.575 in 2021 [2]. Although the effective utilization factor has improved, about
43% of water is still being wasted in the irrigation process. This means that the irrigation
water allocation mode relying on manual experience is not adapted to the short irrigation
cycle and high rigidity of water demand flow under water-saving irrigation. Moreover,
inefficiencies in irrigation water use are prominent. Therefore, in Xinjiang, which lacks
water resources, a rational and efficient water distribution scheme has been adopted to
shorten the duration of water distribution and effectively improve irrigation efficiency and
water resource utilization, which not only helps to improve agricultural productivity but
also to save water resources and achieve sustainable development.

Most traditional irrigation canal systems consist of “dry-branch-bucket-agricultural”
multilevel channels, and traditional water distribution methods may cause more water
leakage loss, ineffective water abandonment, frequent gate adjustment, local irrigation
leakage, and other phenomena. In response to this phenomenon, scholars often address
this problem by constructing and solving the optimal water distribution model of the canal
system. The optimal water distribution of canal systems began to develop in an all-round
way from the earliest simple deterministic logical decision to the introduction of nonlinear
technology [3], and now to the efficient utilization of water resources considering uncer-
tain conditions [4,5]. Early decision making mostly adopted linear integer programming
models such as 0–1 integer programming, dynamic programming, and large-scale system
hierarchical programming. For example, Suryavanshi et al. [6] determined the 0–1 linear
programming water distribution model based on the assumption that the upper channel
is composed of a group of flow pipes with equal flow and that the flow in the flow pipes
is equal to the flow of the lower channel to reduce channel leakage loss and engineering
investment. Based on previous studies, Reddy et al. [7] and Anwar et al. [8] introduced
the water distribution demand of each subordinate channel during the predetermined
distribution time of the user. The problem of crop yield reduction caused by the difference
between the timing of water distribution in the lower channels during the rotation period
and the timing of water distribution for the actual demand has been solved. However, with
the deepening of the optimization problem and the complexity of the calculations required,
research on the optimal allocation of water in canal systems has also begun to change from
“single-objective” to “multi-objective”, from “two-level channel” to “multilevel channel”,
from the ideal water distribution state of “equal flow in the lower channel” to “unequal flow
in the lower channel”, from only considering “static water transmission loss” to considering
“dynamic water transmission loss” [9], from “no consideration of water quality conditions”
to “treatment of water quality for irrigation” [10,11], and from only considering “single
water source” to “multisource” joint scheduling [12,13].

At the same time, intelligent optimization algorithms, such as genetic algorithms [14],
simulated annealing algorithms, retrospective optimization algorithms, and bull swarm
optimization algorithms, have also been introduced into model solving [15]. Bonabeau
and Dorigo et al. [16] first formally proposed the concept of group intelligence, which they
emphasized is a process involving multiple individuals who can communicate directly
or indirectly. These individuals exhibit complex and orderly swarm intelligence behavior
through cooperation. Wardlaw et al. [17] compared the solution accuracy of the genetic
algorithm and linear programming method through the optimal water distribution problem
of subordinate channels and verified that the genetic algorithm has high accuracy, strong
robustness, and global performance and can quickly solve the model. Pawde et al. [18]
considered that the flow constraints of each lower channel were different in the actual water
distribution process, established a model with the minimum number of gate adjustments
as the optimization objective, and used the particle swarm optimization algorithm to deter-
mine the optimal rotation irrigation combination. Wang Qingjie et al. [19] adopted “large
rotation irrigation and small continuous irrigation” in the water distribution mode and
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used improved particle swarm optimization (GA-PSO). The model results show that this
method can effectively improve the water distribution efficiency. Tian Guilin et al. [20] used
the bull swarm optimization (BSO) algorithm to solve the model, taking the minimum total
loss of seepage as the objective, and the overwater time of each channel and the diversion
flow rate of branch canals as the decision variables. The results were compared and ana-
lyzed with those of Bull’s algorithm (BAS) and the particle swarm algorithm (PSO), which
proved that the improved BSO algorithm is more suitable for the optimization of water
resources of canal systems in irrigation areas. Although several optimization algorithms
already exist in the research field of optimal water distribution in canal systems, the GA
and PSO algorithms are more widely used. However, solving complex water allocation
problems may also be affected by dimensionality catastrophe due to the constraints of
multiple factors such as objective function, constraints, and decision variables. Complexity
grows exponentially with the dimension of the state space [21]. A single optimization
algorithm has limited applicability in computing. Therefore, how to integrate and improve
the algorithms to achieve the optimal allocation of water resources in the canal system and
increase the efficiency of water resource utilization still needs in-depth research.

The grey wolf optimization algorithm (GWO) is a new swarm intelligent zoo algorithm
proposed by Seyed Ali Mirjalili et al. [22] in 2014. So far, the algorithm has been widely used
in power grid engineering design, parameter optimization, path planning, dam section
design, runoff prediction, water quality monitoring, and other fields [23,24]. The algorithm
has the characteristics of few adjustment parameters, a simplified structure, easy program
implementation, and high accuracy, and can achieve a balance between local and global
searches. Compared to other algorithms, the grey wolf algorithm always looks for the
three best solutions and then searches around the region for the best solution. However,
there is little research on the adaptability of agricultural water management optimization.
Therefore, the grey wolf algorithm was selected as the main optimization algorithm in
this paper, using the Mangxiang Dongfeng branch canal and its subordinate canal in the
Jinghe irrigation area as a case study. The goal was to minimize the amount of water lost
through seepage during the conveyance of water through the canal system. The solution
was performed using the IGWO, GWO, NGO, and GA-PSO algorithms, and the obtained
water distribution times, rotational irrigation groupings, and seepage were compared. The
aim was to find a water distribution scheme that has a short distribution time, the least
amount of leakage, and the most water-efficient, time-saving, and labor-saving division of
the rotational irrigation group. This study will provide a reference basis for the optimal
management and allocation of water resources in irrigation areas.

2. Materials and Methods
2.1. Overview of the Study Area

In this study, the Jinghe irrigation district of Xinjiang Bortala Mongol Autonomous
Prefecture was selected as the study area, and in particular, the Mangxiang Dongfeng
branch canal and its subordinate bucket canals under the Jinghe East Main Canal of the
Jinghe irrigation district were used as a case study. The Jinghe irrigation district covers
an area of 46,700 hm2 and has a typical temperate continental climate. In the spring,
summer, and autumn, it relies mainly on runoff from the Jinghe River for irrigation,
supplemented by rainfall in the summer, and in the winter, it relies mainly on groundwater
for recharge. The average annual temperature in this irrigation area is 7.3 ◦C, the average
annual evaporation reaches 1624.9 mm, the average annual precipitation is 91.4 mm, the
intra-annual distribution of precipitation is not uniform, and the utilization rate is relatively
low. Based on the measured data, the irrigation area management personnel calculated
that the water use coefficient of the current canal system in the Jinghe irrigation area is
0.671, and the comprehensive irrigation water use coefficient is 0.586. For a schematic of the
distribution of the Jinghe irrigation district and canals, please refer to Figure 1; the specific
parameters of the branch canals are shown in Table 1. This study is based on the surface
water irrigation data of the Jinghe irrigation district in late July 2022, with a rotation cycle
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of 11 d and a planned irrigation water volume of 549,100 m3 in this round. The source of
data for this study is the Mangxiang Water Management Station.
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Figure 1. Schematic diagram of the drainage system of the Dongfeng branch canal in the Mangxiang
and Jinghe irrigation areas.

Table 1. Basic parameter information for the lower channel of the Mangxiang Dongfeng branch canal.

Channel Number Channel Name Design Flow
(m3/s)

Length
(km)

Irrigated Area
(hm2)

Water Demand
(104 m3)

1 Northland teams 6, 7, and 8 0.4 1.6 480.24 9.50
2 Northland teams 10 and 11 0.2 1.1 25.68 4.64
3 Dongzhuang 2356 0.5 4.8 578.96 19.07
4 Mangxiang forestry 0.3 1.3 146.74 5.76
5 Dongzhuang 4 0.3 1.4 20.01 9.72
6 Huangbei 1928 0.5 1.5 115.39 6.20

2.2. Optimized Water Distribution Models and Research Methods for Canal Systems
2.2.1. Optimized Water Distribution Model for Drainage Systems

In this study, the Dongfeng branch canal of Mangxiang in the Jinghe irrigation district
and the lower level of bucket canals were taken as the focus, an optimization model of
water distribution was constructed by minimizing the total amount of water lost through
leakage of the canal system as the optimization objective, and the rotational grouping of
the lower level of canals and the duration of water delivery as the decision variables.

(1) Objective function

Z = Min
M

∑
i=1

(βALQ1−m
s t∗i /100+

N

∑
j=1

βALj(q∗
j )

1−mt∗i /100Xij) (1)

where Z is the total amount of water lost through seepage in the channel water transfer
process (m3); β is the reduction factor for the seepage loss of the channel lining; A is
the soil permeability coefficient; L is the total length of the branch channel (km); Qs is
the distribution flow of the branch canal (m3/s); m is the soil permeability index; t∗i is
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the length of time that the ith irrigation group has been irrigated (h); Lj is the length of
the jth branch (km); q∗j is the distribution flow of the jth branch canal; and Xij indicates
whether bucket j is organized in rotational irrigation group i.

(2) Constraints

Rotation period constraints: The total duration of diversion for each irrigation rotation
group should not exceed the duration of the entire rotation cycle.

M

∑
i=1

t∗i ≤ T (2)

Water quantity constraint: The product of the channel distribution flow rate and the
diversion duration should be equal, as much as possible, to the water demand of the
controlled area of the canal system.

Wj = q∗j t∗i (3)

Flow constraint: The sum of the lower channel flows within a rotating irrigation group
is less than or equal to the upper channel distribution flow.

N

∑
j=1

q∗j Xij ≤ Qs (4)

Bucket channel overflow capacity: Each channel should meet the flow requirements
without flushing or silting.

0.6qj ≤ q∗
j ≤ 1.3qj (5)

Subordinate canal gate constraints: Each branch canal can only be classified within a
particular irrigation round group.

N

∑
i=1

Xij = 1 (6)

2.2.2. Model Solving Based on Multiple Algorithms

To ensure the reasonableness of the model parameters and the credibility of the
solution results, the model parameters were optimized more comprehensively by solving
with multiple algorithms, such as GWO, NGO, GA-PSO, and IGWO, to improve the
accuracy and reliability of the solution results.

(1) Grey Wolf Optimization (GWO) Algorithm and Improvements

• Basic Grey Wolf Optimization Algorithm (GWO)

The GWO algorithm is a group intelligence optimization algorithm that originated
from the simulation of the social hierarchies and group hunting behaviors of wild grey
wolf populations. The population was categorized into 4 classes by simulating leadership:
α, β, δ, and ω. Consider α as the optimal solution, β as the suboptimal solution, δ as the
best solution, and ω as the candidate solution. The algorithm divides the hunting behavior
into three steps: searching for prey, rounding up prey, and attacking prey.

• Searching for prey: The grey wolves are classified according to their adaptation values,
and the grey wolf positions corresponding to the adaptation values from largest
to smallest are recorded as Xα, Xβ, and Xδ. Location updates are performed after
determining the location of the prey.

→
D = |

→
C ·

→
X p(t)−

→
X(t)| (7)

→
X(t + 1) =

→
X p(t)−

→
A ·

→
D (8)

where t is the current number of iterations of the algorithm, “·” is the dot product

of vectors, “||” is the absolute value of each component of the vector,
→
X(t) is the
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current location of the grey wolf,
→
Xp(t) is the prey’s present position,

→
D is the distance

between the grey wolf and its prey,
→
X(t + 1) is the updated location of the grey wolf,

and
→
A and

→
C are vectors of coefficients calculated as follows:

a = 2 − t × (2/maxlter) (9)

|
→
A| = 2 × a × r1 − a (10)

C = 2r2 (11)

r1 = rand(0, 1) (12)

r2 = rand(0, 1) (13)

where a is a convergence factor that decreases linearly from 2 to 0 as the number of
iterations t increases, and maxlter is the maximum number of iterations.

• Rounding up prey: During the iteration of grey wolves tracking their prey, the posi-
tions of the top three grey wolves obtained in the previous iteration are retained. In the
next iteration, the grey wolf population estimates the position of its prey based on this
positional information and adjusts its position accordingly, thus gradually approach-
ing the prey. A schematic representation of the hunting process is shown in Figure 2.
The positional update of individual grey wolves follows the following formulas:

→
Dα = |

→
C1 ·

→
Xα(t)−

→
X(t)|,

→
X1 =

→
Xα(t)−

→
C1 ·

→
Dα (14)

→
Dβ = |

→
C2 ·

→
Xβ(t)−

→
X(t)|,

→
X2 =

→
Xβ(t)−

→
C1 ·

→
Dβ (15)

→
Dδ = |

→
C3 ·

→
Xδ(t)−

→
X(t)|,

→
X3 =

→
Xδ(t)−

→
C1 ·

→
Dδ (16)

→
X(t + 1) =

(
→
x 1 +

→
x 2 +

→
x 3)

3
(17)

where
→
Dα,

→
Dβ, and

→
Dδ denote the current distances of the candidate grey wolf from

grey wolf α, grey wolf β, and grey wolf δ, respectively;
→
Xα,

→
Xβ, and

→
Xδ denote the

locations of grey wolf α, grey wolf β, and grey wolf δ, respectively; and
→
X1,

→
X2, and

→
X3 are the positions updated after perturbation for grey wolf α, grey wolf β, and grey
wolf δ, respectively.
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• Searching for prey to attack: By adjusting the value of |
→
A| so that it is greater than 1 or

less than −1, the grey wolf is kept at a certain distance from its prey, and thus searches
for a more suitable prey. A schematic of the search method is shown in Figure 3.
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• Improved Grey Wolf Optimization Algorithm (IGWO)

1⃝ Improvement through improved parameters

In population-based intelligent optimization methods, the usual convergence to the
global expectation can be divided into two basic phases, the global search phase and the
local search phase, so the balance between these two phases is particularly important for
preventing the results from falling into the local optimum. In the GWO algorithm, the

size of |
→
A| determines whether the algorithm performs a global or local search, and from

Equation (10), the parameter |
→
A| is determined by the size of a. Therefore, in this study,

we performed balancing by fine-tuning parameter a [25]. The whole search process of the
GWO algorithm is nonlinear and complex, and the nonlinearity was reduced by adopting
the logarithmic decay function for parameter a, which is calculated as follows:

a(t)= 2 − 2 × log(1+(e − 1)× t
maxlter

) (18)

With the maximum number of iterations set to 100, the variation curve of the conver-
gence factor a is shown in Figure 4. It can be observed from the figure that the convergence
factor after the nonlinear treatment decreases faster in the early stage, a feature that is
conducive to improving the speed of global search, while in the later stage, the decrease
gradually slows, which will help to carry out a more adequate local search.
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2⃝ Improvement by introducing the particle swarm algorithm

The traditional grey wolf algorithm is a memoryless stochastic optimization algorithm
based on population intelligence, inspired by the original particle swarm algorithm, which
allows individuals to learn from both the globally optimal (grey wolf α) position and the
best position in their personal history [26]. An improved position update rule is proposed:

X(t+1) = ω ×
x1 + x2 + x3 − 3 × x(i,j)

3
+ c1 · r1 · (Xpbert − X) + c2 · r2 · (X1 − X) + X(i,j) (19)

where t denotes the current iteration; r1 and r2 are random vectors in (0, 1); c1 denotes the
individual memory coefficient; c2 denotes the group experience coefficient, where the PSO
algorithm takes c1 = c2 = 0.5; and Xpbest denotes the individual historical best position, i.e.,
the position of grey wolf α. When dealing with real optimization problems, it is usually
expected to first perform a global search so that the search space quickly converges to a
certain region and then implement a local fine search to obtain a high-precision solution.
Therefore, an adaptive adjustment strategy is proposed, where the value of ω decreases
linearly as the iteration proceeds:

ω = ωfinal +
maxlter − t

maxlter
× (ωinitial − ωfinal) (20)

where ω initial = 0.9 and ω final = 0.4.
The flowchart of the algorithm is shown in Figure 5.
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(2) Improved particle swarm algorithm (GA-PSO) and northern goshawk algorithm
(NGO) optimization strategies

The particle swarm algorithm (PSO) was proposed by Kennedy and Eberhart in
1995 [27]. First, initial random positions and initial random velocities are assigned to all
the particles in the space. Then, each particle is moved to find the known global optimal
solution, the sharing is recorded, and the optimal solution is continued until all the particles
are gathered together and the problem converges to obtain the global optimal solution.
The PSO algorithm possesses fast convergence, has fewer parameter requirements, and
is easy to execute, but it is also easily trapped in the local optimal solution; therefore,
the incorporation of the simulated annealing algorithm and cross mutation in the genetic
algorithm in the PSO algorithm is considered to improve it. The optimized PSO algorithm
mainly consists of three core parts: improve, cross, and mutation.



Sustainability 2024, 16, 3635 9 of 16

The northern goshawk algorithm (NGO) is a new population intelligence optimization
algorithm proposed by Dehghani M et al. in 2021 [28]. Northern goshawk hunting as
a whole is divided into two phases. The first phase, prey identification and attack (the
exploration phase), involves identifying the prey and quickly moving the northern goshawk
toward the location where the prey is located. In the second phase, chase and escape
(exploitation phase), the simulation of this behavior increases the ability to exploit local
search in the algorithmic space due to the speed of the northern goshawk, which allows
them to chase and ultimately capture their prey in almost any situation. The NGO algorithm
has high convergence accuracy and good stability but still has the following limitations [29]:
the initial solution is randomly uneven in the first period and may miss the potential
optimal solution; and in the later period, the prey is chased too fast, which in turn leads to
falling into a local optimum.

2.2.3. Algorithm Testing

In order to improve the efficiency of the irrigation district canal system water resource
utilization and the water supply guarantee rate, it needs to be ensured that the canal system
water resources are reasonably and accurately allocated. In this paper, the GWO algorithm
is further improved by incorporating the PSO algorithm. The algorithm is also tested with
data from Zhangye City, Black River [30], to prove the applicability of the improved grey
wolf algorithm in canal water distribution. The Zhangye Xijun irrigation district Xidong
trunk canal consists of 9 directly subordinate hopper canals, Xidong branch canals, and
Maojiawan branch canals. The design flow rate is 2.5 m3/s, the length is 10.23 km, the
permeability coefficient of canal bed A is 3.4, the permeability index m is 0.5, the rotation
period is 25 d, and the flow rate of the trunk canal is dominated by 1.78 m3/s, based on
the control area of the channel and the comprehensive irrigation quota to determine the
amount of water required by the channel. The design parameters of the subordinate canals
and the detailed parameters of the controlled irrigated area are shown in Table 2.

Table 2. Parameters of the Xidong main canal and subordinate channels.

Channel Number Channel Name Design Flow
(m3/s) Lengths (km) Irrigated Area

(hm2)
Water Demand

(104 m3)

0 Xidonggang canal 2.5 10.23 1259 151.08
1 Directly under Yidou canal 0.6 1.8 46 5.52
2 Directly under Erdou canal 1 4.2 146 17.52
3 Directly under Sandou canal 1 5.8 248 29.76
4 Directly under Sidou canal 0.6 1.25 65 7.8
5 Directly under Wudou canal 0.6 1.2 76 9.12
6 Directly under Liudou canal 0.5 0.88 55 6.6
7 Directly under Qidou canal 0.5 1.03 41 4.92
8 Directly under Badou canal 0.6 1.4 117 14.04
9 Directly under Jiudou canal 0.8 1.9 230 27.6

10 Xidong branch canal 1.5 6.17 233 27.96
11 Maojiawan branch canal 0.8 1.8 53 6.36

With the same data, the results were compared with those of Wang Qingjie [31], with
the aim of prioritizing the satisfaction of the minimum possible water transmission seepage
loss. The optimized water distribution duration of the grey wolf algorithm was reduced to
10.71 days, which is almost one day shorter compared to the 11.56 d of the improved particle
swarm algorithm. The leakage loss is 30. 88 × 104 m3, which is 5.67% lower compared to
32. 63 × 104 m3 of the improved particle swarm algorithm. The water distribution results
in Table 3 show that the improved grey wolf algorithm is well applied in the optimal water
distribution model of the canal system.
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Table 3. Comparison of leakage and diversion durations obtained using the improved PSO and
GWO algorithms.

Algorithm Type Loss through Seepage (104 m3)
Total Duration of Water

Diversion (h)

IGWO 30.88 256.99
GA-PSO 32.63 277.3

2.3. Determination of Parameters of Water Distribution Model Based on the Optimization of the
Canal System in Jinghe Irrigation District

(1) Calculation of the number of rotational irrigation groups

Let the upper channel diversion flow be Qs. There are a total of N subordinate channels
to which this channel belongs, the design diversion flow for each lower channel is qj, and
by adopting an upward rounding strategy, the rotational irrigation group is:

M = ceil
N

Qs/qj
(21)

(2) Calculation parameters of the water distribution model

The interrelationships and effects of parameters must be carefully considered when
performing water distribution calculations for drainage systems. Therefore, based on Irriga-
tion and Drainage Engineering [32] and Agricultural Hydrology [33], the following parameters
are used in the canal distribution model equations: the drainage bed soil permeability
coefficient (A) was 3.4, the permeability index (m) was 0.5, the anti-seepage measures
discount coefficient (β) was 0.5, the minimum flow coefficient of the bucket ditch channel
was 0.6, the coefficient of the increased flow rate was 1.3, and the Mangxiang Dongfeng
branch drainage channel contained 6 bucket ditches. GWO, IGWO, NGO, and GA-PSO
were used to solve the model, with the duration of the continuous diversion of water by
each rotational irrigation group and the rotational irrigation formation of each subordinate
branch canal as the decision variables and the total amount of water seepage as the opti-
mization objective. To find the initial value for the calculation, we utilized feasible solutions
within the domain of the definition of the model through population initialization. Feasible
solutions for the decision variables were sought based on the wheeling period and flow
constraints given in the model. The optimized final result was determined by iteratively
updating and repeating the solution through the results of canal distribution flow and
grouping, and eliminating the set of solutions that did not satisfy the constraints.

3. Results

The average flow rate of 0.73 m3/s during the distribution of water from the Dongfeng
branch canal in Mangxiang was used as the inlet flow rate of the branch canal, which means
that Qs is 0.73. There are six lower bucket drains, i.e., N is 6. The average value of the
design flow of the lower bucket channel is 0.36 m3/s, i.e., qj is 0.36. According to formula
(21), M = 3 is obtained. The GA-PSO, NGO, GWO, and IGWO algorithms are used to solve
the channel water distribution model, and group irrigation result graphs are generated.

3.1. Algorithm Performance Analysis Based on Model Solution Results

The results indicate that when the inflow of the Dongfeng branch canal in Mangxiang
is 0.73 m3/s, the lower level canal can be divided into three rotational irrigation groups.
The solution results of the four algorithms, NGO, IGWO, GA-PSO, and GWO, are shown in
Table 4. As can be seen in Figure 6, the NGO algorithm converges faster than the rest of the
algorithms at the starting time, but the improved grey wolf algorithm reaches the optimum
in fewer than 10 generations, which makes it more suitable for this model compared to
the other algorithms. Reducing the water distribution time from 11 d to 8.91 d in the
manual water distribution round irrigation cycle, the leakage was 117,500 m3, a reduction
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of 44,000 m3. The improved grey wolf algorithm achieves relatively centralized and fast
water distribution in terms of both distribution time and total leakage loss. The efficiency of
water distribution is, therefore, improved and the solved rotational irrigation groupings are
shown in Table 5. The flow rates of each channel after optimization are shown in Figure 7.
The optimized flow rates are all between the increased flow rate and the minimum flow
rate, meeting the requirement of not exceeding the flow rate. Compared with manual water
distribution, the flow rate is closer to the design flow rate, ensuring the good operating
conditions of the channel. The maximum amount of water distributed in the channel
system is close to the water demand for irrigation crops, achieving on-demand water
distribution to maximize the water utilization efficiency of the superior channel system.
The conclusion indicates that adopting appropriate optimization methods can effectively
regulate the timing and flow of channel water distribution, thereby significantly improving
the efficiency of channel water resource utilization.

Table 4. Comparison of the solution results obtained using GA-PSO, NGO, GWO, and IGWO.

Algorithm Type GA-PSO NGO GWO IGWO

Iterations 33 50 33 9

Total leakage (m3) 117,532.00 117,510.46 117,532.00 117,507.11

Total diversion time (d) 8.96 8.92 8.96 8.92

Table 5. Optimal rotation grouping and flow statistics.

No. of Rotation
Irrigation Group

Rotation Irrigation
Combination

Irrigation
Duration (h)

Water Demand
(×104 m3)

Distribution Flow
(m3/s)

1
Dongzhuang 2356

112.98
19.07 0.47

Dongzhuang 4 9.72 0.24

2
Mangxiang Forestry

45.86
5.76 0.35

Huangbei 1928 6.20 0.38

3
Northland teams 6, 7, and 8

55.15
9.50 0.48

Northland teams 10 and 11 4.64 0.23
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3.2. Adaptability Analysis Based on Water Volume Changes

By jointly encoding the water distribution flow rate and the grouping of subordinate
channels, a reasonable fitness function is designed to guide the optimization process
to converge toward a very small feasible domain and improve algorithm efficiency and
stability. At the same time, improving the convergence factor parameters and combining the
particle swarm algorithm not only maintains the diversity of solutions, but also improves
applicability by making the algorithm stable and easy to jump out of the local optimal
solution during the calculation process. The water level of the Jinghe River in the research
area varies seasonally, and the amount of water diverted from the canal head and the
time of water diversion from various subchannels are limited. June to September is the
summer and autumn irrigation period, and the water demand for crops is high. The IGWO
algorithm uses upper channel flow stabilization with no fixed distribution time. If there are
increases and decreases in the distribution process in the upper channel, a new distribution
scheme can be obtained by simply adjusting the incoming flow from the upper channel at
different times.

3.3. Rationality Analysis of the Algorithm Based on Management Efficiency

Due to the limitations of technology and hardware facilities in irrigation areas, cur-
rent gate openings and closures still rely on personnel from irrigation area engineering
management departments for control. Due to the large scale of the Jinghe irrigation area
project and the numerous channel systems, zoning management is critical for improving
the project’s efficiency. According to the concentration of the water distribution time and
the geographical distribution of the lower canal system, the implementation of zoning and
a centralized and unified control of the canal can scientifically improve the management of
the irrigation area for the construction canal system. In terms of manual experience, the
opening and closing times of the irrigation gates are different, and the flow in the middle
needs to be adjusted. According to Figure 8, the IGWO algorithm divides the lower canal
system into three parts: No. 3 and 5, No. 4 and 6, and No. 1 and 2. At the same time,
the flow in the water distribution process is stable without adjusting the gate, and the
opening and closing times are unified. The zoning management based on the optimization
algorithm can make each bucket gate in each round of irrigation group open and close at
the same time, and the flow is stable without adjusting the flow in the middle, which is
conducive to improving the overall management efficiency and reducing the workload
of managers.
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4. Discussion

Under the traditional water distribution model, farmers submit an annual water
demand application based on their experience, and the water management unit develops
a yearly water distribution program, taking into account the amount of incoming water
and historical water demand. This empirical water distribution model in the efficient
water-saving irrigation district configuration method reveals an inefficient lack of science
and backward thinking methods among the personnel in canal operation and management,
resulting in the current irrigation management methods not being able to be adapted to
the informatization and automation of the scheduling requirements. Therefore, with the
implementation of digital irrigation district renovation projects in recent years, the scientific
management of canal system water transmission and distribution is highly valued.

In this study, the same study conditions and different algorithms are used to solve
the water distribution model in order to obtain the optimal water distribution scheme
for the canal system. The results show that the IGWO algorithm can quickly solve the
optimal water distribution scheme. This is consistent with the results of Zhang Yaqi’s [34]
study. Nong Xizhi et al. [35] and Tian Guilin et al. [36] showed that the meta-heuristic
swarm intelligent optimization algorithm significantly improved the efficiency of canal
water use in optimal canal water distribution. Liu Y et al. [37] showed that using the PSO
algorithm significantly shortened the canal distribution time and was able to address the
shortcomings of typical heuristics. Yu F et al. [38] showed that rational water distribution
can effectively reduce the workload of managers, which is in line with the findings of
this paper.

In this study, the Jinghe irrigation district is taken as a study case, and the IGWO
algorithm is used to solve the model and achieve good results, which is of great reference
value in the process of optimizing water distribution in the canal system. However, some
issues were identified in the study that need to be further explored and researched. First,
the model is constructed on the basis of two-stage channels, and subsequent studies can
consider the optimal allocation of water resources in multi-stage canal systems. Secondly,
only one irrigation of the crop was considered in this study. However, in the actual develop-
ment of water distribution and scheduling programs, one should also take into account the
amount of incoming water and diversion, the planting structure, the actual crop water de-
mand, management staff arrangements, and other factors of change to achieve a shift from
timed to real-time water distribution, and from a particular irrigation to optimized distribu-
tion over the entire crop life cycle. Finally, Internet of Things technology, machine learning,
and other methods, combined with the optimization of the water distribution model, can be
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used to build an intelligent canal scheduling system in order to achieve the informatization,
intelligence, scientification, and refinement of irrigation district management.

5. Conclusions

The optimal water distribution of canal systems is an important research direction
for the rational and effective allocation of water resources in agricultural irrigation areas.
The use of modern system optimization engineering technology to formulate a water
distribution scheme can significantly shorten the traditional manual rotation irrigation
grouping and water distribution flow determined by experience, which will reduce leakage
loss in the water distribution process and effectively improve the utilization efficiency of
water resources.

(1) In this paper, water distribution is modeled using rotational irrigation between groups
and renewed irrigation within groups. With the objective of minimizing the total
amount of seepage loss in canal system transmission, the improved grey wolf al-
gorithm is applied to the optimal water distribution model of the irrigation canal
system. The water distribution time is shortened from the planned 11 d to 8.91 d,
and leakage is reduced from 16.15 × 104 m3 to 11.75 × 104 m3. Under the premise
of ensuring that the actual distribution flow in the channel is within the range of the
maximum and minimum flow, the scheme meets the objectives of a short distribution
time, centralized water resource allocation, and low leakage.

(2) When compared to the GA-PSO, NGO, and traditional GWO algorithms, the IGWO
algorithm shows its good optimization performance. The IGWO algorithm has few
application constraints, fewer iterations, faster computation, stable solution, and a
high degree of global optimization. At the same time, the model-solving algorithm
can also adjust the basic data parameters according to the specific conditions of
different irrigation canal systems in order to adapt to a variety of complex irrigation
canal networks.
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