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Abstract: This study introduces a novel benchmark model for lithium iron phosphate (LFP) batteries
in reactive energy imbalance markets, filling a notable gap by incorporating comprehensive opera-
tional parameters and market dynamics that are overlooked by conventional models. Addressing
the absence of a holistic benchmark for energy-storage systems in electricity markets, this research
focuses on the integration of LFP batteries, considering their unique characteristics and market
responsiveness. Regression and regularization techniques, coupled with temporal cross-validation,
were employed to ensure model robustness and accuracy in predicting energy trading outcomes.
This methodological approach allows for a nuanced analysis of battery degradation, power capacity,
energy content, and real-time market prices. The model, validated using Belgium’s system imbalance
market data from the 2020–2023 period, incorporates both capital and operational expenditures to
assess the economic and operational viability of LFP battery energy-storage systems (BESSs). The find-
ings reveal that considering a broader range of operational parameters in energy arbitrage, beyond
just the usual energy prices and round-trip efficiency, significantly influences the cost-effectiveness
and performance benchmarking of energy storage solutions. This paper advocates for the strategic
use of LFP batteries in energy markets, highlighting their potential to enhance grid stability and
energy trading profitability. The proposed benchmark model serves as a critical tool for energy
traders, providing a detailed framework for informed decision making in the evolving landscape of
energy storage technologies.

Keywords: reactive balancing; imbalance market; LFP batteries; dynamic pricing; operational
performance

1. Introduction

The integration of renewable energy sources into modern electricity grids is a pivotal
advancement in the pursuit of sustainable energy. However, it introduces significant
challenges in maintaining grid stability, particularly in balancing supply and demand in
real time. This paper focuses on the evolving landscape of electricity grids, emphasizing
the integration of renewable sources like wind and solar power. The central challenge lies
in ensuring efficient real-time grid balancing amidst the dynamic nature of energy markets,
especially within the European context.

Key players in this balancing act are the Balance-Responsible Parties (BRPs). BRPs are
tasked with ensuring a harmonious equilibrium between energy supply and demand within
their portfolios. This role has become increasingly complex due to the unpredictable nature
of renewable energy outputs and fuel/gas costs for conventional energy sources. Their
responsibility primarily involves managing day-ahead market (DAM) bids and making
near-real-time adjustments via the intraday market (IDM) to counteract forecast errors.
There is also an option of voluntarily reacting to the system imbalance in real time resulting
from last-minute forecast errors. This voluntary reaction is settled via imbalance or day
after market (BM). This flexibility, facilitated by transmission system operators (TSOs),
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is crucial in maintaining overall grid stability. The TSOs’ role in this process involves a
sophisticated system of incentives and penalties, aiming to promote stability or penalize
deviations, respectively [1].

This paper delves into the concept of voluntary energy balancing as a key mechanism
in grid stability. Here, the BRPs or energy traders adjust their energy balances beyond
typical operational patterns to support the grid. This necessitates responsive and reliable
energy storage solutions, allowing BRPs to react upwardly or downwardly to the system
imbalance. Battery energy-storage systems (BESSs) emerge as a critical flexibility source
for this type of reactive grid energy balancing. Among these, lithium iron phosphate (LFP)
battery storage systems stand out due to their rapid response capabilities, thermal stability,
low chances of going into thermal runaway, longer cycle life, higher discharge current, etc.,
making them a potential solution for the reactive energy balancing.

The evolving dynamics of the BM, characterized by increasing reliance on renewable
energy sources and the imperative for grid stability, necessitate innovative solutions for the
LFP energy storage and arbitrage. The premise of this paper is founded on the hypothe-
sis that a comprehensive model incorporating battery degradation and lifetime cost can
effectively benchmark the least cost associated with the dynamic charging and discharg-
ing of LFP storage, facilitating grid balancing through energy arbitrage. Such a model is
paramount for optimizing operational strategies and enhancing the economic feasibility of
energy storage technologies in the context of a rapidly evolving energy landscape.

This paper’s core objective is to establish a model for benchmarking the least cost of
charging and discharging LFP storage at any given volume and price within the context
of BM, thereby enabling market players to participate more effectively in the BM through
informed decision making based on real-time prices published by the TSO. The model
is predicated on the comprehensive evaluation of the lifetime of the storage system, in-
corporating both capital expenditures (CAPEXs) and operational expenditures (OPEXs),
which are crucial determinants of the overall economic viability of LFP storage solutions.
This is achieved through a meticulous examination of historical data on Belgium’s system
imbalance from 2020 to 2023, focusing on volumes and prices and the impact on LFP BESS’s
operational efficacy.

2. Literature Review

The economic viability and operational optimization of BESS within the European
electricity markets have seen considerable analysis. Hu et al. [2] explore BESS operational
viability, focusing on marginal cost analysis including battery degradation and operational
expenses. Their comprehensive framework assesses BESS profitability in fluctuating mar-
kets by balancing service remuneration with operational costs. Toquica et al. [3] investigate
power market equilibrium through an electric vehicle (EV) storage aggregator using bilevel
optimization. Their study reveals the aggregator’s role in market efficiency and infrastruc-
ture utilization, highlighting the delicate balance needed between market incentives and
regulatory frameworks. Hassan et al. [4] present an optimization model for PV systems
with BESS, aiming to maximize FiT revenue. The model underscores the economic impact of
battery capacity and unit cost, with a detailed sensitivity analysis on revenue enhancement
strategies. Yang et al. [5] focus on marginal cost components for hybrid power generation
systems. Their study emphasizes the importance of operation efficiency and fuel prices,
detailing an economic dispatch strategy that includes battery state of charge considerations
for system cost minimization. Nottrott et al. [6] use linear programming for BESS dispatch
optimization in grid-connected systems. Their model, which incorporates forecasts of
photovoltaic (PV) output and load, demonstrates significant financial benefits through
demand charge minimization and battery lifespan extension. Zhang et al. [7] develop
a marginal cost model for BESS in day-ahead operations, factoring in renewable energy
penalties and degradation costs. Their findings highlight the strategic importance of BESS
for operational cost optimization and load balancing. Ma et al. [8] explore the optimization
of plug-in electric vehicle (PEV) charging strategies. Their model quantitatively assesses
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the impact of charging behaviors on battery health and degradation costs, advocating for
charging coordination to minimize battery wear. Zhang et al. [9] introduce a distributed
economic dispatch algorithm for BESS, focusing on valley filling and peak suppression.
Their approach, which considers BESS degradation costs, demonstrates efficient battery
management and market participation strategies. Alt and Anderson [10] analyze dynamic
operating costs of BESS for utility applications, emphasizing the benefits for spinning
reserve, load leveling, and frequency control. Their study shows the economic advantages
of BESS for immediate response to demand fluctuations. Martins and Miles [11] assess the
economic viability of BESS in UK’s electricity market, identifying ancillary services with
the shortest payback periods. Their analysis predicts rapid BESS deployment driven by
declining costs and market reforms. Shinde et al. [12] analyze balancing market dynamics
with renewable generation, proposing stochastic models for optimal dispatch. Their work
illustrates the efficiency of single imbalance pricing models in minimizing settlement costs.
Koller et al. [13] employ model predictive control for BESS, accounting for battery degrada-
tion in cost functions. Their methodology showcases the economic and operational benefits
of optimized BESS control for various applications. Takagi et al. [14] assess the economic
value of using EV battery-switch stations for PV energy storage. Their analysis links battery
and inverter capacities to marginal value, addressing the economic implications of battery
degradation. Zhu et al. [15] investigate wind–battery system integration into electricity
markets. Their energy management system optimizes generation, storage, and market
participation, highlighting the role of marginal costs in decision making. Xu et al. [16] high-
light the need for including battery cycle aging costs in electricity market bids. Their model
offers a pragmatic approach for BESS owners to reflect true operational costs, enhancing
profitability and accuracy in market participation. Zhang et al. [17] propose a piece-wise
linear battery aging cost model, aiming to reduce estimation errors for cycle aging costs.
Their method facilitates more precise dispatch decisions, improving BESS management and
economic outcomes. Schimpe et al. [18] examine BESS marginal operating costs for energy
arbitrage. Their study emphasizes the impact of energy conversion and capacity losses on
costs, proposing optimal control strategies for profitability. Szilassy et al. [19] develop a
marginal cost model for battery electric buses, using telemetric data to enhance operational
cost accuracy. Their work provides insights into optimizing energy consumption and
operational expenses in public transportation. Tushar et al. [20] offer a cost model for
microgrid energy management, focusing on minimizing electricity costs through optimal
energy generation and distribution strategies. Their approach addresses the intricacies
of distributed generation and demand–supply dynamics. Engels [21] explores BESS for
frequency control in Germany’s electricity market. Their economic evaluation includes
investment costs, market revenue potential, and degradation costs, optimizing BESS opera-
tion for ancillary services. He et al. [22] integrate the marginal degradation cost of BESS into
power system dispatch models. Their approach ensures the sustainable and economically
efficient use of BESS, accounting for long-term health and operational impacts. Comello
and Reichelstein [23] discuss the strategic sizing of lithium-ion battery storage for solar
PV integration. They introduce the Levelized Cost of Storage (LCOS) metric, forecast-
ing cost dynamics to determine optimally sized storage solutions for maximizing solar
utilization. Duggal and Venkatesh [24] propose a depth of discharge (DOD)-based cost
model for scheduling thermal generators and battery storage. Their approach highlights
the balancing act between short-term operational benefits and long-term battery health.
DNV’s white paper [25] investigates BESS in the Dutch market, emphasizing its role in
system balancing and the importance of strategic deployment for maximizing economic
benefits in a renewable-sources-driven energy landscape.

Despite the extensive research into various facets of BESS, a significant gap persists in
comprehensively benchmarking break-even costs and integrating real-world operational
data throughout the entire lifespan of batteries within volatile system imbalance markets.
Existing studies often tackle isolated economic aspects of BESS without encompassing
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the full array of operational and degradation costs, particularly within the context of
dynamically reactive energy imbalance scenarios.

To bridge this gap, the present work introduces a pioneering decision-making frame-
work designed to validate the economic viability of LFP batteries in the context of system
imbalance market arbitrage. This model is novel in its dynamic adaptation to changing
market conditions and grid demands, enabling it to provide ongoing, real-time benchmark-
ing of costs. It comprehensively accounts for dynamic cycle and calendar aging, operational
performance, and activation costs, thereby offering a nuanced understanding of the inter-
play between market dynamics and BESS operational effectiveness. Through this in-depth
analysis, our framework not only fills critical knowledge gaps but also enhances the strate-
gic management of operational tactics, battery lifespan, and financial efficacy in power
system operations. This significant contribution advances the discourse on sustainable
energy storage strategies, providing new insights and robust tools for stakeholders in the
energy market.

2.1. Reactive Energy Balancing

Reactive energy balancing in electricity markets requires BRPs to diligently manage
real-time energy balances. Each BRP is tasked with deploying all reasonable resources to
maintain balance on a quarter-hourly basis, with imbalances calculated for each quarter-
hour based on ex-post measurements [1]. The imbalance for any given quarter-hour is
defined as the difference between actual energy injections (including generation) and
purchases, and the actual energy offtakes and sales. BRPs are expected to provide evidence
of their efforts to maintain balance upon the request of the TSO. This includes demonstrating
that adequate resources have been allocated for compliance with their balancing obligations.
Despite all reasonable efforts, a BRP may still face imbalances due to forecast errors,
resulting in an imbalance tariff, which acts as a penalty. Under certain conditions, a BRP
is permitted to deviate from its balancing perimeter to contribute to the real-time balance
of the control area, a practice known as “reactive or voluntary balancing” in this paper.
The reactive balancing scheme enables BRPs to voluntarily assist in balancing the grid.
This approach is detailed in Article 15 of the BRP contract, aligning with Article 17 of the
European Balancing (EU EBGL) Guidelines [26].

To facilitate BRP contributions to grid balancing, the TSO provides near-real-time
information about system imbalance volume, price, and price components. This publication
incentivizes BRPs to aid in system balance maintenance, potentially deviating from their
own contracts. Ideally, this results in BRPs adjusting their portfolios to mitigate system
imbalances, with financial settlements based on the imbalance price for that imbalance
settlement period (ISP) through the BM. However, BRPs may incur financial losses if their
portfolio positions do not contribute to system balance [1,27]. In this case, the TSO bears
no responsibility for voluntary BRP deviations and their consequences, underscoring the
importance for BRPs to carefully evaluate the assets they use for grid balancing, in this case,
the BESS. By benchmarking the least cost of charging/discharging the BESS, the flexibility
of a BESS can be strategically employed to optimize power consumption in response to the
imbalance price.

2.2. Imbalance Settlement and Imbalance Tariff

The mechanism of imbalance settlement in electricity markets involves a critical finan-
cial component known as the imbalance tariff. This tariff serves as a significant financial
motivator for BRPs or energy traders to either voluntarily minimize their imbalances or
generate imbalances that positively contribute to the grid’s overall balance. The imbalance
tariff operates as a “single-price” system in Belgian context. This system stipulates a uni-
form price for all BRPs, irrespective of whether they have a positive or negative imbalance.
Specifically, a positive imbalance, characterized by an excessive injection of energy by a
BRP, attracts a feed-in tariff [1]. In this scenario, if the imbalance tariff is positive, the TSO
compensates the BRP for the surplus energy. Conversely, a negative imbalance, indicating
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insufficient energy injection by a BRP, incurs a loss-making tariff. Here, the BRP is required
to pay the TSO if the imbalance tariff is positive. Generally, the imbalance tariff tends to be
positive. However, there are instances, particularly during downward adjustments, where
the tariff may become negative. In such situations, the financial dynamics are reversed:
a BRP with positive imbalances pays the TSO, whereas those with negative imbalances
receive payment from the TSO.

3. Methodology

The model development incorporates a parameterized representation of LFP batteries
that covers electrical, thermal, and aging behaviors. This approach is crucial for dissecting
the complex dynamics affecting the lifetime storage cost, particularly cycle and calendar
degradation under diverse operational conditions. Moreover, a control framework was
established to manage charging and discharging activities according to system imbalances,
thereby mirroring real-world market conditions for storage regulation. The subsequent
formulation of battery lifetime cost models sheds light on the LCOS, offering a detailed
perspective on the influence of variables such as the energy/power ratio (EPR) and the
operational capacities on cost-effectiveness over time.

Figure 1 provides an overview of the methodological framework applied to the op-
erations of LFP storage within the imbalance market. At the outset, ‘Imbalance Data’
containing historical volumes and prices serves as the primary input, which, along with
the ‘Battery Model’ specifications, feeds into the ‘Simulation Framework’. Here, the data
undergo preprocessing and strategic control processes to emulate charge and discharge
cycles, simulating market interactions and behavior. The output from this simulation yields
‘Technical KPIs’, which include key performance metrics such as energy throughput and
degradation loss. These metrics, alongside cost factors, contribute to the development of
the ‘Benchmark Model’, the central element that encapsulates the economic evaluation of
LFP storage, ultimately informing strategic participation in the reactive balancing market.

Figure 1. Methodology overview highlighting specific operational parameters.

3.1. Imbalance Data

Real-world data from the Belgian TSO Elia were employed to determine the opera-
tional strategy for battery charging and discharging. The data encompass minute-based
imbalance volumes and associated prices spanning from 1 January 2020 to 31 December
2023. It details the strategic reserves and balancing energy employed to ensure the control
region’s electricity supply remains uninterrupted and adequate [28]. Figure 2 provides a
representation of the system imbalance, highlighting the volatile nature of both the positive
and negative volume and price fluctuations.
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Figure 2. Illustration of the volatility in the system imbalance volume and price.

The preprocessing of imbalance data involves extracting volume data at the onset of each
quarter-hour interval and recording the corresponding prices at the conclusion of that interval.
This methodology allows for settlement prices to be determined after the battery’s energy has
been delivered or absorbed, accurately reflecting the timing of market transactions.

The analytical process treats each annual dataset discretely, employing time series re-
gression to extrapolate data within a simulation environment that persists until the battery
reaches its end-of-life threshold, defined as 80% state of health (SoH). The operational pro-
tocol dictates battery charging during “system short”, denoted by +SI or positive system
imbalance, and discharging when excess supply or “system long” is present, indicated by
−SI or negative system imbalance. This strategic operation aligns with real-world market
conditions and is optimized for energy arbitrage, capitalizing on the inherent volatility of
the imbalance market to enhance the cost-efficiency of energy-storage systems.

3.2. Battery Model

The LFP storage model embodies an extensive undertaking to emulate battery behavior
under a diverse array of operational conditions. The inception of the model’s parameterization
is rooted in thorough empirical observations, which catalog the battery’s reaction to a spectrum
of charging rates (C-rates), DoD, and temperatures. This model has undergone a series
of progressive refinements, encompassing the integration of electrical, thermal, and aging
dynamics, thereby rendering a faithful depiction of the battery’s gradual degradation.

Owing to the model’s intricacy and the breadth of data it assimilates, an exhaustive
discussion is beyond the purview of this paper. Consequently, the discourse herein is
confined to a concise depiction of the model’s architecture and its core constituents. Such a
treatment aligns with the intent to underscore the application of the LFP storage model
within the context of balancing market analyses, circumventing a granular dissection of
the modeling mechanics. Figure 3 presents a snapshot of the modeled battery’s terminal
voltage and state of charge (SoC) trajectories in 2022, corresponding to a singular equivalent
full cycle (EFC). This depiction affords a glimpse into the cyclic behavior over various
EPRs, with the title elucidating the mean daily cycling frequency over the lifespan of the
storage system. A clear trend is observable: higher EPRs correlate with diminished cycling
frequencies, culminating in an average of nearly 0.9 cycles per day for a 10 h capacity
battery, contrasted with approximately 3.8 cycles for a battery with a 0.5 h capacity.
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Figure 3. State of charge (SoC) and voltage response across different energy/power ratios in 2022,
illustrating the battery’s performance over a single equivalent full cycle.

3.2.1. Electrical Model

The formulation of the electrical equivalent circuit model was grounded in precise
time-domain pulse measurements, capturing a broad spectrum of SoC to derive dynamic
parameters that characterize the battery’s response. This methodology facilitated a detailed
portrayal of the battery’s behavior under various operational conditions. The model
integrates an open circuit voltage (OCV) function, an equivalent series resistance, and RC
sub-circuit to encapsulate the battery’s complete electrical profile. The relationship between
the battery’s SoC and its OCV is formalized by the following equation:

OCV = f (SoC) (1)

where f (SoC) is the function that correlates SoC with OCV. This relationship is unique to
the battery’s chemistry and is empirically determined from experimental data. The model’s
components include the following:

• An equivalent series resistance (R0), representing the instantaneous voltage drop when
the battery is operational under a load.

• An RC sub-circuit, constituted of a resistor (R1) and a capacitor (C1) in parallel, which
models the transient electrical responses of the battery during charge and discharge cycles.

The SoC of the battery, denoted by SoC(t), is an essential indicator of the battery’s
current capacity relative to its maximum charge capacity. It is defined as a percentage, with
SoC(t) = 100% indicating a fully charged battery and SoC(t) = 0% indicating complete
discharge. The rate of change of SoC over time can be expressed as follows:

dSoC
dt

= − i(t)
Q

(2)

where i(t) is the current at time t, and Q is the total charge capacity of the battery. The
SoC at any subsequent time can be calculated from an initial SoC value by integrating the
current over time:

SoC(t) = SoC(t0)−
1
Q

∫ t

t0

i(τ)dτ (3)

The cell voltage at any point in time, taking into account the SoC and the instantaneous
and transient effects, is modeled as:

v(t) = OCV(SoC(t))− vc1(t)− i(t)R0 (4)

This equation succinctly captures the instantaneous voltage drop across R0 when
the battery is under load, and the gradual voltage recovery influenced by the R1C1 time
constant, reflecting the effects of diffusion processes within the battery.
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3.2.2. Thermal Model

The thermal behavior of the battery is elucidated by an equivalent circuit model that
incorporates thermal elements such as the heat capacity (Cth), thermal resistance (Rth),
convection (Rcon), and radiation (Rrad) resistance. This model leverages these parameters
to compute the battery’s temperature in relation to the ambient temperature (Tamb) and
heat generated by power loss (Ploss), offering an in-depth insight into the thermal dynamics
of the system. The cell temperature is predicted by the Laplace transform as follows:

Tcell(s) = Tamb + Ploss(s) ·
Rth

1 + Rth · Cth
(5)

where Ploss = Ri2 represents the power loss due to the internal resistance of the battery and
i is the current. Parameters Rth and Cth are determined by curve fitting, utilizing experi-
mental data. The influence of charge and discharge currents on the battery temperature
across several full cycles is captured, demonstrating the nonlinear relationship between the
current and the temperature rise of LFP battery. These parameter estimations are derived
from the profile observed in the experimental data.

3.2.3. Aging Model

The aging model was developed based on insights from the literature and fine-tuned
through a series of optimizations using data from measurement campaigns. A stretched
exponential function was employed to simulate the aging process, linking the relative
capacity decay to the number of completed cycles. This relationship was verified against
measured data under different operational conditions. The model addresses both cycle and
calendar aging, offering a comprehensive view of the battery’s lifespan. The cycle aging
effect, representing the SoH as a function of the EFC, is described by:

SOHcyc =
(

1 − EFC ·
(

acyc · 10−5 · SOC + bcyc · 10−5 + ccyc · 10−5 · DOD
))

· 100; (6)

with the empirical coefficients acyc, bcyc, ccyc representing the aging rate, and EFC as the
equivalent number of full cycles. For calendar aging, the model incorporates the effects of
time and temperature on the SoH:

SOHcal = 1 − a(T) · x0.75 (7)

where x denotes the number of days elapsed, and a(T) is a temperature-dependent rate
constant. Furthermore, the overall SoH, which integrates both cycling and calendar aging,
is calculated as:

acal = b · ec·T · x0.75 (8)

acal = 6.71 · 10−5 · e0.083·T · x0.75 (9)

SOHtot = (1 − acyc − acal) · 100 (10)

The coefficient acyc is an empirically determined factor that quantifies the rate of
capacity fade with each cycle. It is obtained through statistical fitting of cycle aging data
and reflects the dependency of aging on factors such as SoC and DoD. In these expressions,
b and c are constants specific to the battery technology that quantify the aging behavior as
a function of temperature over time.

3.3. Simulation Framework

Simulations were conducted in the MATLAB/Simulink environment (R2023b), incor-
porating a control algorithm to manage the charging and discharging cycles of the battery
system. The control logic was designed to capitalize on energy surplus (positive imbalance)
for charging and energy deficits (negative imbalance) for discharging, in accordance with
the imbalance data provided by the TSO. The simulations covered a spectrum of EPRs
including 0.5, 1, 2, 4, 6, 8, and 10. These EPRs correspond to power levels of 1 MW/0.5
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MWh, 1 MW/1 MWh, 1 MW/2 MWh, 1 MW/4 MWh, 1 MW/6 MWh, 1 MW/8 MWh, and
1 MW/10 MWh of energy storage, respectively. The simulation monitored the battery’s
performance until the SoH declined to 80%, which signifies a 20% capacity reduction and
the end of serviceable life. Operational boundaries were set to maintain the SoC within
25%–75%, commencing from an initial midpoint of 50%. For consistency, all simulations
were predicated on the premise of a constant ambient temperature of 25 °C.

For each year from 2020 to 2023, the simulations were conducted individually for
each EPR value, considering the activation thresholds during both surplus and deficit
energy conditions. This approach was deliberately adopted to provide a reliable indication
of the performance range that can be anticipated. As soon as the power at the point of
common coupling is equal or above the 1 MW threshold, the additionally required power
is provided by the BESS. For the time the imbalance volumes do not meet the threshold, the
imbalance volumes and the respective imbalance prices are both set to 0 by the controller.
The study investigated a base storage capacity of 1 MW, which allows for results to be
scalable and applicable to larger battery systems by maintaining the same energy/power
ratio. The scalability of the base simulations could offer insights into the performance of
larger systems. Table 1 provides detailed specifications of the LFP battery cells used in the
simulations. Series and parallel configurations were carried out up to the module and rack
level for the desired voltage and amperage for the given capacities.

Table 1. Detailed battery information parameters.

Parameter Value

Cell Voltage (Unom) 3.2 V
Cell Voltage (Umin) 2.8 V
Cell Voltage (Umax) 3.65 V
Cell Capacity (Qini) 50 Ah

State of Charge (SoCmin) 25%
State of Charge (SoCmax) 75%
State of Charge (SoCini) 56.18%
State of Health (SoHeol) 80%

Energy/Power Ratio (EPR) 0.5, 1, 2, 4, 6, 8, 10

3.4. Technical Performance Indicators
3.4.1. Round-Trip Energy Efficiency (%)

Energy efficiency is a crucial metric that measures the performance of a storage system
by comparing the energy output (Edis) to the energy input (Ech), usually expressed as a
percentage. This metric is vital for evaluating how effectively the storage system converts
the input energy into usable output, taking into account the losses incurred during the
charge and discharge cycles. The energy efficiency (%) can be calculated using the equation:

Round-trip energy efficiency (%) =
(

Edis
Ech

)
× 100 (11)

3.4.2. Degradation Loss (%)

Degradation quantifies the reduction in storage capacity of a battery system as it
undergoes aging, acting as a key metric for evaluating performance and endurance over
time. It is expressed as a percentage, shedding light on the battery’s durability and expected
lifespan. Consequently, the degradation percentage is calculable from the SoH as:

Degradation loss (%) = (1 − Qt

Q0
)× 100 = (1 − SOHtot)× 100 (12)

In this equation, SOHtot is derived based on the cumulative effects as explicated by
Equation (10), where Qt denotes the battery’s capacity at a specific time and Q0 is the
original capacity when new.
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Figures 4 and 5 illustrate the SoH and resistance increase across different EPRs plotted
against operational lifetime, respectively. These visual representations reveal that the SoH
behavior, as influenced by EPR, exhibits consistent patterns across the yearly imbalance
data from 2020 to 2023. It is discernible that variations in EPR significantly affect the rate of
degradation and resistance increase, with higher EPR values typically correlating with a
more gradual decline in SoH and a slower rise in resistance. Such trends underscore the
critical role of EPR in determining the longevity and performance of battery energy storage
systems in the context of balancing market applications.
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Figure 4. State of health (SoH) as a function of Operational lifetime for different Energy to Power
Ratios (EPRs) for system imbalances of 2020, 2021, 2022 and 2023.
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Figure 5. Resistance increase in relation to operational lifetime for various EPRs over the same period,
highlighting the resistance trends that accompany battery aging.

3.4.3. Energy Throughput (MWh)

Energy throughput quantifies the total energy exchanged through the battery system
over its entire operational lifetime, Nop. This metric is crucial for evaluating the battery’s
utility and operational demand. It is defined as the aggregate of energy discharged (Edis)
and energy charged (Ech) over the lifespan of the battery. These energy throughputs (MWh)
are computed by integrating the instantaneous power, which is the product of the battery’s
voltage (ubat) and current (ibat), across the entire period of operation. Mathematically, the
discharged and charged energies are represented as follows:

Edis =
∫ Nop

0
ubat(t) · ibat,dis(t) dt (13)

Ech =
∫ Nop

0
ubat(t) · ibat,ch(t) dt (14)

where the following are true:

• ubat(t) represents the voltage across the battery terminals, which varies with tem-
perature, state of charge (SoC), depth of discharge (DoD), and other factors such as
degradation and efficiency.

• ibat,dis(t) and ibat,ch(t) are the time-dependent current flows during battery discharge
and charge, respectively.

• Nop signifies the operational lifespan across which the energy throughput is assessed.

The cumulative energy throughput (MWh) is therefore the sum of energies involved
in both discharging and charging processes:

Energy throughput (MWh) = Edis + Ech (15)
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3.4.4. Equivalent Full Cycles (EFCs)

EFC are assessed through the integration of battery current over time to determine the
total amount of charge cycled through the battery. This method is routed from Coulomb
counting and provides a direct measurement of the battery’s usage by accounting for the
actual charge transferred during the battery’s operation. The principle of Coulomb counting
requires the integration of the absolute battery current over time. This integration measures
the total amount of charge transferred through the battery, reflecting both charging and
discharging activities. To ascertain the EFC, the integrated absolute value of the current is
divided by the nominal capacity of the battery in Coulombs, multiplied by 2, to account
for a full charge and discharge constituting one cycle. The formula for calculating EFC is
expressed as follows:

EFC =

∫
|i(t)|dt

2 · Qnom · 3600
(16)

where the following are true:

•
∫
|i(t)|dt represents the integral of the absolute current over time, providing the total

charge in Coulombs.
• Qnom denotes the nominal capacity of the battery in Ampere-hours (Ah).
• The factor of 3600 converts Ampere-hours to Coulombs, since 1 Ah is equivalent to

3600 C.
• The factor of 2 normalizes the integrated charge to full cycles, reflecting that each cycle

includes a full charge followed by a full discharge.

This discrete-time approach allows for the EFC to be updated iteratively and reflects
the accumulative effect of charging and discharging currents over the operational time.

3.4.5. Operational Lifetime (Years)

The operational lifetime (Nop) of a battery system is defined as the duration over
which the battery can perform above a predetermined capacity threshold—commonly set
at a 20% reduction from the original capacity. This lifetime metric is subject to influences
from a range of variables including ambient temperature, charging rates, the depth of
each discharge cycle, and the operating SoC parameters. The consideration of both cycle
degradation and calendar aging effects is essential in the accurate determination of the
operational lifetime. It is computed by correlating the number of equivalent full cycles
(EFCannual) with the rates of temporal (Degcal) and cycle (Degcyc) degradations over the
intended operational period as per the following relation:

Nop =
log(SOHeol)

log(1 − Degcal) + EFCannual · log(1 − Degcyc)
(17)

Here, SOHeol denotes the end-of-life capacity threshold, Degcal represents the annual
degradation loss due to calendar aging, Degcyc encapsulates the degradation per cycle, and
EFCannual indicates the annual equivalent full cycle. These parameters collectively quantify
the rate at which the battery capacity diminishes, offering an integral perspective on its
expected functional lifespan under specified usage conditions.

Figure 6 showcases the inverse relationship between the battery’s operational lifetime
and the number of EFC it undergoes. Notably, an EPR of 10 correlates with the longest
operational lifetime at the least number of EFCs, illustrating a lower operational intensity.
Conversely, while an EPR of 1 experiences the highest number of EFCs, an EPR of 0.5 is
associated with the shortest lifetime, underscoring the critical role of EPR in the battery’s
endurance and overall performance efficiency across different years.
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Figure 6. Illustration of EFC versus operational lifetime for various EPR.

4. Cost Models and Results
4.1. Lifetime Cost Model and Results

The LCOS is an economic assessment model used to determine the cost-effectiveness
of energy-storage systems over their operational lifetimes. It calculates the average cost
per unit of stored energy that is discharged, allowing for a consistent comparison across
different storage technologies and operational strategies. LCOS incorporates all costs
incurred during the lifetime of the storage system, such as initial investment, periodic
replacement, operation and maintenance, charging expenses, and end-of-life costs. These
costs are then normalized by the total discharged energy, ensuring that the resultant figure
represents the minimum price at which the energy must be sold for the project to break
even, hence forming the basis of the cost benchmark model. The LCOS calculation is
adapted based on the formula from [29], as follows:

LCOS =
∑N

n=1
Investment
(1+r)n + ∑N

n=1
Replacement

(1+r)n + ∑N
n=1

O&M
(1+r)n + ∑N

n=1
Charging
(1+r)n + End of life

(1+r)N+1

∑N
n=1

Energydischarged(n)
(1+r)n

(18)

where the following are true:

• N is the number of years encompassing the lifetime of the system.
• r is the discount rate, which adjusts the future costs and benefits to their present value.
• Energydischarged(n) is the quantity of energy discharged in year n.

The discount rate is a critical component that accounts for the time value of money,
ensuring that future expenditures and revenues are appropriately weighted. The LCOS
provides a clear metric for the cost per discharged megawatt-hour, encapsulating the
total economic burden of the storage system throughout its serviceable life. The project
lifetime/period taken in this work is 15 years with a discount rate set as 8% in agreement
with many studies, such as [29,30], reflecting a reasonable economic risk [31] over the
lifetime of the energy storage. Figure 7 shows the LCOS results for different EPR and years.
The point marked with a star indicates the lowest LCOS value with respect to EPR. For BM,
the result indicates that minimum cost of LFP deployment will occur at EPR of 4, proven by
all years considered. The differences in the LCOS results for the years are highly influenced
by the discharged energy of the storage depending on the magnitude of imbalances that
occurred for the particular year. In addition, the yearly decline in the storage cost and the
price volatility of the BM especially as seen in year 2022, where the gas crisis influenced so
much the price of charging the energy storage.

The components of the LCOS result are described in Appendix. B.
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Figure 7. Levelized cost of storage (LCOS) across various Energy to Power Ratios (EPRs) and for
different years, as presented in Appendix B. The red star in the plot highlights the minimum LCOS
achieved, specifically at an EPR of 4. This value represents the most economical point for LFP
deployment, consistently demonstrated across all years analyzed.

4.2. Cost Benchmark Models and Results

The benchmark analysis for charge and discharge costs was conducted using regres-
sion techniques to predict outcomes based on multiple independent variables. Given the
challenges of multicollinearity and overfitting commonly associated with high-dimensional
data, regularization methods—ridge, lasso, and elastic net—were employed to enhance
model robustness and interpretability. Each model was fitted with a second-degree polyno-
mial to best capture the data curvature.

Ridge regression applies a penalty proportional to the square of coefficient magnitudes,
effectively reducing overfitting and improving prediction accuracy. Its formulation is as
follows:

Minimize:
n

∑
i=1

(yi −
p

∑
j=1

Xijβ j)
2 + λ

p

∑
j=1

β2
j , (19)

Lasso regression, by contrast, employs an L1 penalty, encouraging sparsity in the
model by reducing certain coefficients to zero. This characteristic facilitates variable selec-
tion within high-dimensional datasets:

Minimize:
n

∑
i=1

(yi −
p

∑
j=1

Xijβ j)
2 + λ

p

∑
j=1

|β j|, (20)

facilitating the construction of more interpretable models, which are especially beneficial
for high-dimensional data.
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Elastic net merges the benefits of both ridge and lasso by incorporating both L1 and L2
penalties. This hybrid approach is advantageous when dealing with correlated predictors,
as it maintains the grouping effect while enabling variable selection:

Minimize:
n

∑
i=1

(yi −
p

∑
j=1

Xijβ j)
2 + λ1

p

∑
j=1

β2
j + λ2

p

∑
j=1

|β j|, (21)

where the following are true:

• yi represents the observed target outcome for the ith observation.
• Xij denotes the value of the jth predictor for the ith observation.
• β j is the coefficient for the jth predictor.
• n is the number of observations.
• p is the number of predictors.
• λ is the regularization parameter, a non-negative hyperparameter that controls the

strength of the penalty, impacting the model’s regularization degree.

After evaluating the models across a range of λ values from 1 ×10−8 to 10, the opti-
mal models for both charging and discharging benchmarks were selected based on their
predictive performance. These regularization techniques not only mitigate the issues of mul-
ticollinearity and overfitting but also significantly contribute to the models’ interpretability,
especially in complex datasets.

4.3. Temporal Cross-Validation of the Benchmark Models

To ensure the robustness and generalizability of the benchmark cost model, a temporal
cross-validation strategy was employed using a cross-validation technique across temporal
datasets. The datasets consisted of four annual records: D2020, D2021, D2022, and D2023. The
validation process was structured as such that for each year n ∈ {2020, 2021, 2022, 2023}, a
model M\n was constructed using the combined data from the remaining three years. The
performance of M\n was then assessed on the excluded dataset Dn. This iterative process
ensured that each year’s data served as an independent test set, providing a comprehensive
evaluation of the model’s generalizability. The mathematical formulation for the model
and validation for each year is represented as follows:

M\n = Fit

 2023⋃
m=2020

m ̸=n

Dm

 (22)

Vn = Validate
(

M\n, Dn

)
(23)

where the following are true:

• M\n denotes the model fitted on all data excluding the nth year.
• Dm represents the dataset from year m.
•

⋃
denotes the union of the datasets used for training.

• Vn is the validation score of the model M\n using the nth year data as the test set.

The validation score Vn quantifies the model’s predictive accuracy and provides insight
into the stability of the model coefficients across different temporal segments.

4.4. Charging Cost Benchmark Model and Results

With several models involving iterative cross validations of different years in three
different regression models and λ range of 1 ×10−8 to 10, charge cost benchmark was
modeled as a function of the battery degradation, the discharge price, the power capac-
ity, and the EPR. The ridge regression model incorporates a second-degree polynomial
feature transformation. Figure 8 presents a comparison of the three different regression
techniques—ridge, lasso, and elastic net—across three key performance metrics: R2 score,
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root mean square error (RMSE), and relative mean absolute error (rMAE). Each of these
is a function of the regularization parameter λ. In the leftmost plot, the R2 score for all
three models demonstrates a sharp decline as the alpha increases, with the ridge model
initially starting with the highest R2 value, suggesting better performance at lower alpha
levels. However, as alpha increases, the performance converges for all models, indicating
that heavy regularization diminishes the explanatory power of the models. The center plot
features the RMSE, where lower values are indicative of a better fit. All models start with
relatively similar RMSE values at low alpha but diverge slightly as alpha increases. The
ridge and elastic net models exhibit a slight upward trend, implying a decrease in model
accuracy with increased regularization, whereas the lasso model remains relatively stable
across the range of alpha values. The rightmost plot displays the relative MAE, another
measure of model accuracy, with lower values being preferable. Similar to RMSE, the
models behave consistently at low alpha values, with a slight increase for ridge and elastic
net and the stability for the lasso as alpha is increased.
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Figure 8. Model performance metrics for Charging Cost Benchmark.

As depicted in Figure 9, the probability distribution function (PDF) for the years
2020, 2021, 2022, and 2023 underscore a remarkable uniformity in the distribution of the
coefficients, signifying that the ridge model at the specified alpha level yields consistent
estimations regardless of the temporal context of the data. The PDF offers a statistical
perspective on the stability and consistency of the ridge regression coefficients across
different test years when alpha is set to 1 ×10−8. Each panel within the figure demonstrates
a well-defined peak around the mean value of 0.07, with a standard deviation of 0.25.
The narrow spread of the distributions suggests that the coefficients are tightly clustered,
indicating minimal fluctuation and a high degree of model stability. Moreover, the overlap
of the PDFs from year to year implies that the model’s behavior is predictable and resilient
to changes in the yearly data, which is a desirable property for any predictive model that
aims to generalize well across different time periods.
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Figure 9. Probability distribution function (PDF) for Charge Cost Benchmark.

This consistent behavior across all tested years reinforces the choice of Ridge regression
with an λ of 1 ×10−8 as the optimal model for this particular application. The homogeneity
of the coefficients across the various yearly models suggests that each model, trained on its
respective year’s data, can be employed interchangeably, providing reliable predictions
without the need for recalibration or adjustment.

The model results are depicted in Figure 10, which plots the predicted charging costs
against the actual costs. The high R2 value of 0.91 and a low RMSE of 15.77 suggest that
the model predicts the charging cost with considerable accuracy.
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Figure 10. Model predictions for Charge Cost Benchmark, showing a comparison between the actual
and predicted charge costs using ridge regression. The close alignment of the data points along the
line of perfect agreement demonstrates the model’s effectiveness.

The model was tested against various datasets from years 2020 to 2023, considering
different EPRs as in Figure A1. The consistent performance across these datasets validates
the model’s generalizability and its potential for practical application in predicting the
financial implications of charging energy-storage systems. The mean model coefficients
and intercept, calculated from these datasets, form a robust equation that captures the
complex interactions between cycle degradation, EPR, lifetime cost, and capacity threshold.
The refined equation for the charging cost, derived from the ridge regression model, is
as follows:

Cch = 70.00959 − 83227.70538∆Degtot + 15.73255Hepr + 0.86183Cdis + 0.49642|Pthr|
− 8505.71262(∆Degtot)

2 + 26.19384∆DegtotHepr − 1.47085∆DegtotCdis

+ 160.50072∆Degtot|Pthr| − 0.42717H2
epr + 0.00289HeprCdis

− 0.00526Hepr|Pthr|+ 2e−5C2
dis − 0.00174Cdis|Pthr| − 0.00167|Pthr|2,

(24)

where the following are true:

• ∆Degtot is the total degradation (cyc and cal) loss in %.
• Hepr is the energy/power ratio of the storage in hours.
• Cdis is the discharge price in EUR/MWh.
• |Pthr| is the absolute power capacity in MW.

This model elucidates the complex factors impacting charging cost, with notable
observations, including:

• The significant negative coefficient for ∆Degtot and its squared term highlights the
nonlinear and substantial effect of degradation loss on increasing Cch, accentuating
the economic impact of degradation on the efficiency and cost-effectiveness of energy
storage.

• The positive coefficient associated with Hepr suggests that higher energy/power ratios,
indicative of prolonged storage capabilities, lead to increased charging costs, reflecting
potential capital and operational cost implications.

• Interactions between ∆Degtot and other variables such as Hepr and Cdis illustrate
the intertwined nature of charging costs with storage degradation, efficiency, and
discharging costs, underscoring the complexity of optimizing energy-storage systems.

• The presence of both linear and nonlinear relationships underscores the intricate
dynamics between charging cost and the considered variables, necessitating advanced
optimization strategies for system design and operational management to enhance
cost-efficiency.
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4.5. Discharging Cost Benchmark Model and Results

Ideally, the battery storage is activated to discharge if the price is equal or greater
than the marginal cost (MC). In this work, the MC considered storage degradation, energy
capacity, power capacity, and the charge cost.

Figure 11 presents the performance metrics of this discharge cost benchmark model in
comparison to traditional ridge, lasso, and elastic net regression models. The three subplots
within Figure 11 display the variations in R-squared, RMSE, and relative MAE as functions
of the hyperparameter λ. It is immediately apparent that the mean model, represented by
the lasso regression’s performance line, demonstrates a consistent R-squared value across
the range of alpha, indicating stability in explained variance. Concurrently, the RMSE
and relative MAE exhibit a precipitous decline as alpha increases from 0 to 1, stabilizing
thereafter. This trend suggests that a small amount of regularization is beneficial for the
model, but further increases in alpha do not significantly alter the performance metrics.
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Figure 11. Model performance metrics for discharge Cost Benchmark.

Figure 12 depicts the PDFs across the years 2020 to 2023 exhibiting a remarkable
consistency in terms of the coefficients’ mean and standard deviation. This uniformity
underscores the model’s robustness and the appropriateness of the chosen alpha level.
A closer examination of the PDFs reveals that, despite the variability inherent in yearly
data, the lasso model at α = 0.001 maintains a stable coefficient distribution. The mean
coefficients for the years 2020, 2021, 2022, and 2023 are 7363.66, 6932.39, 7760.14, and
6877.46, respectively, while the standard deviations are relatively close, demonstrating
tight clustering around the mean values. This indicates that the model has not overfitted
to any particular year’s data and suggests a generalizable performance across different
temporal datasets.
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Figure 12. Probability distribution function (PDF) for discharge Cost Benchmark.

The consistency in coefficient distribution from year to year suggests that the lasso
model, with an alpha of 0.001, can be applied interchangeably to the dataset of any given
year within the observed range, without significant loss of performance or efficiency.
Therefore, based on the PDF analysis, we can conclude that this specific instantiation
of the lasso model possesses the generalizability needed for reliable predictions across
independent yearly datasets.

The model’s performance is summarized in Figure 13, which plots the actual versus
predicted lifetime costs. The near-perfect R2 value of 1.00 and a relatively low RMSE
of 44.90 indicate an excellent fit to the data. This suggests that the model captures the
underlying relationship between the input features and the lifetime cost with high accuracy.
Figure A2 shows the validated result of the model tested against various datasets from
years 2020 to 2023, considering different EPRs.
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Figure 13. Lasso actual vs. predicted lifetime cost, illustrating the high accuracy of the lasso model in
predicting discharge Cost Benchmark with a polynomial regression of degree 2.

The development of the discharging cost model (Cdis) employing lasso regression with
a regularization parameter α = 0.001 is given by:

Cdis = −71.34397 + 1.00169e5∆Degtot − 24.33946Hepr + 0.89743Cch − 0.66101|Pthr|
− 1.44946e3∆DegtotHepr + 51.84178∆DegtotCch + 9.33399∆Degtot|Pthr|
+ 1.51330H2

epr + 0.01705HeprCch − 0.01549Hepr|Pthr| − 1.89e−3C2
ch

− 1.08e−3Cch|Pthr|+ 1.2e−4|Pthr|2

(25)

where the following are true:

• ∆Degtot represents total Degradation loss in %.
• Hepr denotes EPR in hours.
• Cch is the charging cost in EUR/MWh.
• |Pthr| signifies the absolute value of the power capacity in MW.

5. Discussions
5.1. Interconnected Impact of Degradation on Charge and Discharge Costs Benchmark

The degradation impact on energy-storage systems, represented by cycle degrada-
tion (∆Degtot), significantly affects both charging (Cch) and discharging costs (Cdis), with
the EPR, Hepr playing a pivotal role in moderating these effects. For discharge costs,
as illustrated in Figure 14, an increase in ∆Degtot leads to a corresponding rise in Cdis,
showcasing a direct correlation between cycle degradation and cost. Notably, the in-
teraction term −1.44946e3∆DegtotHepr suggests that higher EPR values can mitigate the
adverse effects of degradation on discharge costs. This dynamic is further evidenced
by the term 1.51330H2

epr, indicating a complex, nonlinear relationship between EPR and
discharge costs. Conversely, the charging cost model reveals a quadratic relationship be-
tween ∆Degtot and Cch, as depicted in Figure 15. The coefficients −83, 227.70538∆Degtot
and −8505.71262(∆Degtot)2 illustrate how cycle degradation influences charging costs,
with higher degradation levels initially leading to increased costs, moderated by EPR. The
interaction term 26.19384∆Degtot Hepr highlights EPR’s role in modulating charging costs
amidst varying degradation levels.

Interestingly, both models underscore EPR’s critical function: for discharging, it
potentially dampens cost increases due to degradation; for charging, it influences the
cost in a more nuanced manner, suggesting an optimal EPR value that minimizes costs
under specific degradation scenarios. This comprehensive analysis across Figures 14 and 15
elucidates the intertwined effects of degradation loss and EPR on both charge and discharge
costs. The observed trends across 2020 to 2023 affirm that while degradation intrinsically
elevates costs, EPR serves as a crucial moderator, necessitating a balanced consideration of
both factors in optimizing the economic performance of energy-storage systems.
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Figure 14. Discharge cost vs. cycle degradation, illustrating the modulation effect of EPR on discharge
costs across different levels of cycle degradation.
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Figure 15. Charge cost vs. cycle degradation, demonstrating the complex relationship between cycle
degradation, EPR, and charging cost.

5.2. Interdependencies between Charging and Discharging Costs

This section delves into the complex interplay between charging costs (Cch) and
discharging costs (Cdis), exploring how each influences the other within the energy-storage
system’s economic model. The relationship between these costs is crucial for understanding
the overall life cycle cost implications of energy storage operations.

5.2.1. Impact of Charging Cost on Discharge Cost Benchmark

As evidenced by the model and illustrated in Figure 16, the charging cost directly impacts
the discharge cost, a relationship denoted by a positive coefficient of 0.89743Cch. This signifies
that increases in Cch correspond to proportional increases in Cdis. However, the complexity of
this relationship is further nuanced by the degradation loss (∆Degtot) and EPR (Hepr), where the
interaction term 51.84178∆DegtotCch indicates that the effect of Cch on Cdis varies with the level
of degradation. Moreover, a diminishing return effect is suggested by the term −1.89e−3C2

ch,
indicating that the influence of charging cost on discharge cost decreases as charging cost escalates.

5.2.2. Influence of Discharge Cost on Charging Cost Benchmark

Conversely, the discharging cost plays a pivotal role in shaping the charging cost,
as substantiated by the model equation and visualized in Figure 17. The model posits a
positive linear relationship between Cdis and Cch, evidenced by the coefficient 0.86183Cdis.
This relationship is moderated by a quadratic term, 2e−5C2

dis, implying that the impact of
discharging cost on charging cost increases at a decreasing rate. Additionally, the interaction
between discharging cost and degradation (∆Degtot), as well as the power capacity (|Pthr|),
introduces further complexity into the cost dynamics.
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Figure 16. The relationship between discharge cost and charge cost across different EPR values,
illustrating the complex interdependencies between these variables. The plot shows how discharge cost
responds to variations in charging cost under different operational durations, as indicated by EPR.
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Figure 17. Charge cost vs. lifetime cost, depicting the influence of the discharging cost (Cdis) on the
charging cost (Cch) over different years. The data points are segmented by the energy/power ratio
(Hepr) values, which provides an additional layer of analysis on how Cdis affects Cch under varying
storage characteristics.

5.2.3. Synergistic Observations

The interdependencies between Cch and Cdis underscore a reciprocal relationship,
where each cost component influences the other through direct and interaction effects.
This intricate dynamic is influenced by several factors, including degradation loss, EPR,
and power capacity. The empirical analysis, captured in Figures 16 and 17, illuminates
the nuanced ways in which charging and discharging costs co-evolve, highlighting the
importance of considering these interdependencies in the economic assessment of energy-
storage systems.

5.3. Influence of Power Capacity on the Discharge Cost and Charge Cost Benchmark

The economic dynamics of energy-storage systems are significantly influenced by the
power capacity (|Pthr|), which plays a pivotal role in both charging (Cch) and discharging
costs (Cdis). This section explores the nuanced effects of |Pthr| on these cost components,
highlighting the critical interplay between operational capacity and economic efficiency.

5.3.1. Impact of Power Capacity on Discharge Cost

The discharge cost is notably affected by variations in the capacity threshold, as indi-
cated by the term −0.66101|Pthr| within the cost model. This suggests a direct inverse rela-
tionship, where increasing |Pthr| leads to a reduction in Cdis. The modulation of this effect by
the EPR, Hepr, is particularly noteworthy, with the interaction term −0.01549Hepr|Pthr| im-
plying that higher EPR values can enhance the cost-saving potential of an increased power
capacity. Moreover, the quadratic term 1.2e−4|Pthr|2 introduces a nonlinear aspect to this
relationship, indicating diminishing cost reductions at higher threshold levels. Figure 18
visually underscores these dynamics, showcasing how discharge cost adjustments in re-
sponse to changes in |Pthr| are further influenced by the operational duration, as denoted
by EPR values.
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Figure 18. Interplay between discharge cost and capacity threshold across different EPR val-
ues, illustrating the operational duration’s influence on discharge cost sensitivity to capacity
threshold adjustments.

5.3.2. Influence of Power Capacity on Charging Cost

Conversely, the charging cost model reveals a complex interplay with the capacity thresh-
old, highlighted by the terms 0.49642|Pthr| + 160.50072∆Degtot|Pthr| − 0.00174Cdis|Pthr| −
0.00167|Pthr|2. These coefficients signify a multifaceted relationship where |Pthr| not only
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directly impacts Cch but also interacts with cycle degradation and discharging costs in shaping
the charging cost landscape. Figure 19 elucidates this relationship, depicting how charg-
ing costs evolve with varying |Pthr| levels across different EPR settings. The positive
influence of |Pthr| and its interaction with cycle degradation suggests a propensity for
higher charging costs at elevated capacity thresholds, especially at lower degradation
levels. However, the negative quadratic term indicates a moderation of this cost increase at
larger threshold values, presenting a nuanced view of capacity threshold implications on
charging economics.
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Figure 19. Impact of the capacity threshold on charging cost across various EPR settings, highlighting
the nuanced relationship between capacity adjustments and charging cost dynamics over four years.

5.3.3. Synergistic Observations

The reciprocal influences between power capacity and cost models underscore a
complex landscape where strategic management of |Pthr| emerges as a crucial lever for
optimizing economic outcomes in energy storage operations; while the power capacity
inherently offers a mechanism for controlling discharge costs, its impact on charging
costs introduces a layer of strategic consideration, necessitating a balanced approach that
accounts for degradation loss, operational duration, and the interrelated cost dynamics.
Figures 18 and 19 provide empirical validation for the theoretical models, illustrating the
critical interdependencies between capacity threshold adjustments and cost implications.

6. Conclusions

This study pioneers a comprehensive benchmark model for LFP BESS in the reactive
energy balancing markets. It extends beyond traditional models by meticulously integrating
a wide spectrum of operational parameters and market dynamics, thereby enhancing the
understanding of the economic and operational viability of LFP BESS. Utilizing advanced
methodologies such as regression analysis, regularization, and temporal cross-validation,
the model demonstrates exceptional accuracy and robustness in forecasting LFP energy
trading benchmark outcomes.

Validated using extensive data from Belgium’s energy market between 2020 and 2023,
this model is proven to effectively benchmark activation and dispatch costs, essential for op-
timizing grid stability and trading profitability. It uniquely accounts for critical factors such
as battery degradation, power capacity, energy content, and real-time market fluctuations,
remarkably improving the assessment of energy storage solutions’ cost-effectiveness.

The strategic importance of LFP batteries in modern energy markets is also highlighted,
showcasing their adaptability to fluctuating market conditions. This validation supports a
detailed framework for informed decision making, facilitating advancements in the energy
storage technology landscape.

Future research should focus on developing a machine-learning-based model for
battery degradation that aligns with real-time trading requirements in balancing markets.
Such advancements would optimize the deployment and operational efficiency of energy-
storage systems, enhancing their profitability and reliability in dynamic market conditions.

In essence, this benchmark model not only bridges a crucial gap by offering a compre-
hensive dynamic framework for the economic and operational assessment of energy-storage
systems but also sets a foundation for ongoing enhancements in the integration and per-
formance of these systems within electricity markets. The insights gained from this study
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promote the strategic application of LFP batteries for grid stability and lay the ground-
work for future innovations in energy-storage system management and market integration.
By enabling a deeper understanding of operational dynamics and cost efficiencies, this
research fosters a more robust and sustainable approach to energy market operations.

Author Contributions: Conceptualization, S.O.E.; methodology, S.O.E.; software, S.O.E.; validation,
S.O.E. and J.K.; formal analysis, S.O.E.; investigation, S.O.E.; resources, S.O.E. and J.K.; data curation,
S.O.E.; writing—original draft preparation, S.O.E.; writing—review and editing, S.O.E. and J.K.;
visualization, S.O.E.; supervision, J.K.; project administration, S.O.E. and J.K. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: To facilitate a comprehensive understanding and thorough validation
of our dynamic pricing predictor model for the balancing market, we have developed an interactive
web application. This platform enables users to engage directly with the model, allowing for an
in-depth examination of how various inputs influence the charging and discharging cost benchmarks
across the studied years. Interested researchers and practitioners are encouraged to explore the
model’s responsiveness to different regressor values, thereby gaining insights into the underlying
dynamics of the pricing predictions. The web application is accessible at the following URL: https:
//lfp-dynamic-pricing-predictor-for.onrender.com/. Upon visiting the site, users can adjust model
parameters as deemed necessary and instantly observe the resulting predictions.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

BRP balance-responsible party
BESS battery energy-storage system
LFP lithium-iron phosphate
DAM day-ahead market
IDM intraday market
BM balancing market
TSO transmission system operator
CAPEX capital expenditures
OPEX operational expenditures
EV electric vehicle
PV photovoltaic
PEV plug-in electric vehicle
DNV Det Norske Veritas
EU EBG European Balancing Guidelines
EPR energy/power ratio
SoC state of charge
SoH state of health
SI system imbalance
DoD depth of discharge
C-rate capacity rate
EFC equivalent full cycle
OCV open circuit voltage
O&M operation and maintenance
RMSE root mean square error
MAE mean absolute error
PDF probability distribution function
LCOS levelized cost of storage
LCOE levelized cost of electricity

https://lfp-dynamic-pricing-predictor-for.onrender.com/
https://lfp-dynamic-pricing-predictor-for.onrender.com/


Sustainability 2024, 16, 3645 23 of 31

Appendix A. Model Validation

Appendix A.1. Charge Cost Benchmark Model Validation

The charging cost model was validated using datasets from different years and for
various energy/power ratio (EPR) values to ensure its reliability and accuracy across
diverse scenarios. The validation results, as shown in Figure A1, highlight the model’s
ability to predict the charging cost with high precision. Each subplot corresponds to a
specific year and EPR value, showcasing the model’s consistency in its predictive quality.

For each combination of year and EPR, the actual charging costs are plotted against
the predicted costs derived from the model. The close clustering of the data points around
the line of unity (where actual costs equal predicted costs) in all subplots indicates a strong
correlation, further substantiated by the high R-squared values and low RMSE across the
board. Such robust validation underscores the model’s potential for practical application in
the financial analysis and planning of energy-storage systems.
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Figure A1. Charge cost vs. power capacity, validating the charging cost model across different years
and EPR values. The subplots represent the Ridge model’s predictions compared with the actual
charging costs, illustrating the model’s accuracy in various conditions.

Appendix A.2. Discharge Cost Benchmark Model Validation

The validity of the lasso regression model was rigorously tested across various years
and energy/power ratios (EPRs) to evaluate its robustness and predictive power. The
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model was applied to datasets from different years (2020–2023) and a range of EPR values
(0.5 to 10), as shown in the comprehensive plot in Figure A2. Each subplot within the figure
compares the actual lifetime costs to the predicted values, with the performance metrics
(R2 and RMSE) indicating a strong fit across all scenarios.
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Figure A2. Model validation for discharge cost vs. power capacity across different years and EPR
values, displaying the actual vs. predicted lifetime costs. The subplots validate the lasso model’s
predictions against the actual data, with each panel representing a different year and EPR value.

This multifaceted validation approach not only underscores the model’s accuracy
but also its applicability to a variety of operational scenarios. Such extensive testing is
crucial for ensuring that the model can be reliably used for forecasting and decision-making
purposes in the real-world settings of energy-storage systems.
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Appendix B. Lifetime Cost Model Component Descriptions

Appendix B.1. Investment Cost

The investment cost for each specific year and EPR is computed using a method that
accommodates interpolation within known data years and extrapolation for years beyond
the dataset. The generalized model can be defined as:

Cinv(y, EPR) =
{

a · log(EPR) + b for known data years
Interpolate or Extrapolate otherwise

(A1)

where Cinv is the investment cost, y is the year, EPR is the energy/power ratio, and a
and b are parameters derived from the curve fitting to the cost data available for known
years. The investment cost for a given year y and EPR is calculated using the interpolation
or extrapolation based on the nearest data points y1, y2, . . . , yn as follows:

Cinv(y, EPR) =


Interpolate(y, [y1, y2, . . . , yn], [Cinv(y1, EPR), Cinv(y2, EPR),
. . . , Cinv(yn, EPR)]) if y is within known years
Extrapolate(y, [y1, y2, . . . , yn], [Cinv(y1, EPR), Cinv(y2, EPR),
. . . , Cinv(yn, EPR)]) if y is outside known years

(A2)

The interpolate and extrapolate functions are defined based on polynomial regression
using the historical cost data. The historical cost data used in this work were sourced
from [32,33]. By obtaining the specific investment cost as described in the above equation,
the discounted investment cost per MWh for BM application can be obtained through
substitutions into Equation (18). For the years considered, Figure A3 shows the results of
the investment cost component of the LFP lifetime cost discounted over a 15 years project
period. The higher the EPR, the more the investment cost. On the average, the investment
cost decreases as the year under consideration increases, largely resulted from declining
cost of lithium-based batteries.
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Figure A3. Discounted investment cost (EUR/MWh).

Appendix B.2. Operation and Maintenance Costs

Operation and maintenance (O&M) costs are integral to the comprehensive economic
analysis of energy-storage systems. These expenses are categorized into fixed and variable
O&M costs, each with a distinct impact on the total operational costs.

Fixed O&M costs encompass routine maintenance activities that ensure the energy-
storage system operates optimally. This includes annual checks, component replacements,
and software updates. Specifically for battery systems, these costs also cover major refur-
bishment of power equipment to enhance performance and reliability [32].
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Additionally, variable O&M costs are considered, especially relevant to lithium-ion
battery systems. Noteworthy, LFP batteries generally do not incur extra warranty costs
within their operational life due to their substantial warranty coverage [32].

The overall O&M cost, COM, is determined using a model that considers both the
energy-to-power ratio (EPR) and the specific year of operation:

CO&M(y, EPR) =



p2 · EPR2 + p1 · EPR + p0 if y ∈ [ymin, ymax]

Interpolate(y, [y1, y2, . . .], [CO&M(y1, EPR), CO&M(y2, EPR),
. . .]) if ymin < y < ymax

Extrapolate(y, [y1, y2, . . .], [CO&M(y1, EPR), CO&M(y2, EPR),
. . .]) if y < ymin or y > ymax

(A3)

In this equation, CO&M denotes the year-specific O&M cost, with p2, p1, and p0 as coef-
ficients from a polynomial fitting of historical O&M data. The model for calculating O&M
costs is based on data from [32,33]. By determining the specific O&M cost as described,
the discounted O&M cost is then incorporated into Equation (18). Figure A4 depicts the
O&M cost component of the LFP’s lifetime cost, discounted over a 15-year project period.
It illustrates that a higher EPR correlates with increased O&M costs, primarily due to the
extended operational durations associated with higher EPR storage systems. Similarly to
investment costs, O&M expenses tend to decrease as the considered year progresses.
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Figure A4. Discounted operation and maintenance (O&M) cost (EUR/MWh).

Appendix B.3. Charging Cost

The charging cost plays a pivotal role in the economic evaluation of energy-storage
systems, ranking as the second primary influence on the LCOS after the investment cost.
Denoted as Cch, this cost is determined by the total energy charged into the system and
the prevailing electricity prices over the operational lifespan of the storage system. Accu-
rately calculating the charging cost over the entire operational period, Nop, is crucial for
integrating it into the LCOS calculation.

The formula for the charging cost is given by:

Cch =
∫ Nop

0
ubat(t)× ibat,ch(t)× Pprice,ch(t) dt (A4)

where the following are true:

• ubat(t) is the battery voltage at time t.
• ibat,ch(t) is the charging current at time t.
• Pprice,ch(t) is the electricity price for charging at time t.
• Nop is the operational lifetime of the storage system.
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For LCOS evaluation, the charging cost, Cch, is first calculated over the lifetime of
the storage system and then annualized based on Nop. In the Belgian context, an addi-
tional network fee applies for each charge from the grid, included in the simulation at 10
Euros/MWh based on insights from [34].

This annualized charging cost is incorporated into Equation 18, which is discounted
over the project lifetime, Nproject.

Figure A5 demonstrates the charging costs associated with different Energy to Power
Ratios (EPRs) over the operational lifetime of battery systems, without annualization.
For each year analyzed, a clear pattern emerges, wherein higher EPRs correspond with
escalated charging costs over the battery’s life. Notably, the year 2022 exhibits a significant
uptick in charging costs, potentially linked to the gas crisis, reflecting the broader economic
fluctuations influencing energy markets. While a general linear progression is observed
in charging costs as operational lifetimes extend, the increased costs in 2022 suggest an
exponential rather than a linear relationship, underlining the sensitivity of battery operating
expenses to external energy price volatilities.
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Figure A5. Charging cost vs. Operational lifetime.

Furthermore, Figure A6 presents the discounted battery charging cost over a 15-year
project period, showing cost variations across the years. This variation is largely due to
the volatile nature of the balancing market (BM), with prices fluctuating significantly. The
discounted charging cost of 2022 is notably higher than that of 2021, with 2023’s cost twice
that of 2020. The EPR behavior remains consistent.

0.5 h 1 h 2 h 4 h 6 h 8 h 10 h
EPR (Hours)

0

20

40

60

80

100

120

140

160

Ch
ar

gi
ng

 C
os

t 
(

/M
W

h)

26.42 26.99 27.65 27.58 27.09 26.81 26.59

62.38 60.88
64.39 62.64 61.78 61.61 59.64

150.44 150.25

158.27 157.45 155.80 154.77 152.43

50.02 50.52 51.90 50.81 49.58 49.11 48.95

Charging Cost
Year 2020
Year 2021
Year 2022
Year 2023

Figure A6. Discounted charging cost (EUR/MWh).

Appendix B.4. Replacement Cost

Battery degradation, performance decline, and finite operational life necessitate the
consideration of replacement costs. Since battery technologies are continually evolving and
expanding, costs tend to decrease annually. Therefore, it is imperative to incorporate the
reduction in battery costs when determining the replacement expenses over the project
cycle [35]. The cost of replacing a battery at each occurrence can be modeled as a function



Sustainability 2024, 16, 3645 28 of 31

of the battery’s initial cost and the reduction factor over time. This relationship is defined
by the equation:

Total Replacement Cost =
⌊R⌋

∑
i=1

Cinv · (1 − β)i·Nop

(1 + r)i·Nop
+ Partial Replacement Cost (A5)

where the following are true:

• R is the replacement frequency, calculated based on the operational life of the battery
(Nop) and the project’s total duration.

• ⌊R⌋ denotes the floor of R, indicating the number of full replacements.
• β is the percentage of annual reduction in battery installation costs.
• Cinv is the initial investment cost of the battery.
• r is the discount rate applied to account for the time value of money.

The partial replacement cost, applicable if R exceeds its integer part (⌊R⌋), ensures
that the cost calculation accounts for the fractional part of the battery’s operational life
extending beyond a full replacement cycle. It is given by:

Partial Replacement Cost =


Cinv·(1−β)R·Nop

(1+r)R·Nop , if R > ⌊R⌋

0, otherwise
(A6)

Ref. [36] derived several scenarios for the assessment of annual CAPEX reductions of
technological innovation. The scenarios—conservative, moderate, and advanced—reflect
varying degrees of technological advancement and market adoption rates. This work
applied the advanced scenario for its calculation and the discounted result is given in
Figure A7. The figure indicates that as the EPR increases, the replacement cost decrease due
to fewer number of replacements. On the average, the yearly behavior of the replacement
cost are very similar except for EPR of 0.5 which showed quite a significant differences
per year.
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Figure A7. Discounted replacement cost (EUR/MWh).

Appendix B.5. End-of-Life Cost

At the end of an energy storage service life, it becomes necessary to address the
disposition of the BESS’s assets. The end-of-life costs (Ceol) predominantly encompass
asset assessment fees, site clearance charges, dismantling and transportation expenses,
as well as recycling and reprocessing costs. It is possible to recover metallic materials
and some components within the power plant, conferring a residual value to the energy
storage facility upon reaching the end of its operational lifespan, the net of the disposal
expenditures. The residual value of an energy storage is thus defined as its value after
deducting the cost of disposal. If the disposal expense surpasses the recycling value of the
station, it is classified as a cost. Conversely, if the recycling value is higher, it is considered a
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revenue [35]. Currently, the recovery values the heterogeneity in materials and the diversity
of shapes and sizes contribute to the underdevelopment of recycling systems for lithium-ion
batteries. Recycling costs for lithium-ion batteries are higher than their regeneration value;
hence, lithium iron phosphate batteries are generally not recycled, and their residual value
is close to zero as confirmed in this work.

The Ceol cost is computed with consideration of both the battery operational lifetime
(Nop), cycle lifetime, and project lifetime (Nproject), in conjunction with the discount rate (r).
The mathematical formulation for the Ceol cost is given by:

Ceol = − Cresidual

(1 + r)(Nproject+1)
(A7)

where Cresidual represents the residual cost after decommissioning the storage when it
reaches the end of its life, Nproject is the project lifetime, and r is the discount rate over
the project lifetime. This calculation ensures that the EOL cost reflects both the expenses
incurred and any potential revenue from the disposal of the energy storage power station’s
assets. The Cresidual value was modeled after the values provided by [32] using regression.

Appendix B.6. Discharged Electricity

The annual storage capacity, or annual delivery capacity, of an energy-storage system
is significantly influenced by factors such as energy capacity, self-discharge, and the round
trip efficiency (ηRT). During operation, batteries undergo internal irreversible reactions
that lead to a gradual decrease in storage capacity (SOHtot). The discharged energy (Edis),
obtained in Equation (13) as a function of Equations (11) and (12), is converted into annual
discharge of the battery based on its Nop. This is then discounted over the project lifetime
(Nproject). The formula to calculate the total discharged electricity over the project’s lifetime
is given by:

N

∑
n=1

Energydischarged(n)
(1 + r)n =

Nop

∑
n=1

Edis(n))
(1 + r)n+Ncon−1 (A8)

where Energydischarged(n) is the discounted discharged electricity in year n, Edis(n) is the
accumulated discharged energy in year n, Nop is the operational lifetime, Ncon is the
construction time, and r is the discount rate.
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