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Abstract: The development and utilization of urban underground space (UUS) have emerged as
critical strategies to address the challenges posed by urban population growth and land resource
depletion. Accurate prediction of UUS demand serves as the cornerstone for scientifically planning
underground space and promoting sustainable urban development. In this study, statistical analysis
methods were used to investigate the relationship between potential driving factors and UUS demand
based on collected data from 16 cities in China. The identification of primary driving factors involves
correlation, path, and determination coefficient analyses. Subsequently, univariate regression, multi-
ple linear regression, and LASSO regression methods are employed to construct prediction models
for UUS demand. Additionally, the link between historical data and UUS demand in each city was
studied separately. The findings reveal that GDP per km2 and GDP per capita comprehensively
capture the influence of urban population, economy, and transportation on UUS demand. Notably,
GDP per km2 makes the most significant contribution to the proposed regression models, followed
by GDP per capita. The application of LASSO regression proves effective in selecting potential factors
while maximizing data utilization, presenting itself as a valuable auxiliary tool for UUS planning.

Keywords: UUS; driving factor; UUS demand; prediction model

1. Introduction

In recent decades, China’s urbanization level has shown steady improvement, reach-
ing 65.22% in 2022, which is an annual increase of 0.5% points, approximately eight years
ahead of the earlier predictions by the National Bureau of Statistics [1]. Concurrently, the
urban permanent population has surged to 920.71 million, marking a rise of 6.46 million
compared to the end of 2021. The rapid pace of urbanization and the resultant growth in the
urban population inevitably lead to the depletion of urban land, posing challenges to the
sustainable development of Chinese cities [2–4]. Furthermore, this trend may exacerbate
various urban issues, including traffic congestion, environmental pollution, land resource
scarcity, and ecological degradation. As an invaluable spatial resource, urban underground
space (UUS) is assuming an increasingly pivotal role in the development of Chinese cities,
particularly in major urban centers [5,6]. The development of UUS not only expands the
available urban land resources and alleviates traffic congestion but also contributes to
enhancing the urban environment and mitigating the impact of urban disasters [7]. Recog-
nizing these advantages, UUS is garnering more attention as a potential emerging resource
for development and utilization [7–12]. Many international metropolises, including Shang-
hai, Hong Kong, Singapore, Tokyo, and Mexico City, are actively engaging in research and
exploration related to the development and utilization of UUS.

Undoubtedly, the development of UUS brings about numerous advantages, cater-
ing to the urban demands for sustainable development. Simultaneously, it faces various
challenges, such as the lack of scientific and reasonable planning and the difficulty in deter-
mining the desirable demand for UUS, among others [4,13]. Furthermore, it is challenging
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to renovate or rebuild once the UUS has been built for some specific function, which leads
to strong irreversibility [3,14]. Therefore, the scientific development of UUS emerges as
a crucial approach to resolving the contradiction between population growth and land
resource depletion in the process of urban development. In comparison to developed
countries, the development and utilization of UUS in China, although initiated relatively
late, has experienced rapid growth. As of the end of 2020, the total UUS area in China
has reached 2.4 billion square meters. Due to different social, economic, environmental,
and policy backgrounds, the development speed and scale of UUS vary across different
cities. Therefore, the research objective in this work is to analyze the driving factors of
UUS demand for cities in China and build a prediction model to provide a reference for
decision-makers.

By collecting comprehensive data on developed UUS demand and potential driving
factors in different cities, this research employs descriptive statistics, correlation analysis,
and path analysis to identify the inherent driving factors of UUS development demand.
Subsequently, a series of regression models are proposed and analyzed, with primary
driving factors as independent variables and UUS demand as the dependent variable,
including univariate optimal models, multiple linear regression models, and LASSO re-
gression models. Additionally, the correlation between UUS demand and primary driving
factors in each city is investigated and discussed separately. Hence, this work presents a
series of prediction models to forecast UUS demand, offering valuable insights for UUS
planning and sustainable development decision making.

2. Literature Review

Integrating UUS into urban master planning is considered as an ideal approach to
develop underground space resources and achieve sustainable development [15]. However,
in the UUS planning process, determining the amount of UUS remains a critical data
requirement, lacking a unified characterization and prediction method [4,16]. Typically, the
functions of each segment of UUS are initially planned and their volumes are separately
determined before being summed up as the overall demand for UUS [14,17]. While this
method ensures more accurate UUS calculations, it can be relatively cumbersome. There-
fore, proposing metrics such as the amount of UUS per capita and per land area (the ratio
of UUS area to permanent population and land area, respectively) have been suggested
to represent UUS demand. These metrics minimize potential biases in proportions and
eliminate inconsistencies that may arise when employing multiple indices [5,14,17,18].
Based on the improved indicators to characterize the UUS demand, the calculation method
of UUS demand can be categorized into two main approaches, each considering various
factors. The first approach focuses on the relationship between UUS and aboveground
development. Some scholars treat UUS as a supplement to aboveground space, determin-
ing UUS capacity based on future population demographics and the eco-city model [5,19].
However, maintaining synchronous and coordinated development between aboveground
and underground space is crucial for ensuring sustainable urban development, often over-
looked. Alternatively, other scholars view UUS as a driving force for urban development,
introducing a ratio of underground to aboveground space development to calculate UUS
demand. This is primarily estimated through case comparison analysis and the expert
scoring method [20]. These two methods, while valuable, rely heavily on specific cases and
expert experience, carrying a degree of one-sidedness and subjectivity.

The second approach seeks to build a prediction model for UUS demand based on the
relationship between the amount of UUS and potential influencing factors. For instance,
He et al. [14] considered population density, annual gross domestic product (GDP) per
capita, and real estate prices as influencing factors, proposing a predictive model for UUS
demand in various districts in Shanghai using the multivariate regression method. Other
factors, such as spatial location, flow area ratio, car ownership per 100 people (100 times
the ratio of the total number of registered vehicles in a city to its permanent population),
land use type, and land price, have also been applied to predict UUS demand [20–26].
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The factors and methods adopted for UUS development demand in previous research
are summarized in Table 1. Despite the multitude of factors and methods related to UUS
amounts, some are challenging to quantify for prediction, particularly those associated
with energy conservation or sustainable development factors.

Table 1. Factors and methods for UUS demand in previous research.

Indicator Method References

Land price
Land use type
Flow area ratio
Rail transit passenger flow
Accessibility of rail transit

Regression model [21]

Population density
Annual GDP per capita
Real estate price

Regression model [14]

Land use type
Ground building FAR2 Comparative analysis [20]

Population density
GDP per capita
Spatial location
vehicle possessive quantity per
100-person
GDP per km2

Land price

Regression model [22]

GDP per capita
Population density
Real estate price

Regression model [23]

GDP per capita
Car ownership per 100 people
Average price of land sold
Tertiary industry’s regional GDP

Regression model
Grey neural network model [24,25]

Accessibility
Traffic congestion
Land use type
Location condition
Building density
House price level
Population density
Night light intensity

Geodetector model [26]

3. Methodology
3.1. Potential Driving Factors

Building on the insights from the previous section, it is evident that numerous factors
influence the amount of UUS. However, a unified factor to predict UUS demand remains
elusive. Drawing from existing studies, the selection of influencing factors for building
a prediction model of UUS demand is approached from three perspectives: correlation,
representativeness, and data accessibility. Based on these considerations, nine factors are
identified as potential driving factors for UUS demand. These factors include population
size, population density, GDP per capita, GDP per km2, vehicle possession quantity per
100 persons, land price, monthly mean temperature, monthly mean maximum temperature,
and monthly mean minimum temperature. The potential driving factors and their symbol,
respective units are detailed in Table 2.
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Table 2. Potential driving factors and units.

Factor Symbol Units Units Symbol

Population size F1 Person person

Population density F2 Person per
square kilometers person/km2

GDP per capita F3 Yuan Yuan

GDP per km2 F4 Yuan per
square kilometers Yuan/km2

Vehicle possessive
quantity per 100 persons F5 Vehicle -

Land price F6 Yuan per square meter Yuan/m2

Monthly mean
temperature F7 Centigrade ◦C

Monthly mean
maximum temperature F8 Centigrade ◦C

Monthly mean
minimum temperature F9 Centigrade ◦C

Population size and density offer insights into the degree of land congestion in a
city. GDP per capita, GDP per km2, and land price reflect the level of urban economic
development, serving as the foundational basis for UUS development. Vehicle possession
quantity per 100 persons provides an indication of urban traffic conditions. With the rise
of urban temperatures, the demand for energy increases, especially for electricity used in
air conditioning. This requires urban planners and architects to adopt sustainable design
principles such as green buildings, optimized urban planning, and improved energy effi-
ciency to reduce energy consumption. Developing and utilizing urban underground space
development can, to some extent, reduce energy consumption and promote sustainable
development of the city. To comprehensively reflect the impact of temperature on UUS
demand from a sustainable perspective, this study also considers monthly mean tempera-
ture, monthly mean maximum temperature, and monthly mean minimum temperature as
potential factors.

3.2. Data Acquisition Sources and Methods

A comprehensive dataset comprising 69 sets of data was meticulously collected from
16 cities in China spanning the years 2002 to 2020. The cities included in the dataset are Bei-
jing, Shanghai, Nanjing, Hangzhou, Xuzhou, Guangzhou, Shenyang, Ningbo, Zhengzhou,
Nanchang, Wuxi, Qingdao, Wenzhou, Fuzhou, Chengdu, and Taizhou, as illustrated in
Figure 1. The data sources for F1, F2, F3, and F5 are extracted from the statistical yearbooks
of the corresponding cities and respective years. To eliminate biases stemming from vari-
ations in urban areas, F4 is introduced to characterize the impact of GDP per unit urban
area, calculated as the GDP of a city divided by its total administrative area. Both GDP and
total administrative area data are sourced from statistical yearbooks. F6 data are obtained
from the China Land Price Information Service Platform (www.landvalue.com.cn (accessed
on 4 February 2024)). Temperature data for F7, F8, and F9 are procured from the China
Meteorological Data Service Centre (https://data.cma.cn/en (4 February 2024)). The UUS
area data for different cities were extracted from the published literature, as detailed in the
Appendix A.

www.landvalue.com.cn
https://data.cma.cn/en
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Figure 1. Distribution of Chinese cities for data collection.

Given the substantial variations in land area among cities in China, solely analyzing
UUS demand may lead to biased results. Consequently, to account for the relatively small
changes in each city, the UUS area per km2 (Y) was introduced to characterize the demand
for UUS. This can be expressed as

YUUS =
AUUS

ALA
(1)

where YUUS is the UUS area per km2, AUUS is the developed UUS area, m2, and ALA is the
total administrative area of a city, m2.

3.3. Flowchart of This Work and Analysis Method Adopted

To examine the relationship between potential driving factors and UUS demand, a
series of statistical analysis methods were employed, encompassing descriptive statistics,
correlation analysis, path analysis, and regressive analysis. In this work, the descriptive
statistics are used to analyze the statistical characteristics of different indicator data, like
maximum (Max), minimum (Min), mean, standard deviation (SD), and coefficient of
variation (CV). Because constructing regression model requires independent variables to be
uncorrelated, correlation analysis is performed to study the correlation between indicators.
The path analysis is to find the main factors for the regression model. The flowchart of this
analytical process is illustrated in Figure 2.

(1) Descriptive Statistics: Descriptive statistics were conducted on various potential
influencing factors, encompassing Max, Min, mean, SD, and CV.

(2) Correlation Analysis: Correlation coefficients and significance levels (P) were
computed and analyzed to explore the correlation between factors and UUS demand.

(3) Path Analysis: Through standardizing the regression coefficients, the path coef-
ficient of each variable to the dependent variable can be obtained, as indicated by the
following formula:

Py,xi = bi
σxi

σy
(2)
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where Py,xi is path coefficient of the i-th independent variable, bi is the regression coefficient
of the i-th independent variable, σxi is the SD of the i-th independent variable, and σy is the
SD of the dependent variable.

Utilizing the correlation coefficient between independent variables and the path coeffi-
cient to the dependent variable, the indirect path coefficients of each independent variable
to the dependent variable can be expressed as

Pxixj = rij
σxi

σy
Pj,y (i ̸= j) (3)

where Pxixj is indirect path coefficient and rij is the correlation coefficient between two
factors. Pj,y is the path coefficient.

(4) Regressive Analysis: The univariate optimal model, multiple linear regression
model, and LASSO regression model were employed to establish the relationship between
potential factors and UUS demand. A multiple regression model was formulated for UUS
demand, incorporating influencing factors as independent variables and UUS demand as
the dependent variable. This model can be expressed as

y = b0 + b1x1 + b2x2 + · · ·+ bixi (4)

where y is the dependent variable (UUS demand), b0 is the intercept, xi is the independent
variable, and bi is regression coefficient.
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4. Results
4.1. Descriptive Statistics

The descriptive statistical results of UUS demand and influencing factors are presented
in Table 3. Notably, F4 exhibits the highest coefficient of variation (CV), reaching 96.76%,
whereas F8 has the minimum CV at 8.13%. The CV of UUS demand is recorded at 91.87%
and, for all other factors, the CV exceeds 40%. It can be seen that, apart from temperature
related factors, other factors have significant discreteness, among which the GDP per km2 of
different cities has the greatest discreteness. These results emphasize substantial variations
in UUS demand and influencing factors due to differences in cities and years.
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Table 3. Statistics of factors used for UUS.

Factors Max Min Mean SD CV (%)

F1 2.48 0.51 1.31 0.64 48.81

F2 3.91 0.52 1.60 1.19 74.13

F3 15.86 0.60 8.50 3.56 41.93

F4 5.99 0.20 1.41 1.37 96.76

F5 30.75 4.20 17.59 7.07 40.19

F6 3.37 0.20 1.03 0.83 80.02

F7 22.53 7.43 16.69 2.02 12.07

F8 26.64 13.18 21.06 1.71 8.13

F9 19.63 1.92 13.09 2.53 19.33

Y 1.88 0.02 0.47 0.44 91.87

4.2. Correlation Analysis

Figure 3 plots the correlation and significance relationships between various depen-
dent and independent variables. The dependent variable y is positively correlated with all
independent variables, exhibiting the highest correlation coefficient with F4 (0.93) and the
lowest correlation coefficient with F8 (0.065). The correlation between y and F1, F2, F3, F4,
and F6 is extremely significant (p < 0.01), significant with F5 (p < 0.05), and not significant
with F7, F8, and F9. The order of the correlation coefficients between each factor and y is F4
> F6 > F2 > F3 > F1 > F5 > F7 > F9 > F8. With the exception of F1 and F5, F1 and F8, and F2
and F5, all other factors show a positive correlation. There is a high correlation between
the monthly mean, mean maximum, and mean minimum temperature. The correlation
coefficient between F7 and F9 is the highest (0.99), followed by F7 and F8 (0.96) and F8 and
F9 (0.93). Additionally, the correlation coefficients of F1 and F2, F2 and F4, and F3 and F5
are all greater than 0.8, while F1 and F4 as well as F3 and F6 are all greater than 0.7. Thus,
GDP per km2 (F4) has a strong correlation with population size (F1) and population density
(F2) and GDP per capita (F3) has an extremely strong correlation with Vehicle possessive
quantity per 100 persons (F5), along with a strong correlation with F6. In this way, the GDP
per km2 of a city has a strong correlation with population factors. It is evident that the nine
potential factors exhibit a fairly complex correlation.
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Due to the complex correlation between potential factors, it is necessary to calculate
the variance inflation factor (VIF) to check multicollinearity, which can be expressed as

VIF =
1

1 − R2 (5)

where R2 is the determination coefficients. In Figure 4, the VIF values of potential factors are
depicted. It is evident that the temperature-related factors (F7, F8, and F9) exhibit intense
multicollinearity, followed by population density (F2) and GDP per km2 (F4). Consequently,
feature selection becomes imperative for constructing a more accurate prediction model.
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4.3. Path Analysis

Considering both significance and multicollinearity, F3, F4, and F7, all with significant
levels, are selected for path analysis, as illustrated in Figure 5. The corresponding results
are presented in Table 4.
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Table 4. Direct and indirect path coefficients.

Factors Correlation
Coefficient

Direct Path
Coefficient

Indirect Path Coefficient

F3 F4 F7 Total

F3 0.695 0.320 ** – 0.158 0.074 0.232

F4 0.931 0.787 ** 0.390 – 0.175 0.564

F7 0.186 0.063 * 0.015 0.014 – 0.029
Note: * means significantly different (p < 0.05) and ** means very significantly different (p < 0.01)

Table 4 reveals that the direct path coefficients of F3, F4, and F7 on UUS demand are
all positive. Both F3 and F4 reach extremely significant levels, while F7 is significant. F4
possesses the highest direct path coefficient for UUS demand (0.787), signifying the greatest
direct effect. Following closely is F3 (0.32), while F7 exhibits the smallest (0.063).
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Similarly, the indirect path coefficients of the three factors on UUS demand are all
positive, with F4 still exerting the greatest indirect effect, while F7 has the smallest. This
suggests that urban temperature is not a major driving factor for the development of UUS,
aligning with previous research [27]. Furthermore, the direct path coefficients of the three
factors are greater than the indirect coefficients, indicating that these three factors primarily
influence UUS demand through direct effects.

4.4. Determination Coefficient Analysis

Table 5 provides the determination coefficients of the three factors on UUS demand.
The diagonal showcases the coefficient of determination for F3, F4, and F7, while the upper
right corner of the diagonal represents the joint coefficient of determination for two factors
on UUS demand.

Table 5. Determination coefficients of three factors to the UUS demand.

Factors
Coefficient of Determination

Total Surplus Factor
F3 F4 F7

F3 0.482 0.939 0.483

0.943 0.333F4 – 0.867 0.867

F7 – – 0.035

The coefficient of determination for UUS demand by F4 is notably high at 0.867,
surpassing other factors, followed by F3 (0.482). F7 exhibits the smallest coefficient of
determination, standing at 0.035. The joint determination coefficient of F3 and F4 is the
highest, reaching 0.939, while the value for F3 and F7 is the lowest, at only 0.483. The
total coefficient of determination for UUS demand considering all three factors is 0.943,
indicating that UUS demand is predominantly determined by the combined efforts of the
three mentioned factors.

Based on this, the surplus factor (e) can be calculated using Equation (6), resulting in a
value of 0.333. Therefore, F3, F4, and F7 can effectively describe UUS demand, although
there might be other factors not considered in this analysis.

e =
√

1 − R2 (6)

4.5. Regression Analysis

Considering the findings from Sections 4.3 and 4.4, where the correlation coefficient,
path coefficient, and determination coefficient are all relatively small, F3 and F4 are chosen
as the primary factors for constructing both the univariable optimal model and the multiple
linear regression model.

• Univariable optimal model

Single-variable curve fitting was conducted with F3 and F4 as independent variables
and Y as the dependent variable. Five types of curve models were introduced, including
the linear model, logarithmic model, quadratic function, power function, and exponential
function. The optimal model was determined based on R2 and F, as presented in Table 6.

Table 6. The optimal model of UUS demand.

Factors Optimal Model
Model Summary Parameter Evaluation

R2 F-Stat P Constant b1

F3 Exponential model 0.58 92.496 0 0.044 0.227

F4 Linear model 0.867 435.657 0 0.055 0.297
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The optimal model for F3 is the exponential function, while for F4, it is the linear
function model. The F4 model exhibits the highest R2 and F, with values of 0.867 and 435.657.
Following closely is the F3 model, with R2 and F values of 0.58 and 92.496. Moreover, only
the models of F3 and F4 demonstrated extremely significant levels.

• Multiple linear regression

Similarly, using F3 and F4 as independent variables and Y as the dependent variable,
stepwise regression was employed for regression analysis. The stepwise regression process
is outlined in Table 7. It is evident that the multiple correlation coefficient, R2, and adjusted
R2 gradually increase, while the standard error decreases with the inclusion of predictive
variables. Based on regression coefficients and analysis of variance, the partial regression
coefficients of the two independent variables and the regression relationships demonstrated
a highly significant level (p < 0.01). In the end, a multiple linear regression equation can be
constructed as

y = 0.038F3 + 0.248F4 − 0.198 (7)

Table 7. The stepwise regression processes.

Model
Multiple

Correlation
Coefficient

R2 Adjusted R2 Standard Error Predictive
Variables

1 0.931 0.867 0.865 0.16 constant, F4

2 0.939 0.939 0.937 0.109 constant, F4, F3

• LASSO regression

LASSO regression is an effective method for handling multicollinear data, utilizing
an L1-norm penalty term to shrink linear regression coefficients, achieving both feature
selection and penalty regulation [28]. LASSO aims to minimize the following loss function:

J(β) =
1
N

N

∑
i=1

(yi −
P

∑
j=1

xijβ j)
2 + λ ∥ β ∥1 (8)

where β is the coefficient matrix, N is the number of groups of data, yi is the independent
variable, xij is the dependent variable, P is the number of independent variables, and λ
determines the strength of the penalty, influencing the degree of sparsity in the coefficients.
|| ||1 is the L1-norm. The 10-fold cross-validation method was employed to determine
regression model coefficients, following the following steps:

(1) Randomly shuffle the sample data;
(2) Divide the randomly shuffled sample data into 10 segments;
(3) Select any nine segments of data to train the model and use the remaining one segment

of data to validate the model;
(4) Repeat step (3) and determine the lambda value with the smallest mean-squared

error (MSE).

Figure 6 presents the cross-validation for the LASSO regression model. The red dashed
line represents the lambda value (λ = 0.00281) with the minimum MSE in Figure 6a and
the corresponding coefficients for the LASSO model in Figure 6b. From Figure 6b, F3, F4,
and F6 were the only selected independent variables with coefficients of 0.033, 0.236, and
0.003, respectively. The coefficients of all remaining potential factors are zero. Therefore,
the forecast model using the LASSO variable selection method can be expressed as

y = 0.033F3 + 0.236F4 + 0.003F6 − 0.143 (9)
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paths in dependence on lambda.

5. Discussion and Limitation
5.1. Influence of F3 and F4 on Y in Each City

The relationship between F3, F4, and Y is depicted in Figure 7. Upon observing
Figure 7a,b, it is apparent that the relationship between F3, F4, and Y appears to be discrete,
especially between F3 and Y. The R2 for the linear model between F4 and Y is 0.867, which
is promising and significantly better than F3 and Y (0.482). However, upon marking the
data of different cities with different colors (excluding cities with less than three sets of
data), Figure 7c,d reveals a strong positive correlation between F3 and Y as well as F4 and
Y in each city. Due to significant differences in economic levels among different cities, it is
worthwhile to study the relationship between Y, F3, and F4 in each city separately.
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Figure 7. Variation relationship between F3, F4, and Y. (a) F3 (all data), (b) F4 (all data), (c) F3 (partial
data), and (d) F4 (partial data).
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The linear model was employed to fit the relationship between Y, F3, and F4 for each
city. The R2 and coefficients of the model for each city are presented in Table 8. Except for
the model of F3 and Y in Hangzhou, the R2 values of all other models are greater than 0.9,
with some cities even reaching 0.99, like Shanghai and Hangzhou. Therefore, it may be
more effective, simple, and accurate to make full use of the relationship between existing
F3 or F4 and Y.

Table 8. The linear model of Y in each city.

City
F3 and Y F4 and Y

R2 Constant b1 R2 Constant b1

Shanghai 0.995 −0.3977 0.1056 0.9959 −0.1853 0.3437

Beijing 0.9248 −0.0141 0.0476 0.9303 0.0818 0.2915

Nanjing 0.9437 −0.4344 0.0939 0.9455 −0.3106 0.6069

Hangzhou 0.8767 −0.2241 0.0513 0.9943 −0.0868 0.6806

Xuzhou 0.9195 −0.1657 0.0494 0.9316 −0.1455 0.5951

5.2. Limitation

While the proposed model effectively describes the relationship between factors and
UUS demand in cities with available data, it is crucial to validate it in other cities to
ensure its applicability. The surplus factor indicates the existence of other potential factors
influencing UUS demand that have not been considered, such as policy and geological
conditions. Additionally, the relationship between factors and UUS demand established in
this study is valid within the scope of the collected data and, with the continuous expansion
of developed UUS capacity, the demand for UUS may change. Therefore, these limitations
should be taken into account when applying the models for UUS demand forecasting.

6. Conclusions

This study, based on collected data, investigates the primary driving factors for UUS
demand in China and proposes a series of regression models. The findings can be summa-
rized as follows:

(1) UUS demand has a strong correlation with urban economy and population factors,
like GDP per km2, population density, and land price. GDP per km2 and GDP per capita
are identified as primary driving factors and can comprehensively characterize the impact
of urban population, economy, and transportation on UUS demand, while the influence of
temperature-related indicators is small;

(2) Both multiple linear regression and LASSO models effectively describe the rela-
tionship between influencing factors and UUS demand, in which GDP per km2 contributes
the most, followed by GDP per capita, suggesting their potential as auxiliary tools for UUS
development planning;

(3) The LASSO model stands out for selecting primary factors for UUS demand and
constructing regression models without multicollinearity, showcasing its utility;

(4) Historical GDP per km2 and GDP per capita of a city demonstrate a strong correla-
tion with its UUS demand, serving as a valuable supplement for predicting UUS demand.
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Appendix A

The data sources of UUS demand in different cities are shown in Table A1.

Table A1. Data sources of UUS demand.

City Year Data Sources City Year Data Sources

Beijing

2006 [29] Xuzhou 2010–2020 [30]

2008, 2010, 2012 [25] Guangzhou 2010 [25]

2015 [18] Shenyang 2012 [22,25]

Shanghai

2002–2005,
2012, 2014–2019 [31] Ningbo 2015 [25]

2006 [29,31] Zhengzhou 2015 [18]

2007–2011 [25,31] Nanchang 2011 [18]

2013 [25] Wuxi 2005 [29]

Nanjing

2008, 2009 [30] Qingdao 2004 [29]

2010–2016 [25] Wenzhou 2012 [32]

2017–2020 [24,25] Fuzhou 2014 [25]

Hangzhou

2010 [33,34] Chengdu 2010 [25]

2011 [34] Taizhou 2014

Taizhou Municipal
People’s Government

(https://www.zjtz.gov.cn
(accessed on 4 February 2024))

2012–2018 [25,34] - - -

2019–2020 [24,25] - - -
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