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Abstract: AI plays a pivotal role in predicting plant growth in agricultural contexts and in creating
optimized environments for cultivation. However, unlike agriculture, the application of AI in
aquaculture is predominantly focused on diagnosing animal conditions and monitoring them for
users. This paper introduces an Automated Fish-feeding System (AFS) based on Convolutional
Neural Networks (CNNs) and Gated Recurrent Units (GRUs), aiming to establish an automated
system akin to smart farming in the aquaculture sector. The AFS operates by precisely calculating
feed rations through two main modules. The Fish Growth Measurement Module (FGMM) utilizes
fish data to assess the current growth status of the fish and transmits this information to the Feed
Ration Prediction Module (FRPM). The FRPM integrates sensor data from the fish farm, fish growth
data, and current feed ration status as time-series data, calculating the increase or decrease rate of
ration based on the present fish conditions. This paper automates feed distribution within fish farms
through these two modules and verifies the efficiency of automated feed distribution. Simulation
results indicate that the FGMM neural network model effectively identifies fish body length with a
minor deviation of less than 0.1%, while the FRPM neural network model demonstrates proficiency
in predicting ration using a GRU cell with a structured layout of 64 × 48.

Keywords: aquaponics; GRU; CNN; Fish-feeding System

1. Introduction

The concept of Artificial Intelligence (AI), initially proposed in the 1950s, has seen
explosive growth since the onset of the Fourth Industrial Revolution. Just a few years
ago, AI struggled to effectively perform tasks such as static image recognition or natural
language processing. However, it is now utilized in autonomous driving vehicles based on
static images (like road lines) and LiDAR sensors, as well as in agriculture through the use
of drones and soil sensors. AI has progressed to the point where it can diagnose the health
of animals in livestock and aquaculture industries, providing monitoring capabilities for
users. Jahmy Hindman, the Chief Technology Officer (CTO) of John Deere, an American
agricultural machinery company, emphasized that AI should be prioritized in addressing
food-related challenges such as agriculture, livestock, and aquaculture [1].

Precision aquaculture tries to achieve its goal, i.e., ensuring profitability, sustainability,
and protection of the environment, by incorporating different innovative technologies
such as Artificial Intelligence (AI) and the Internet of Things (IoT) in aquaculture [2].
Furthermore, the majority of fish farms employing such programs utilize computer vision
(51%) and artificial intelligence (70%). Despite the increasing adoption of programs in fish
farming, the level of AI implementation in this sector remains relatively low compared to
applications like autonomous vehicles and plant cultivation. Unlike other domains, most
current AI technologies related to fish farming primarily focus on monitoring tasks. Even
the most recent studies, including those conducted in 2022, utilize AI for tasks such as
estimating fish populations or assessing water quality to determine feeding schedules [3,4].
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While these approaches effectively leverage AI in fish farming, they are unable to fully
replace human intervention. For instance, when it comes to food rationing, the quantity
of food to be dispensed varies based on the fish’s growth rate, and environmental factors
within the aquarium significantly influence food distribution. Therefore, precise analysis is
essential for adjusting ration amounts accurately.

Therefore, this paper proposes an Automation Fish-feeding System (AFS) based on
Convolutional Neural Networks (CNNs) and Gated Recurrent Units (GRUs) Neural Net-
works to automate feed distribution in fish farms. The AFS gathers environmental data
regarding the fish’s growth from sensors within the tank, employs artificial intelligence
to assess the fish’s growth status, and calculates the appropriate food ration based on the
overall conditions of the fish farm. This study conducts training using publicly available
data to validate the effectiveness of the AFS and utilizes test datasets to confirm its efficacy
in managing fish growth and rationing. The structure of this paper is as follows:

• Section 2 discusses the significance of rations in fish farms and reviews existing
research on AI applications in this domain.

• Section 3 elucidates the architecture and logical design of the AFS proposed in
this paper.

• Section 4 employs publicly available data to train the neural networks within each
module of the AFS and utilizes test data to verify its capability to accurately assess
fish growth rates and adjust food distribution accordingly.

• Section 5 provides a brief summary of the proposed AFS and outlines future directions
based on simulation results.

2. Related Works

In 2020, aquaculture production contributed to 49% of the total fisheries and aquacul-
ture production, indicating its significant role in the industry. As the aquaculture sector
continues to expand, its importance is expected to grow steadily [5]. Consequently, the
introduction of smart farming practices becomes essential to enhance convenience and
efficiency within fish farming operations [6].

To further the development of fish farming, studies have been conducted to ascertain
the direction, species, and growth stage of fish. In 2006, research utilized a moment-
invariant method to determine fish direction, identify species (flounder or round fish), and
measure fish length [7]. Subsequently, with the advancement of deep learning techniques,
investigations have explored methods to segment and measure fish body characteristics
by integrating technologies such as Mask R-CNN [8]. More recently, a refined approach
for accurately measuring fish characteristics has been proposed. This method incorporates
an open fish dataset along with data augmentation techniques and an enhanced Mask
R-CNN network. Additionally, studies have focused on evaluating fish feeding intensity by
employing Convolutional Neural Networks (CNNs) to classify fish appetite into four scales:
none, weak, medium, and strong. These advancements signify ongoing efforts to improve
fish farming practices through innovative technological applications and methodologies.

A study to detect fish in an aquarium showed that fish detection and species classifi-
cation were possible with YOLOv3 and CNN-SENet [9]. It can be difficult to distinguish
between fish and fish species on the seafloor due to various environmental problems such as
brightness, light refraction, and noise. YOLO-Fish-1 improves the performance of YOLOv3
by correcting the upsampling step size problem to reduce false detection of small fish.
YOLO-Fish-2 further improved the model by adding spatial pyramid pooling to the first
model, adding the ability to detect fish shapes in a dynamic environment [10]. Images
acquired with the Deep Vision imaging system of commercial fishing gear are used to
localize and segment each individual fish in the image using the Mask R-CNN architecture
to estimate the boundaries of the fish. This allows complex images containing overlapping
fish to be successfully processed [11]. YOLOv8 is a version released in 2023 and was
built as an integrated framework to train instance segmentation and image classification
models [12].
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Fish are detected by acquiring the area of the fish in the optical image and distin-
guishing it from the background and other organisms. Afterwards, the length of the fish
is calculated according to the position of the fish [13]. A computer vision system (CVS)
was designed for fast, accurate, and indirect measurement of characteristics such as body
weight (BW) and weight (CW) of fish, and a linear model for prediction was developed.
Predictions were made using a dataset created by photographing 1653 fish, achieving R2
of 0.96 and 0.95 for fish BW and CW, respectively [14]. We built a system to predict fish
length in the 20–40 cm range using Mask R-CNN. The root mean square deviation for
the average length was 1.9 cm, and the maximum deviation between the estimated and
measured average body length was successfully predicted to be 4.0 cm [15]. We developed
a deep learning/statistical approach to obtain data on fish length in fisheries. We present
an operational system using a deep convolutional network (Mask R-CNN) combined with
a statistical model to automatically estimate the number and average fork length of dolphin
fish (Coryphaena hippurus) caught in Mediterranean fisheries. The proposed system was
operated during the Coryphaena hippurus fishing season in Mallorca and showed excellent
accuracy and precision [16]. Two approaches based on image processing and machine
learning techniques are combined in an environment integrated with new techniques (e.g.,
edge or corner detection and pattern stretching) to estimate the relative length, height, and
area occupied by the fish in the image [17].

In studies such as object recognition, images converted to grayscale showed higher
accuracy than those using RGB images [18].

Various studies have been conducted on CNN, a deep learning structure suitable
for image processing, such as fish detection and growth measurement. In 2012, one
of the largest CNNs was trained using five conv layers and three fc layers, achieving
unprecedented results in ILSVRC-2010 and ILSVRC-2012, reducing model performance
and learning time [19]. We succeeded in learning a model with a depth of 16 to 19 layers
using only 3 × 3 filters in all layers [20]. Afterwards, it was designed to increase the depth
and width of the network while maintaining the computing budget in 2015 [21]. Next, by
using Batch Normalization, we can see the effect of fast learning and suppressing overfitting
without relying on the initial value, and solve the problem of vanishing gradients [22].
To solve the feature reuse problem that occurs in structures using existing deep layers,
Dense Net prevents information loss by connecting the feature map of the first layer to the
feature map of the last layer [23]. Inception-v4 was designed to make the Inception neural
network wider and deeper more effectively, resulting in a faster learning speed [24]. As
CNNs developed, very deep CNNs became mainstream, but there were limitations due
to model size and computational efficiency. To solve this problem, a structure was used
to reduce the amount of computation by using several small filters [25]. When increasing
model accuracy, a compound scaling method was proposed that can efficiently adjust the
depth, width, and input image size of the model, which are commonly adjusted [26].

In fish farming, the food level of fish has the greatest impact on production efficiency
and reproduction costs [27]. Insufficient feed ration reduces the production efficiency of
fish, and excessive feed ration increases feed costs and causes pollution of the aquarium
environment [28]. However, too many factors influence food ration to optimize it [29]. Food
ration is most influenced by the size, quantity, and water quality of the fish. Fish that do
not consume food properly may develop inappropriate competition for food due to stress.
This directly affects food consumption [30]. Therefore, optimization of feed distribution has
great economic significance in aquaculture. Additionally, in aquaculture, it is important to
know the moment to stop feeding to maximize efficiency. While the aquaculture industry
has grown over the past 30 years, the fish food market has also grown in importance.
Therefore, reducing feed costs has become an important issue in aquaculture [31]. Food
ration prediction optimizes food distribution and further reduces feeding costs. Ultimately,
it becomes the basis for food distribution automation, and food distribution automation is
one of the important technologies in smart aquaculture or aquaponics systems.
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Hu et al. present an automatic food distribution system that regulates fish food
distribution based on deep learning computer vision technology. It recognizes the size of
the waves generated when the fish eats food and determines whether to stop or continue
feeding. As a result, an accuracy of up to 93.2% was achieved [32]. The application
of machine vision technology in aquaculture is an important recent research topic. In
particular, the application of machine vision in the field of feed distribution contributes to
the advancement of increasing production efficiency, reducing feed costs, and automating
feed distribution [33]. Predicting food rations using traditional mapping methods is
a very difficult problem. Traditional mapping methods artificially link food rations to
environmental factors. Therefore, there is a strong tendency to rely on subjective experience,
and there is a nonlinear relationship between food ration and environmental factors. This
is a very complex relationship and resolving it is very difficult [34]. Therefore, in this paper,
we design a deep learning model that imitates the food distribution pattern of aquaculture
experts, rather than a traditional mapping method. By constructing the model in a way that
mimics the expert’s food distribution pattern, low-cost learning is possible using only fish
growth information, environmental information, and the expert’s food distribution record.

GRU is a unit optimized for time-series data analysis while solving the long-term
dependency problem, which is a drawback of RNN (Recurrent Neural Network) [35]. Mao
et al. built a prediction model for pregnant sow’s feed intake using a GRU-based deep
learning model. Performance was evaluated by comparing LSTM, RNN, DNN, and GRU.
As a result of the experiment, the GRU model had a faster training speed and higher
prediction accuracy than other models [36]. Yang et al. compared LSTM and GRU models,
which are models that complement the long-term dependency problem of RNN. GRU
has a structure with one fewer gate than LSTM. This has the advantage of reducing the
computational process and increasing the efficiency of training time [37]. In this paper, a
GRU-based deep learning model is used to predict food distribution. This enables learning
of time-series data and training of deep learning models with fewer operations than LSTM.

3. The Design of an AFS

This section delineates the design of the AFS. Section 3.1 provides an overview of the
AFS, encompassing its logical structure, external data sources, and the conclusive outcomes
obtained from the test bed. Section 3.2 delves into the operation of the Fish Growth
Measurement Module (FGMM), elucidating how it refines input data, the construction and
training of a CNN-based growth detection neural network model, as well as the outcomes
and utilization of the neural network model. Section 3.3 details the functionality of the
Feed Ration Prediction Module (FRPM), outlining the generation of time-series data, the
construction and training of a GRU-based ration prediction neural network model, and the
results achieved by the AFS along with their practical implications.

3.1. Overview

In conventional feed distribution systems, determining the type and quantity of
feed dispensed relies heavily on human intervention, considering factors such as the
fish’s growth environment, its current growth status, and species-specific requirements.
Consequently, the Automation Fish-feeding System (AFS) proposed in this paper aims
to enhance the efficiency of fish farming by automating the food distribution process,
traditionally performed manually in fish farms. The AFS leverages sensor data from
the tank to gather information about the fish’s growth environment, utilizes artificial
intelligence to assess the fish’s growth status, and computes the appropriate food ration
based on the overall conditions of the fish farm. This paper presents a detailed examination
of the AFS, emphasizing its ability to accurately determine the optimal ration amount
through the utilization of two distinct modules. Figure 1 represents the overall structure
of AFS.
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Figure 1. The concept diagram of AFS.

Firstly, the Fish Growth Measurement Module (FGMM) captures images of fish using
an underwater camera and processes these images to generate a single fish image through
cropping, resizing, and perspective correction techniques. The module then creates training
data by associating the modified image with the corresponding fish growth level at the
time of capture, forming a dataset for training a CNN-based neural network model. Once
trained, this neural network model utilizes fish data to determine the degree of fish growth,
transmitting this information to the feed ration prediction module.

Secondly, the Feed Ration Prediction Module (FRPM) utilizes sensor data from the fish
farm, along with fish growth data and the current feed ration status represented as time-
series data, to calculate the rate of increase or decrease in ration based on the prevailing fish
conditions. In this paper, we introduce PredFeedNet (PFN), which predicts feed ration by
learning from data. To achieve this, we construct training data using feed rations adjusted
by fish farmers according to the specific circumstances of the fish farm and apply it to FRPM.
Through the integration of these two modules, this paper automates the feed distribution
process in fish farms and validates the efficacy of automated feed distribution.

3.2. Fish Growth Measurement Module

The Fish Growth Measurement Module (FGMM) undertakes two primary functions.
Firstly, it performs image preprocessing, which involves retrieving images from JSON-
based public datasets collected externally. It corrects the perspective of the acquired images,
crops and resizes them, and refines the images to ensure they are suitable inputs for the
neural network. Secondly, FGMM measures the growth stage of fish by employing the
Growth-rate Prediction Neural Network (GPNN), a CNN-based neural network model.
Upon completion of the learning process and confirmation of GPNN’s ability to accurately
measure fish growth, the measurement data is transmitted to the Feed Ration Prediction
Module (FRPM). Figure 2 illustrates the data flow within FGMM, encompassing the training
and utilization of the artificial intelligence model.
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3.2.1. Input Data Cleaning Process

In this paper, we obtain fish growth data and images in JSON format from AI Hub to
facilitate the learning of the AI model [38]. FGMM exclusively collects image data from
the JSON format data, standardizing it into a uniform format suitable for input into the AI
model. Additionally, FGMM assigns labels to each image to construct a training dataset.
The process through which FGMM generates a training dataset is outlined as follows:

Firstly, FGMM processes images to ensure that only one fish is recognized within
an existing image containing multiple fish. It achieves this by isolating and cropping the
image to include only one fish object. Subsequently, the image is resized to dimensions of
224 × 224 to maintain uniform input values. FGMM enhances recognition performance
by converting the resized image to grayscale. Lastly, a training dataset is generated by
correlating the body length of the fish at the time of photography with the resized image.
The body length data is sampled between 0 and 1 based on the degree of growth, and labels
are assigned to the image accordingly.

BL(zk)nom =
BL(zk)− min(BL(zi))

max(BL(zi))− min(BL(zi))
, (1)

Equation (1) represents the sampling method for generating body length data. Table 1
provides a detailed explanation of the variables utilized in Equation (1). Essentially, this
equation samples the current length of the fish between 0 and 1 based on the length of the
fish recorded in the training data.
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Table 1. The meaning of the symbols used in Equation (1).

Valuable Description

BL(zk)nom Normalized fish (zk) length
BL(zk) Length of the currently measured fish (zk)

min(BL(zi)) Minimum length of the entire fish
max(BL(zi)) Maximum length of the entire fish

FGMM not only generates training data, but also enhances input images captured in
a test environment. Unlike the training dataset, where the fish’s body length is already
documented, the images captured in the test environment depict fish whose growth rates
need to be assessed. Depending on the positioning of the photographed fish, there is a
possibility that the fish’s size may be inaccurately measured relative to its actual size. To
address this issue, this paper introduces a measuring plate capable of determining the
distance between the camera lens and the fish, which is installed on the test bed to mitigate
measurement errors stemming from the camera-to-fish distance. Images captured using
this method serve as input datasets by applying the same image processing methodology
employed during the creation of the training dataset.

3.2.2. The Training Process of the Growth-Rate Prediction Neural Network

Following this, FGMM proceeds to train Growth-rate Prediction Neural Network
(GPNN) using the refined training data. GPNN is a neural network designed to predict
the growth rate of the fish currently being photographed. GPNN is a CNN-based neural
network model comprising five convolution layers and three fully connected layers. It is a
neural network that alters the configuration of fully connected nodes conducted after the
convolution operation using images. Figure 3 illustrates the simplified structure of GPNN.
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The GPNN conducts a convolution operation using a 3 × 3 filter with a stride of 1 and
sets Padding to 1, padding the outskirts of the image with 0-valued data. Additionally,
GPNN employs anchor boxes of various sizes in the multi-scale feature map output to
effectively detect objects of different sizes. Figure 3 depicts the addition of an independent
node, such as bias, to the fully connected layer. This node represents the fish species in the
current image. In this study, only two fish species (pollock and salmon) were used, with
the corresponding node value being 0 for pollock and 1 for salmon.

Furthermore, GPNN utilizes dropout, a technique that randomly removes neurons
with a probability between 0 and 1 from the interconnected network, to alleviate computa-
tional burden and prevent overfitting. Dropout is applied to only 20% of the three fully
connected layers.

The composition of the neural network model for GPNN is as follows: The input data
image size is set to 224 × 224, and the first convolution layer operates on it. Subsequently,
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max pooling is performed in the first pooling layer to reduce the feature map size to
112 × 112. The second convolution layer conducts a convolution operation to generate a
112 × 112 feature map, followed by max pooling in the second pooling layer to further
reduce the feature map size to 56 × 56. This pattern continues through additional convo-
lutional and pooling layers, gradually reducing the feature map size to 7 × 7 in the fifth
pooling layer.

The data from the 7 × 7 feature map is then inputted as a row into the FC1 layer,
which consists of 1024 nodes connected using the Fully Connect method. Additionally, a
node capable of identifying fish species is added to the FC1 layer. The additional nodes are
indicated in Figure 3 by red lines for distinction. The FC2 layer forms a fully connected
layer with 512 nodes. The activation function of the FC3 layer is set to sigmoid to ensure
the output value falls within the range of 0 and 1.

The output nodes of GPNN, ranging from 0 to 1, predict the growth level of the
fish. This value represents the current growth status of the fish based on its body length,
allowing for automatic adjustment of feed distribution in accordance with its condition.
For example, if a fish that needs to grow to 60 cm is photographed during rearing and
GPNN predicts it to be 0.654, this means that the fish is currently about 39.2 cm and the
food distribution can be adjusted depending on its condition. In essence, GPNN can assess
the growth status of fish by autonomously determining the growth status based on body
length, a method commonly employed in existing fish farms.

3.3. Feed Ration Prediction Module

In a fish farm, the feed ration is determined by both the tank environment and fish
growth. The FRPM generates training data for a neural network by configuring expert
feed rations based on the aquarium environment and fish growth data collected over
time. This generated training data is then utilized to train a Pred-feed Neural Network
(PNN), capable of predicting the appropriate food ration. The aquarium environmental
data includes parameters such as water temperature (◦C), dissolved oxygen levels (mg/L),
ammonium concentration (mg/L), nitrite concentration (mg/L), nitrate concentration
(mg/L), and suspended solids (mg/L). On the other hand, growth data comprises the
average length (m) and average weight (kg) of the fish. As each parameter is recorded
over time, it can be structured as time-series data. Figure 4 represents the overall data flow
of FRPM.
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Given that each parameter of the aquarium environment and fish growth data holds
varying degrees of influence on the food ration, the FRPM normalizes the data and assigns
weights according to the significance of each parameter. The PNN is trained using expert
feed rations as label data to learn the feeding patterns of experts. Since fish growth
data evolves meaningfully over time, the PNN is designed as a Gated Recurrent Unit
(GRU)-based model. GRU is a type of Recurrent Neural Network (RNN) model in deep
learning, where the previous state influences the subsequent state through a hidden state
during learning, making it suitable for learning time-series data. The performance of the
PNN is assessed based on its accuracy in predicting test data after being trained on the
training dataset.

3.3.1. Configuring Input Data

The input data for the Pred-feed Neural Network (PNN) comprises three main cate-
gories: time, aquarium environment, and fish growth information. Here is a breakdown of
the data included in the input:

1. Time:

Hours: Date (year/month/day) and time (hour: minute)
Date (year/month/day) and time (hour: minute).
Aquarium environment:
Water temperature (◦C), Dissolved oxygen amount (mg/L),
Ammonium concentration (mg/L), Nitrite concentration (mg/L),
Nitrate concentration (mg/L), Suspended solids (mg/L).

2. Fish growth information:

Average length (m), average weight (kg).

The PNN utilizes nine input nodes, and since it is a GRU-based neural network, the
dataset to be inputted at the input layer consists of a time-series dataset. As the PNN is a
supervised learning neural network, a table of target answer data is required. Therefore,
the neural network is trained using the expert’s feeding log as the target answer table.

3.3.2. Construction and Learning of the PNN

The Input Layer of the Pred-feed Neural Network (PNN) accepts the real values of
the input dataset outlined in Section 3.3.1 and forwards them to the nodes. Subsequently,
the input data undergoes batch normalization at the BN Layer before being transmitted to
the Hidden Layer. Batch normalization plays a pivotal role in mitigating the challenges
associated with weight initialization, and augments the learning speed of the network.
Equations (2) and (3) elucidate the procedure through which the BN Layer computes the av-
erage and variance of the input data. These calculations are essential for the normalization
process, ensuring the stability and effectiveness of the neural network during training.

µBatch =
1
m

m

∑
i=1

INi, (2)

σ2
(Batch) =

1
m

m

∑
i=1

(INi − µBatch)
2, (3)

BN Layer normalizes data through standard distribution of input data. In Equation (2),
INi is the real number data currently stored in the input node, m means the batch size, and
µBatch means the average of INi. In Equation (3), σ2

(Batch) means the variance of the input
data calculated through µBatch. Equation (4) shows how to calculate normalized data xi
through the results of Equations (2) and (3).

xi =
INi − µBatch√

σ2
(Batch) + ϵ

, (4)
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In Equation (4), ϵ is a small constant that prevents division by 0 during the normaliza-
tion process. Lastly, the BN Layer determines the value to be input to the BN Layer using
the learning variables γ and β that are used only for that layer. Equation (5) shows how to
calculate the value input to the BN node.

BNi = γxi + β, (5)

In this paper, γ uses the variance of INi, and β uses the mean of INi. γ and β are
learned using back propagation, and this paper sets the batch size to 12. Data entered
the BN Layer is transmitted to the Hidden Layer. The Hidden Layer is composed of two
layers of GRU cells. GRU uses Sigmoid and tanh because the problem of using ReLU
(Rectified Linear Unit) as an activation function causes the value to become too large. The
GRU-based deep learning model was designed with a two-layer shallow structure because
when the Hidden Layer is designed deeply, the performance difference is not large, and
the possibility of overfitting increases. The configuration of the GRU cell used in PNN is
shown in Figure 5.
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GRU cells use a reset gate, update gate, and input gate. The reset gate calculates how
much data from the previous point is to be removed, the update gate calculates how much
data from the previous point to retain, and the input gate calculates the data to be delivered
to the next node, including the information of the reset gate and update gate. Equation (6)
represents the result of the reset gate, Equation (7) represents the result of the update gate,
and Equations (8) and (9) represent the process of calculating the result of the input gate.

rt = σ(WBNrBNt + Whrht−1 + br), (6)

zt = σ(WBNzBNt + Whzht−1 + bz), (7)

gt = tanh
(

WBNgBNt + Whg(rt ⊙ ht−1) + bg

)
, (8)

ht = (1 − zt) ⊙ gt + zt ⊙ ht−1, (9)

Table 2 shows the meaning of the symbols used in Equations (6)–(9), and the ⊙
operation used in Equations (8) and (9) refers to Hadamard product, which multiplies each
component of two matrices, not general matrix multiplication.

The computations are carried out within the two hidden layers through the GRU cell,
and the Pred-feed Neural Network (PNN) employs the hyperbolic tangent (tanh) function
between the hidden layer and the output layer. This function scales the output values to
fall within the range of −1 to 1 at the output node. There exists a single output node in
the output layer, which directly outputs the result of the tanh function without applying
any threshold. The output value obtained from the output node represents the increase or
decrease rate of the amount of feed currently being distributed. To ascertain this rate, the
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neural network calculates the difference between the current ration and compares it with
the feeding log used as learning data.

Table 2. The meaning of the symbols used in Equations (6)–(9).

Valuable Description

rt The output of Reset gate. A value between 0 and 1
zt The output of update gate. A value between 0 and 1
gt Data to use currently
ht Final data to be passed to the next node
W Weight

ht−1 Node value of hidden layer at previous time
b Bias

For the learning process, the PNN utilizes Mean Squared Error (MSE) as the loss function.
This function quantifies the disparity between the predicted output and the actual output,
thereby guiding the network’s learning process towards minimizing this discrepancy.

4. System Experiment

In this paper, a simulation is carried out to demonstrate the effectiveness and suit-
ability of the Automation Fish-feeding System (AFS) for automation. For this simulation,
salmon and pollock aquaculture data from the “Gangwon-do annual fish (salmon, pollock)
intelligent farming comprehensive data” provided by AI Hub was utilized [38]. A total of
2500 images were included in the dataset, with 1750 images allocated for training data and
750 images for validation data. These images were used to train the Growth-rate Prediction
Neural Network (GPNN) and verify its ability to accurately measure the body length of
the fish. Subsequently, the Pred-feed Neural Network (PNN) was trained using sensor
measurement data (dissolved oxygen, water temperature), water quality analysis data
(ammonium, nitrite, nitrate, suspended solids), salmon and pollock growth stage data
(average weight, average length), and feed management data (feed ration) recorded from
21 July 2021 to 21 September 2021. The trained PNN was then tested to assess its accuracy
in predicting changes in food ration. Furthermore, this paper explores the optimization of
the GRU Shape for the PNN by experimenting with different GRU Shape configurations.

The neural network training was conducted using Google Colab, with the model
constructed using Keras based on the Python3 language. The hardware utilized was a T4
GPU with a VRAM capacity of 12 GB. Additionally, 51 GB of RAM and approximately
27 GB of disk capacity were utilized in the training process.

4.1. The Learning Results of the GPNN

This paper aimed to verify the effectiveness of the Growth-rate Prediction Neural
Network (GPNN) by utilizing Mean Squared Error (MSE) and Mean Absolute Error (MAE)
as loss functions during the learning process. Figure 6 illustrates the outcomes of GPNN
learning based on the analysis of 2500 image data points.

According to the findings depicted in Figure 6, it is observed that as the learning pro-
cess advances, both Mean Absolute Error (MAE) and Mean Squared Error (MSE) decrease
gradually, indicating effective learning of the Growth-rate Prediction Neural Network
(GPNN). In the case of learning using MAE, the error rate started at 0.1765% at Epoch 1 and
steadily decreased to 0.0011%. Similarly, when validating the data, the MAE commenced
at 0.1342% and decreased to 0.0398%. It is noteworthy that at approximately 10 epochs,
the training loss and validation loss graphs intersect, indicating the onset of overfitting.
Subsequently, the difference between the two losses gradually widens in subsequent epochs.
Moreover, the error rate of the validation data reaches a minimum of 0.0398% and does not
decrease any further. This implies that GPNN exhibits the capability to accurately identify
the body length of fish with a minimal discrepancy of less than 0.1%.
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4.2. The Learning Results of the PNN

To train the PNN, this paper utilizes a dataset comprising the following variables:
dissolved oxygen amount, sensor measurement time, water temperature, ammonium con-
centration, nitrite concentration, nitrate concentration, suspended matter, average length
of fish, and average weight of fish. This dataset serves to determine the appropriate food
ration corresponding to the environmental conditions. The dataset is labeled to indicate
whether the food ration was adjusted and is employed as the training dataset. Specifically,
60% of the dataset is allocated for training, 20% for validation, and the remaining 20% for
testing purposes. This partitioning ensures that the model is adequately trained, validated,
and tested on distinct subsets of data, thus facilitating a comprehensive evaluation of
its performance.

The simulation involved comparing the Mean Absolute Error (MAE) throughout
the learning and testing phases of three distinct models with varying GRU connection
structures. A larger MAE implies greater deviation between the model’s predictions and
the actual values. The three models were configured by adjusting the GRU shape to 16 × 10,
32 × 16, and 64 × 48, respectively. Figure 7 depicts the results of the training and validation
process for each GRU cell. The simulation was executed with identical specifications for the
number of hidden layers, input layer, and output layer across all models. Key parameters
of the simulation include:

• Batch size: 12
• Epochs: 100
• Optimization algorithm: Root Mean Square Propagation (RMSProp)
• Loss function: Mean Squared Error (MSE)
• The neural network architecture follows the structure: Input Layer -> Batch Normal-

ization (BN) Layer -> Hidden Layer (GRU) -> Output Layer.

Table 3 presents the MAE values corresponding to different GRU shapes, offering
insights into the performance of each model.

Model A was trained in a 16 × 10 structure. Model A recorded a satisfactory MAE
during the learning process, with a Training MAE of 1.5 and a Validation MAE of approxi-
mately 3.4. Model B, like Model A, showed very good MAE results during the learning
process, with a Training MAE of 1.09 and a Validation MAE of 1.46. However, looking
at Table 3, during the testing process, both models show MAEs that are about four times
larger than during the learning process, and the actual predictions are performed incor-
rectly. Model C is a model with twice as many GRU Units connected to the Hidden Layer
compared to Model B. As a result, good performance was confirmed during the learning
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process with Training MAE of 0.85 and Validation MAE of 1.46 and showed a small error
of 2.96 in the actual test environment. Therefore, among the three models, the 64 × 48 GRU
neural network connection structure shows the highest accuracy when predicting increases
or decreases in food ration. Therefore, it is appropriate for the PNN to use a GRU cell with
a 64 × 48 structure.
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Table 3. The structure of the GRU cells for each model.

Model A Model B Model C

GRU Shape 16 × 10 32 × 16 64 × 48
Test MAE 5.14 4.53 2.96

4.3. The Efficiency Verification of GRU Cell

Figure 8 shows the learning outcomes of PNN when utilizing GRU cells and LSTM
cells. The results of the simulation indicated that for a cell shape of 16 × 10, LSTM achieved
a Test Mean Absolute Error (MAE) of 6.17 g, outperforming GRU, which yielded a Test MAE
of 6.81 g. However, as the cell size increased, GRU demonstrated superior performance
compared to LSTM. Specifically, when the cell size was set to 32 × 16, the Test MAE for
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GRU was 3.47 g, whereas LSTM exhibited a Test MAE of 4.53 g. Similarly, for a cell size
of 64 × 48, GRU attained a Test MAE of 3.35 g, while LSTM yielded a Test MAE of 4.55 g.
In summary, the results indicate that as the cell size increases, the accuracy of the PNN
utilizing GRU cells improves, and it requires fewer epochs for learning compared to LSTM.
Consequently, learning the PNN using GRU cells is deemed the most effective approach
based on the observed outcomes.

Sustainability 2024, 16, x FOR PEER REVIEW 15 of 18 
 

  
(a) 

  

(b) 

  
(c) 

Figure 8. Learning results of PNN when using the following GRU and LSTM shape: (a) 16 × 10 
shape; (b) 32 × 16 shape; (c) 64 × 48 shape. Figure 8. Learning results of PNN when using the following GRU and LSTM shape: (a) 16 × 10

shape; (b) 32 × 16 shape; (c) 64 × 48 shape.



Sustainability 2024, 16, 3675 15 of 17

5. Discussion

Sustainable aquaculture development remains critical to supply the growing demand
for aquatic foods [5]. However, currently, AI in livestock and aquaculture only supports
biological or environmental monitoring through images. Aquaculture requires humans to
measure the condition of the fish and manually adjust the growing environment or food
ration accordingly. Therefore, this paper proposed an Automation Fish-feeding System
(AFS) Based on CNN and GRU Neural Networks that can accurately measure the condition
of fish in a fish farm, and automatically distribute food according to the current tank
environment and the growth status of the fish.

AFS consists of two modules. The first module, Fish Growth Measurement Module
(FGMM), has two functions. The first function collects images from JSON-based public
datasets collected externally, corrects the perspective of the collected images, crops them,
and resizes them to refine the images so that the correct images can be input to the neural
network. The second process measures the growth stage of the fish by learning the Growth-
rate Prediction Neural Network (GPNN), a CNN-based neural network model. The second
module, Feed Ration Prediction Module (FRPM), generates learning data for a neural
network by organizing expert feed rations for fish growth data in time-series units. Next,
FRPM predicts the food ration of fish by learning a Pred-feed Neural Network (PNN) that
can predict food ration through the generated learning data.

Three simulations were conducted to verify the efficiency of the two modules. First,
we wanted to check whether the GPNN was properly trained. As a result of the simulation,
GPNN was able to well identify the body length of the fish with a slight difference of less
than 0.1. Second, we wanted to check whether the PNN was properly trained and find
the size of the GRU cell most suitable for the PNN. As a result of the simulation, when
using cells of sizes 16 × 10, 32 × 16, and 64 × 48, among the three models, the 64 × 48
GRU neural network connection structure showed the highest accuracy when predicting
the increase or decrease in food ration. Lastly, to prove the efficiency of the GRU cell,
the PNN’s GRU cell was replaced with an LSTM cell and trained. As the cell size grew,
the accuracy of the PNN using GRU cells increased, and the epochs required for learning
also decreased.

However, AFS has not been tested in an actual water tank, and went through the
process of converting JSON data to use data from an existing AI Hub. We are preparing
a testbed to apply AFS to an actual aquarium. We will construct a testbed through the
preparatory steps outlined in Table 4 to measure the overall environment of the aquaculture
farm. Furthermore, we plan to establish a basic hydroponic cultivation environment to
diagnose the soil condition and plant status. In the future, research is needed to determine
whether AFS can be applied to testbeds to replace tasks that previously required humans.

Table 4. Items included in the testbed to be built.

Item Description

Small fish tank
Individual observation and control of salmon egg

hatching and trout growth will be achieved by
introducing them into test tubes.

Large fish tank for fish farming
Sensor data from the tanks will be collected to monitor

the overall aquaculture conditions, which will be
integrated with the hydroponic cultivation environment.

Dead fish freezer Management and tracking of mortalities.

Small hydroponic model Measurement of plant growth status and conditions.
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