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Abstract: Over the past few decades, there has been an increase in the number of studies about the
estimation of phycocyanin derived from remote sensing techniques. Since phycocyanin is a unique
pigment of inland water cyanobacteria, the quantification of its concentration from earth observation
data is important for water quality monitoring - once some species can produce toxins. Because
of the growth of this field in the past decade, several reviews and studies comparing algorithms
have been published. Thus, instead of focusing on algorithms comparison or description, the goal
of the present study is to systematically analyze and visualize the evolution of publications. Using
the Web of Science database this study analyzed the existing publications on remote sensing of
phycocyanin decade-by-decade for the period 1991–2020. The bibliometric analysis showed how
research topics evolved from measuring pigments to the quantification of optical properties and
from laboratory experiments to measuring entire temperate and tropical aquatic systems. This study
provides the status quo and development trend of the field and points out what could be the direction
for future research.

Keywords: phycocyanin; cyanobacteria; water quality; algal blooms; bio-optical modeling; lake color;
ocean color

1. Introduction

Cyanobacteria harmful algal blooms (CHABs), in freshwater systems, have been a major concern
for environmental and public health authorities worldwide. In general, algal blooms come with the
loss of aesthetic conditions, the increase of taste and odor of water supply sources, the growth of a
thick scum on the surface of lakes and reservoirs as well as the lack of water clarity [1]. In addition,
other environmental effects can be associated with CHABs such as the decomposition of dying blooms
which may lead to oxygen depletion (hypoxia and anoxia) for aquatic life [2]. These are common
environmental health concerns of algal bloom occurrence in inland waters; however, the main concern
is related to the production of toxic secondary metabolites by some species of cyanobacteria also known
as blue-green (BG) algae. These metabolites can cause serious health issues in mammals (including
humans) and wildlife (bird and fishes) affecting several systems such as the hepatopancreatic, digestive,
endocrine, dermal, and nervous systems [3,4].

Cyanobacteria have been observed in lentic freshwater systems worldwide [2,5–8]. The presence
of cyanobacteria has been associated with favorable ecophysiological conditions - especially nutrient
over-enrichment and hydrologic alterations to ecosystems [9–11]. Management of cyanobacteria
traditionally focuses on in situ water sampling to monitor cell counts and chlorophyll-a (chl-a)
concentration as biomass indicators. However, these methods are expensive, time-consuming [12],
and usually limited in spatial and temporal extents [13].

Remote sensing has been used to monitor CHABs worldwide [5–8]. Advantages of using remote
sensing are: (1) the synoptic view of remote sensing imagery allows the acquisition of data for the entire
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aquatic system, (2) the capability of acquiring information from remote and sometimes inaccessible
regions, and (3) the availability of historical data which allows the extraction of information from
archived remote sensing imagery [14]. Accordingly, Gons [13] observed that the use of remote sensing
techniques was time-saving, cost-effective, and a scientifically rewarding alternative.

Initially, cyanobacterial biomass was remotely estimated using chl-a concentration as a proxy,
since it is the primary and dominant photosynthetic pigment in BG algae [15]. However, chl-a is
not an accurate estimator of cyanobacterial biomass because it is a common pigment to almost all
phytoplankton groups [16]. Therefore, remote sensing studies have evaluated the use of phycocyanin
(PC) to remotely estimate its concentration and consequently cyanobacteria [5–8,17–19]. Figure 1 shows
the number of published studies in two different databases: Web of Science (webofknowledge.com,
Figure 1A) and Science Direct (www.sciencedirect.com, Figure 1B). The reference search was based
on the following terms: “remote”+”sensing”+”phycocyanin”. Publications were divided into a
total number of publications (considering book chapters, research articles, and protocols) and only
research articles. Although Science Direct presented a higher number of research articles, some of the
publications were not exactly on the topic of remote sensing of PC. Instead they covered other topics,
such as continuous electrophoresis of amino-acids, cyanobacterial genome, cell counting, and other
articles related to PC as a photosynthetic pigment and not with remote sensing. Nevertheless, a trend
was observed in both databases: Most of the studies using remote sensing techniques to monitor PC
were produced in the last three decades.

Figure 1. Remote sensing of phycocyanin publication numbers from the search in each database. (A)
From Web of Science, (B) From Science Direct.

Since the use of optical remote sensing for the monitoring of PC concentration (and consequently
cyanobacteria) has evolved in the last years, this technique has been implemented for water quality
monitoring purposes. The “Experimental Lake Erie Harmful Algal Bloom Bulletin” developed by
the National Oceanic and Atmospheric Administration (NOAA) is one example of the use of remote
sensing imagery to assess HABs. This program has the goal to monitor algal blooms and to forecast
the spreading of HABs in the West part of Lake Erie, USA [20]. Another project that is currently under
implementation in the US is the “CYAN Project”, led by United States National Aeronautics and Space
Administration (NASA), NOAA, Environmental Protection Agency (EPA) and United States Geological
Survey [21]. This project has as its main goal the development of an early warning indicator system
using historical and current satellite data of United States freshwater systems. In a global scale, the
United Nations Educational, Scientific and Cultural Organization (UNESCO), through its International
Initiative on Water Quality (IIWQ) launched the first comprehensive worldwide water quality online
portal for freshwater systems, lakes, and rivers, retrieved from earth observation data. In this portal,
the UNESCO/IIWQ is enabling the public to access earth observation’s derived water quality data [22].

www.sciencedirect.com
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Because of the growing relevance of the monitoring of cyanobacteria using remote
sensing techniques, several articles compared bio-optical algorithms for the estimation of PC
concentration [19,23–27]. However, most of the previous reviews used limited numbers of bio-optical
algorithms, expert-based judgments for algorithm comparison and suggested directions for future
research. Therefore, the goal of this study is to conduct a bibliometric analysis and to highlight the
gap and the evolution of this research field based on published work. To do that, this review is based
on a quantitative approach to analyze research articles collected from the Web of Science (WoS) Core
Collection database in the past 30 years (from 1991 to 2020). Compared with existing reviews on
remote sensing estimation of PC, the present study will not focus on the description and comparison
of remote sensing algorithms. Instead, the quantitative approach provides a comprehensive portrayal
of the knowledge structure of this research field in the last three decades.

2. Materials and Methods

2.1. Previous Reviews on Remote Sensing of Phycocyanin

Several articles have evaluated bio-optical algorithms for the estimation of phycocyanin [19,23–27].
The first two review articles were published in 2008 and 2013 by Ruiz-Verdu et al. [23] and
Ogashawara et al. [19]. Ruiz-Verdu et al. [23] compared the performance of empirical, semi-empirical,
and semi-analytical algorithms in Spanish and Dutch lakes and concluded that the semi-analytical
algorithm proposed by Simis et al. [5] and the algorithm proposed by Schalles and Yacobi [28] showed
the best performances. Ogashawara et al. [19] assessed semi-empirical algorithms for Funil hydroelectric
reservoir (Brazil) and catfish ponds in Mississippi (USA) and concluded that the algorithms proposed
by Simis et al. [5] and Mishra et al. [18] had the best performances for the estimation of PC, and there
were less sensitive to the interference of chl-a. Both studies showed that future research should focus
on the removal of the effect of chl-a on PC estimation.

Later, in 2017, Beck et al. [24] using simulated satellite images from an airborne hyperspectral
image compared the application of different PC bio-optical algorithms (see Table 1). This study showed
that, for the ocean and land colour instrument (OLCI), Simis et al. [5] and Mishra et al. [18] algorithms
got the best performances. These findings agree with the ones presented by Ogashawara et al. [19].
Recently, Riddick et al. [26] published a comprehensive comparison of PC bio-optical algorithms
applied to MEdium Resolution Imaging Spectrometer (MERIS) imagery from Lake Balaton, Hungary
(see algorithms in Table 1). This comparison showed that lower error metrics were observed in the
application of algorithms from Simis et al. [5], Mishra et al. [29], and Li et al. [30]. Interestingly,
these results suggest that semi-analytical and quasi-analytical algorithms for PC retrieval are more
appropriate, especially if applied for lakes with high concentrations of suspended inorganic particles.

Table 1. Summary of paper reviews on remotely estimation of phycocyanin.

Study 1 Study Sites Reviewed Algorithms 2

Ruiz-Verdu et al. Spanish and Dutch Lakes and Reservoirs DE93, SC00, SI05

Ogashawara et al. Funil Hydroelectric Reservoir (Brazil) and
Catfish Ponds (USA) DE93, SC00, SI05, MI09, HU10, MI12

Beck et al. Harsha Lake (USA) SC00, SI05, HU10, MI12, MI14, ST16
Yan et al. - DE93, SC00, SI05, WY08, MI09, HU10, DA11, LI12, MI13, QI14, MI14

Riddick et al. Global Lakes (LIMNADES dataset) DE93, SC00, SI05, HU10, MI13, QI14, LI15, LI18

Shi et al. - SC00, VI04, SI05, HU08, RA08, RU08, HU10, DA11, DU12, LI12,
WH12, MI13, MI14, QI14, SU15, WO16

1 Studies are cited from [19,23–27]. 2 Reviewed Algorithms are cited from [5,17,18,23,28–46]

While these reviews compared performances of bio-optical algorithms based on in situ
hyperspectral spectra and airborne and satellite images, two other reviews were published based
on the description of algorithms and an evaluation of the challenges and future perspectives for
the field [25,27]. Yan et [25] described several bio-optical algorithms for PC estimation (see Table 1)
and highlighted the atmospheric correction and lack of orbital sensors as the main challenges of this
research field. The authors also suggested that more validation studies are needed for the use of OLCI
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for the monitoring of PC concentrations. Shi et al. [27] also provided a comprehensive descriptive
review of bio-optical algorithms for chl-a and PC concentration estimation (see Table 1). As well as
Yan et al. [25], this study also showed that OLCI is the main sensor for the monitoring of PC due its
spectral band centered at 620 nm. The main challenges for this research field are the development of a
universal algorithm for PC retrieval and the estimation of PC in oligotrophic waters [27].

2.2. Data Acquisition

In this research, publications from 1991 to 2020 were analyzed from the Web of Science database.
Data acquisition was based on the search for the terms “remote” + “sensing” + “phycocyanin” in the
titles, keywords, and abstracts. The type of research was defined to be articles and reviews which
resulted in a dataset contained 115 publications published between January 1991 and January 2020
(see Supplementary Table S1 for the full list of publications). As shown in Figure 1, there is a clear
fast increase in the number of research papers published in this field in the last two decades. From
1991 to 2000 there were only 2 articles fitting the selection criteria, about 1.73% of the total amount of
publications within the period (1991–2020). A decade later (2001–2010), it increased to 19 published
articles representing a 16.52% of the total original articles within the period (1991–2020). From 2011 to
2020, the number of publications grew to 94 published articles, to be 81.73% of all the publications
within the entire period (1991–2020).

2.3. Methodology

For the bibliometric analysis of the dataset, the present study uses CiteSpace (v.5.6 R2) (http:
//cluster.cis.drexel.edu/~{}\protect\T1\textbraceleft\protect\T1\textbracerightcchen/citespace/, Accessed
08 January 2020) which is a Java-based application for the visualization and analysis of trends and
patterns in the scientific literature [47,48]. This software is one of the most used tools for bibliometric
analysis due to its capabilities of bibliographic coupling, cluster maps, and dual-map overlays
(Pan et al. 2018).

This study takes the advantages of the capabilities of CiteSpace (v.5.6 R2) to perform (1) the
co-citation analysis and (2) the bibliometric mapping. The dataset presented in Section 2.2 was analyzed
using document co-citation analysis. This is based on a network of co-cited references that reveals
underlying intellectual structures based on how two research articles may be linked. The connection
between two publications is based on the number of times that they have been cited together. If the
frequency of co-citation between the two publications is high, the idea presented in both works is
strongly linked.

In this study, the bibliometric analysis was defined for the entire period of the publications
(from 1991 to 2020) and for each decade. Each dataset was analyzed to evaluate the evolution of the
relationships between key ideas in a field for each period [49]. Citations clusters were computed
for all periods by clustering algorithms implemented in CiteSpace [48]. The labeling of each cluster
was extracted from article titles, using both the latent semantic indexing (LSI) and Log-Likelihood
Ratio (LLR).

3. Results

3.1. 30 Years of Remote Sensing of Phycocianin

Figure 2 shows the co-citation network structure over the 30-year period created with CiteSpace
(v.5.6 R2). The software generated a co-citation network of 301 nodes and 1062 links. In this network,
each node represents a cited publication within the core dataset and the size of the node represents the
frequency of citations. The link between two nodes represents a co-citation relationship and colors
represent the year of the publication. Overlaying the co-citation network structure are the top 10 most
cited publications – the font size of each reference indicates the frequency of citation (see Appendix A

http://cluster.cis.drexel.edu/~{}\protect \T1\textbraceleft \protect \T1\textbraceright cchen/citespace/
http://cluster.cis.drexel.edu/~{}\protect \T1\textbraceleft \protect \T1\textbraceright cchen/citespace/
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for the list of the publications). The position of each reference is related to the position of their respective
node. Therefore, it was observed that most of the most cited publications are between 2005 to 2013.

Figure 2. The co-citation network of remote sensing of PC and the most cited publications.

From the co-citation network structure, it was also possible to identify clusters in order to build a
knowledge domain. Figure 3 shows the network with ten cluster labels extracted based on the titles
of the publications using the LLR method, which is the default algorithm of CiteSpace, to extract
the cluster labels. LLR was chosen especially because of this algorithm allows the computation of a
p-value for each cluster. Table 2 presents the ten clusters in this co-citation network structure with their
labels extracted by the LSI algorithm as well as the labels and p-values from the LLR algorithm. It was
observed that earlier studies were clustered together on research domains related to the monitoring
of cyanobacteria or on their pigments. In the second decade, studies were focused on the algorithm
development for atmospheric correction and for cyanobacteria pigment. In the third decade, studies
were focused on the development of quasi-analytical approaches for the estimation of PC concentration
and in situ measurements of remote sensing reflectance (Rrs).

Similarly, Table 2 shows the main labels extracted by the LSI and LLR methods for each cluster
(organized by mean cited year). It was observed that three of the clusters’ labels were the same for
both methods, the differences occurred in clusters numbers 0, 1, 4, 5, 7, 9, and 11 (see Table 2). Table 2
also lists the mean year of the publications within each cluster, which allowed the observation of
the same trend of evolution of the research topics. Publications started covering more the biological
and biochemical at the beginning of the field and topics related to remote sensing and algorithm
development in the second decade. The full list of labels is presented in Appendix B.
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Figure 3. The co-citation network of remote sensing of PC publications clusters (1991–2020) and clusters’
labels extracted by the LLR method.

Table 2. Cluster labels of remotely sensed phycocyanin research over 30 years (1991–2020).

Cluster ID Size Main Label (LSI) Main Label (LLR) Mean (Cited Year)

4 21 Fluorescence
characteristics

Monitoring Cyanobacteria Bloom
(p-value = 10−4) 1999

6 17 Cyanobacterial
Biomass

Cyanobacterial Biomass
(p-value = 10−4) 2001

11 7 Cyanobacteria Active Pigment
(p-value = 10−4) 2004

1 47 Phycocyanin
Using genetic algorithm-partial

least square
(p-value = 10−3)

2006

5 20 China Atmospheric Correction
(p-value = 10−4) 2007

3 30 Cyanobacterial
pigments

Cyanobacterial pigments
(p-value = 10−4) 2008

9 12
Mapping

cyanobacteria
bloom

Great Lake
(p-value = 10−4) 2009

7 16 Waters Cyanobacteria Bloom
(p-value = 10−4) 2012

0 55 Cyanobacteria Handheld spectroradiometer
(p-value = 10−4) 2013

2 36 Quasi-analytical
algorithms

Quasi-analytical algorithms
(p-value = 10−4) 2013

3.2. Decade-by-Decade Analysis

To compare the evolution of the remote sensing of PC research field, a decade-by-decade analysis
was used. Figures 4–6 show the publication co-citation network over the decades 1991–2000, 2001–2010,
and 2011–2020, respectively. Labels of the clustering per decade are presented in Tables 2–4.
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Figure 4. The co-citation network of remote sensing of PC publications clusters (1991-2000) and clusters’
labels extracted by LLR method.

Figure 5. The co-citation network of remote sensing of PC publications clusters (2001-2010) and clusters’
labels extracted by LLR method.

Table 3. Cluster labels of remotely sensed phycocyanin research over 10 years (1991–2000).

Cluster ID Size Main Label (LSI) Main Label (LLR) Mean (Cited Year)

0 20 High resolution airborne remote sensing Optical properties of dense algal
cultures (p-value = 0.5) 1986

1 12 Optical properties of dense algal cultures High resolution airborne remote
sensing (p-value = 0.5) 1992



Remote Sens. 2020, 12, 567 8 of 16

Figure 6. The co-citation network of remote sensing of PC publications clusters (2011–2020) and clusters’
labels extracted by LLR method.

Table 4. Cluster labels of remotely sensed phycocyanin research over 30 years (2001–2010).

Cluster ID Size Main Label (LSI) Main Label (LLR) Mean (Cited Year)

2 20 Spectral absorption and fluorescence
characteristics Different size fraction (p-value = 0.5) 1999

1 22 Landsat TM data Lake Erie
(p-value = 0.005) 2000

11 7 Fluorescence characteristics Monitoring cyanobacterial bloom
(p-value = 0.05) 2001

6 11 China Hyperspectral retrieval model
(p-value = 0.05) 2002

10 8 Cyanobacterial pigments Cell population
(p-value = 0.1) 2003

8 9 Spatial dynamics of vertical migration Eutrophic shallow lake (p-value = 0.05) 2003
0 24 Cyanobacteria biomass Cyanobacteria biomass (p-value = 0.005) 2004

5 11 Phycocyanin Turbid productive waters
(p-value = 0.001) 2004

3 16 Cyanobacteria pigments Toxic cyanobacteria
(p-value = 0.05) 2005

4 14 Phytoplankton absorption Great Lake
(p-value = 0.05) 2005

3.2.1. Period I (1991–2000)

Figure 4 shows the co-citation network of remote sensing of PC publications from 1991 to 2000.
It was observed that in this period there were only a few publications that could be distributed in
only two co-citation clusters. These two clusters contain 41 nodes and 126 links and the main labels
for them were: (1) dense outdoor algal cultures; and (2) high resolution airborne remote sensing (see
Table 3). These two clusters show the two research lines in this field: (1) the image acquisition, and (2)
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processing and the biochemical characterization. The first analyzed decade has a small network due
to the lack of publications in this period. However, it was observed that studies were based on the
acquisition of radiance data and the determination of phytoplankton pigments.

3.2.2. Period II (2001–2010)

Figure 5 shows the co-citation network of remote sensing of PC publications from 2001 to 2010.
Different from the previous decade where only two clusters were identified, there are ten different
co-citation clusters in this period. Not only the number of co-citation clusters was higher in this period,
but the number of nodes and links also increased to 166 and 612 respectively. The main label for each
cluster is presented overlaying the network in Figure 5 and in Table 4. Surprisingly, some labels were
related to location, such as “Lake Erie”, “great lakes” and “eutrophic shallow lake”. This indicates that
the location was an important factor driving the research during this period. The need for larger lakes
could be related to the spatial resolution of MERIS and moderate-resolution imaging spectroradiometer
(MODIS), which were commonly used sensors in publications in this period.

Table 4 presents the labels for each cluster arranged by the mean year of the citations for remote
sensing of PC publications from 2001 to 2010. Similarly, to the results in Section 3.1 for the entire period
of analysis, in this decade the labels were extracted from the RFIDF and LLR methods. For this period,
the two methods only extracted one common label, the other nine labels were different. The interesting
observation is that for the LSI method, a location was also extracted as the main label for a co-citation
cluster and differently from the LLR method, the location was China. This indicates the growth of
Chinese studies in this field. Another interesting label from the LSI method is the “Landsat TM data”,
which is not the main sensor for the retrieval of PC, but some studies used empirical relationships to
derive its concentration in small to medium aquatic systems [17,50,51].

3.2.3. Period III (2011–2020)

Figure 6 shows the co-citation network of remote sensing of PC publications from 2011 to 2020.
In this last decade, it was found the largest co-citation network with twelve clusters, 338 nodes, and
1462 links. The main label for each cluster is presented overlaying this co-citation network in Figure 6
and in Table 5. As observed in the previous period, locations showed to be important labels for some
co-citation clusters. However, instead of large aquatic lakes, in this period there is a variety in the
locations such as “tropical eutrophic reservoir”, “deep reservoir”, “near coastal transition waters” and
“eastern Iberian Peninsula”. This indicates a geographic expansion of the research in the field of remote
sensing of PC which is now being conducted in different locations and latitudes, from large temperate
lakes in Period II to tropical and coastal water in Period III.

Table 5 presents the main label for each cluster arranged by the mean year of the citations for
remote sensing of PC publications from 2011 to 2020. In contrast to Period II, in this period, labels
extracted via RFIDF and LLR methods were completely different with no common label for one cluster.
While some labels are still common in comparison to Period I and II, it was observed of new labels such
as “new scheme”, “theoretical basis” or “modern robust approach”. This indicates the development of
different approaches than the ones developed in period II. Overall, this period could be characterized
by the addition of new study sites—which is important for assessing global coverage of PC—and the
development of new remote sensing algorithms.
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Table 5. Cluster labels of remotely sensed phycocyanin research over 30 years (2001–2010).

Cluster ID Size Main Label (LSI) Main Label (LLR) Mean (Cited Year)

8 18 Mineral matter characteristics Near-coastal transitional water
(p-value = 0.001) 2006

0 48 Modeling Phycocyanin pigment
(p-value = 10−4) 2007

5 22 Case 2 Optical characterization
(p-value = 10−4) 2008

11 7 Phycocyanin Satellite-detected accumulation
(p-value = 10−4) 2010

7 19 Waters Using Landsat measurement
(p-value = 10−4) 2010

4 29 New scheme Theoretical basis (p-value = 0.01) 2010

10 14 Semi-analytical algorithm Modern robust approach
(p-value = 10−4) 2012

1 41 Chlorophyll-a prediction algorithms Tropical eutrophic water
(p-value = 10−4) 2012

9 15 Cyanobacterial total biovolume Eastern Iberian Peninsula
(p-value = 10−4) 2013

3 30 Lake Erie Risk factor
(p-value = 10−4) 2013

2 36 Drinking water source Turbid lake
(p-value = 10−4) 2013

6 20 Cyanobacterial Blooms Deep reservoir
(p-value = 10−4) 2015

4. Discussion

The increasing number of publications in the last decade can be related to the increasing number
of HABs occurrences worldwide. Although HABs have been known to affect animal health since the
end of 19th century [52], several studies indicate that they are currently increasing globally. A recent
study in the United States showed that the number of days with HAB will increase from about seven
days per year per waterbody to 18–39 days in 2090 [53]. This increase in the number of HAB events and
the growing interest of policymakers for developing monitoring tools could be related to the increase
in the number of publications observed in the last decade (Figure 1). Additionally, the development of
orbital sensors with water quality monitoring capabilities also played an important role in the increase
of the number of publications in this field [54].

Based on the results from the previous section (Section 3) and on the previous algorithms
reviews [19,23–27] there are some perspectives for the next decade of publication on the estimation of
PC concentrations from remotely sensed data. The result from the co-citation cluster labels showed an
evolution on the study site locations which started locally with airborne imaging of specific lakes and
laboratory experiments (Period I, Figure 4). By the use of earth observation satellites, it was possible to
shift the location of the studies from local and lab cultures to larger lakes such as the Great Lakes in
the United States and Lake Taihu in China (Period II, Figure 5). The use of larger aquatic systems as
study sites are probably related to the spatial resolution of orbital sensors used for ocean color remote
sensing in this period: MERIS (300 m) and MODIS (1000 m). Additionally, the monitoring of PC based
on its absorption feature at 620 nm was only possible using MERIS images (nowadays OLCI images
are available). Due to the spatial limitation of the satellite’s sensors, the monitoring of PC could only
be conducted in larger aquatic systems. Period III showed the expansion to lower latitudes which
are areas in which cyanobacteria develop well due to high temperatures [55]. Additionally, higher
temperature increases internal phosphorus loading and rates of soil phosphorus regeneration which are
used as a nutrient source for cyanobacteria blooms [56]. Thus, study sites in tropical aquatic systems
and coastal areas were investigated. It was interesting that during this period, Landsat satellite was
used even without the spectral band centered at 620 nm which is the spectral band related to the peak
of PC absorption. This could be related to the need to monitor medium to small aquatic systems, which
are commonly used for water supply. This was also observed for the monitoring of other water quality
parameters with new satellite sensors with a better spatial resolution such as Sentinel 2/Multispectral
Instrument (MSI) which has been used for the monitoring of chl-a and water transparency in several
small to medium inland aquatic systems. Nevertheless, studies focusing on environments from the
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Southern Hemisphere are still lacking (especially in equatorial regions from Latin America and Africa).
In the equatorial region, the small annual temperature range supports the development of HABs
which are mainly controlled by wind and rainfall patterns over the watershed [57]. Therefore, one
perspective in this field is to continue with this geographic expansion to have more studies collecting
data from equatorial regions. To do that it is important to establish partnerships with institutions
within these regions, not only for the data acquisition but also for the development of the research
field. The availability of a globally representative dataset will allow future researchers to develop a
universal algorithm or an algorithm for a specific optical water type (especially oligotrophic waters).

The label analysis also showed a strong presence of satellite sensors such as Landsat TM, MODIS,
and MERIS. However, as pointed by Yan et al. [25] using satellite images for the estimation of PC
in small inland waters is still a challenge due to the lack of a sensor with high spatial and spectral
resolution (or a multi-spectral sensor containing spectral bands needed for the monitoring of PC).
Additionally, considering a cyanobacteria monitoring perspective the revisit time of the sensor is also
important, since blooms can form in a few hours. Beck et al. [24] suggested that future satellite sensors
for water quality should have a spectral band centered at 620 nm and a spatial resolution between
20 to 90 m. However, since the remote sensing of phycocyanin relies on passive remote sensing
methods, cloud cover is a major issue, especially in equatorial regions. Because of that, unmanned
aerial vehicles (UAVs) have been tested as a tool to collect high spatial and spectral images over small
water bodies [25]. However, their use is still limited by battery consumption which does not allow the
imaging of large areas. Nevertheless, UAVs can be used to target specific regions where it is known to
be the starting point of a bloom. The monitoring of these small regions could be then used for the
prediction of the growth of cyanobacteria. Thus, a future perspective to the field of remote sensing of
PC is to have more UAV studies being conducted.

Results also showed an evolution in algorithm development, from empirical and semi-empirical
to semi and quasi-analytical algorithms. Figure 3 and Table 2 showed that recent studies have been
focusing on quasi-analytical algorithms. Recently, Riddick et al. [26] showed that semi-analytical
and quasi-analytical models have the best performance for the estimation of PC, especially because
these two types of bio-optical algorithms account for variations in phytoplankton inherent optical
properties on the water-leaving signal. The same was observed by Beck et al. [24] who reported that
semi-analytical algorithms had an advantage in the estimation of blue-green algae. Thus, because
of the development of new equipment to compute optical properties, it is expected that semi and
quasi-analytical algorithms will be improved and validated in the near future.

Finally, for a good performance of bio-optical algorithms (especially semi and quasi-analytical)
on satellite images, atmospheric correction is needed. In the 30 years of evaluation, atmospheric
correction showed to be an important task in Period II, however, it is still one of the main challenges
over inland water. Shi et al. [27] highlighted that it is still a challenge to perform atmospheric
corrections in turbid inland waters, especially when algal blooms are occurring because they directly
affect the remote sensing reflectance in the near-infrared. Additionally, atmospheric corrections over
these aquatic systems are influenced by several factors, such as: proximity to terrestrial sources of
atmospheric pollution, adjacency effects from neighboring land pixels, undulating topography around
the water body, non-negligible reflectance of water in the near-infrared region due to high sediment
concentrations in inland waters, and variations in the altitude of inland water surface from the mean
sea level [58]. Since this manuscript reviewed PC publications, atmospheric correction studies or
comparisons are not included here.

5. Conclusions

This study represents a new type of review in which algorithms and methods were not explored in
depth. Here, a bibliometric analysis of scientific production was presented based on the Web of Science
database for the terms “remote+ sensing+phycocyanin”. This approach does not describe or compare
different algorithms or methods. Since these topics were extensively covered by previous reviews and
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comparisons [19,23–27], another review of algorithms was not needed. Because of that, this review was
based on co-citation analysis and mapping to evaluate the evolution of the field in the last 30 years.

The results presented in this review are unique, since, to my knowledge, this is the first attempt
for performing a bibliometric analysis in this field. As observed on the number of papers published on
this topic (see Figure 1) the last two decades were important for the consolidation of the topic within the
remote sensing community. Decade-by-decade results showed an interesting evolution of the geographic
coverage of remote sensing of PC from local studies using airborne and lab cultures in Period I (1991–2000),
to large temperate lakes monitored via satellites in Period II (2001–2010) and the expansion to tropical
and coastal environments in Period III (2011–2020). In terms of techniques, it was observed that another
evolution took place from semi-empirical algorithms in the first years of the field to semi-analytical to
quasi-analytical algorithms in the last years. In the 30-year analysis (Figure 3 and Table 2) it was observed
that the development of physics-based algorithms (semi-analytical and quasi-analytical) is more common in
the last decade. This occurs especially because of the development of new equipment for measuring optical
properties which allow the acquisition of data to validate the bio-optical modeling.

Future research seems to be related to the topics highlighted in Period III, which are related
to (1) data acquisition from different locations to validate global studies, especially in oligotrophic
to mesotrophic environments, (2) the development of a universal approach for the retrieval of PC
concentration from Earth observation, and (3) the development of orbital sensors, which allow the
assessment of PC from space. Additionally, the development of atmospheric correction algorithms,
especially over inland waters, is needed for the good performance of PC algorithms. Therefore,
although not strongly connected to this field, atmospheric corrections are essential.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/3/567/s1,
Table S1.
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Appendix A

Table A1. Top 10 most cited documents in the field of remote sensing of PC.

Reference 1 Journal Citations Year

Simis et al. (2007) Remote Sensing of Environment 38 2007
Simis et al. Limnology and Oceanography 35 2005

Hunter et al. Remote Sensing of Environment 31 2010
Ruiz-Verdú et al. Remote Sensing of Environment 29 2008
Randolph et al. Remote Sensing of Environment 29 2008

Ogashawara et al. Remote Sensing 20 2013
Matthews et al. (2010) Remote Sensing of Environment 19 2010

Mishra et al. Remote Sensing of Environment 19 2013
Hunter et al. Environmental Science and Technology 18 2009

Kutser et al. (2006) Estuarine, Coastal and Shelf Science 18 2006
1 The references are cited from [5,16,19,23,29,32,42].

http://www.mdpi.com/2072-4292/12/3/567/s1
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Appendix B

Table A2. Most relevant labels extracted by LSI and LLR methods.

Cluster ID Top Label (LSI – LSI, p-value) Top Label (LLR)

0

handheld spectroradiometer (29.03, 10−4); bloom management
purposes (29.03, 10−4); turbid lake (24.84, 10−4); hybrid eof
algorithm (24.84, 10−4); nonbloom condition (24.84, 10−4);

modis cyanobacteria phycocyanin data (24.84, 10−4); dense
coincident surface observation (20.67, 10−4); cyanobacterial
total biovolume (20.67, 10−4); satellite reflectance algorithm
(20.67, 10−4); temperate reservoir (20.67, 10−4); lake water

quality (16.51, 10−4);

cyanobacteria; challenges; mapping cyanotoxin patterns; deep reservoir;
drinking-water source; turbid lake; western basin; cyanobacterial total
biovolume; evaluation; handheld spectroradiometer | lake erie; western
basin; phytoplankton pigment absorption properties; regional example;

cyanobacteria bloom waters; deep reservoir; drinking-water source;
turbid lake; cyanobacterial total biovolume; evaluation

1

using genetic algorithm-partial leasts square (12.45, 0.001);
potable water source (12.45, 0.001); hyperspectral retrieval

(12.45, 0.001); microcystis aeruginosa (8.29, 0.005); eutrophic
shallow lake (8.29, 0.005); case study (8.29, 0.005); spatial

dynamics (8.29, 0.005); vertical migration (8.29, 0.005)

phycocyanin; modeling; hyperspectral retrieval; potable water sources;
using genetic algorithm-partial least squares; suspended particulate

matter; phytoplankton colour groups; spectral resolution; effect; sensor |
suspended particulate matter; spectral discrimination; phytoplankton

colour groups; spectral resolution; effect; sensor; using genetic
algorithm-partial least squares; chlorophyll-a; modeling; current review

2

quasi-analytical algorithm (25.56, 10−4); retrieving absorption
coefficient (18.06, 10−4); hyperspectral remote sensing

reflectance (18.06, 10−4); multiple phytoplankton pigment
(18.06, 10−4); organic matter (14.45, 0.001); cyanobacteria

bloom water (12.94, 0.001); tropical eutrophic water (10.92,
0.001); mapping cyanobacterial bloom (10.05, 0.005); lake erie

(8.13, 0.005)

quasi-analytical algorithm; parametrization; calibration; tropical
eutrophic waters; cyanobacteria; mapping cyanotoxin patterns;
challenges; semi-analytical algorithm; cyanobacteria biovolume;

phycocyanin | cyanobacteria; challenges; mapping cyanotoxin patterns;
using vertical cumulative pigment concentration; deep reservoir;

phycocyanin; cyanobacteria biovolume; semi-analytical algorithm;
remote estimation; meris sensor

3

cyanobacterial pigment (17.52, 10−4); theoretical basis (13.35,
0.001); cyanobacterial phycocyanin pigment concentration

(13.35, 0.001); practical consideration (13.35, 0.001); eutrophic
lake (13.29, 0.001); cell population (9.3, 0.005); using ocm

satellite data (9.03, 0.005); freshwater lake (9.03, 0.005)

cyanobacterial pigments; freshwater lake; estimation; using ocm
satellite data; cell populations; lake erie; evaluating multiple

colour-producing agents; case ii waters; chlorophyll-a; mineral matter |
mineral matter; cdom; absorption coefficients; central indiana

reservoirs; chlorophyll; determination; cyanobacterial pigments;
freshwater lake; estimation; using ocm satellite data

4
monitoring cyanobacterial bloom (16.35, 10−4); recognising
cyanobacterial bloom (8.12, 0.005); modelling study (8.12,

0.005); optical signature (8.12, 0.005)

fluorescence characteristics; salinity gradient; phytoplankton; spectral
absorption; different size fractions; baltic sea; recognising

cyanobacterial blooms; modelling study; monitoring cyanobacterial
blooms; satellite | recognising cyanobacterial blooms; modelling study;

optical signature; fluorescence characteristics; salinity gradient;
phytoplankton; spectral absorption; different size fractions; baltic sea;

monitoring cyanobacterial blooms

5

china; lake; seasonal-spatial variation; shallow lake; phytoplankton
absorption; multidecadal time series; south; satellite-detected

accumulations; portugal; pigment c-phycocyanin | evaluation; east
china; several lakes; spring bloom formation; remote sensing

algorithms; cyanobacterial pigment retrievals; multidecadal time series;
south; satellite-detected accumulations; portugal

6

cyanobacterial biomass (32.04, 10−4); phycocyanin detection
(27.56, 10−4); landsat tm data (27.56, 10−4); phytoplankton
pigment composition (23.17, 10−4); cyanobacterial pigment
phycocyanin (18.89, 10−4); spectral absorption (14.98, 0.001);

different size fraction (14.98, 0.001); fluorescence characteristics
(14.98, 0.001); salinity gradient (14.98, 0.001); phytoplankton
absorption spectra (14.83, 0.001); inverse modeling approach
(14.83, 0.001); phycocyanin pigment (14.74, 0.001); lake erie

(10.85, 0.001); lake taihu (10.68, 0.005); baltic sea (9.41, 0.005);
mapping cyanobacterial bloom (7.96, 0.005)

cyanobacterial biomass; algorithms; evaluation; phytoplankton
absorption spectra; inverse modeling approach; estimating

phytoplankton pigment concentrations; fluorescence characteristics;
phytoplankton; spectral absorption; baltic sea | fluorescence

characteristics; phytoplankton; spectral absorption; baltic sea; salinity
gradient; different size fractions; algorithms; cyanobacterial biomass;

cyanobacterial pigment phycocyanin; lake erie

7

cyanobacterial bloom (20.55, 10−4); user need (19.04, 10−4);
future development (19.04, 10−4); multidisciplinary remote
sensing ocean color sensor (19.04, 10−4); aquatic ecosystem

(16.14, 10−4); hyperspectral global mapping satellite mission
(16.14, 10−4); measuring freshwater (16.14, 10−4); floating algae

index (13.35, 0.001); monitoring level (13.35, 0.001); visual
cyanobacteria index (13.35, 0.001); multiscale mapping

assessment (10.68, 0.005); cyanobacterial harmful algal bloom
(10.68, 0.005); mapping cyanobacterial bloom (10.62, 0.005);

lake erie (8.59, 0.005)

waters; semi-analytical algorithm; phycocyanin; remote estimation;
deep reservoir; algorithms; modeling; comparative review; new scheme;

user needs | new scheme; complex turbid; hyperspectral reflectance;
implications; test; inversion algorithms; reconstruction; cyanobacterial
harmful algal blooms; multiscale mapping assessment; lake champlain

9

great lake (15.82, 10−4); using modis (15.82, 10−4); mapping
cyanobacterial bloom (14.44, 0.001); drinking-water source

(12.43, 0.001); modis observation (12.43, 0.001); cyanobacterial
risk (12.43, 0.001); long-term safety evaluation (12.43, 0.001);

case ii water (10.33, 0.005); evaluating multiple
colour-producing agent (10.33, 0.005); meris satellite data
(8.23, 0.005); using quickbird (8.23, 0.005); missisquoi bay

(8.23, 0.005)

mapping cyanobacterial blooms; meris satellite data; using quickbird;
current review; near-coastal transitional waters; empirical procedures;
lake erie; evaluating multiple colour-producing agents; case ii waters;

using modis | drinking-water source; cyanobacterial risks; implications;
modis observations; long-term safety evaluation; eutrophic lake;

complex waters; cyanobacteria abundance; ocean colour estimation;
inherent optical properties

11

active pigment (22.35, 10−4); turbid productive water
(22.35, 10−4); mesotrophic reservoir (13.61, 0.001); predicting

phycocyanin concentration (9.45, 0.005); novel algorithm
(9.45, 0.005);

cyanobacteria; predicting phycocyanin concentrations; novel algorithm;
proximal hyperspectral remote sensing approach; mesotrophic
reservoir; phycocyanin; turbid productive water; chlorophyll;

chlorophyll-a | phycocyanin; turbid productive water; chlorophyll;
proximal hyperspectral remote sensing approach; predicting

phycocyanin concentrations; chlorophyll-a; mesotrophic reservoir;
cyanobacteria; novel algorithm
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