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Abstract: Research on land use change is helpful to better understand the processes and mechanisms
of land use changes and provide a decision base for reasonable land development. However, studies
on LUCC were mainly conducted for megalopolises and urban agglomerations in China, but there
is a gap in the scholarly community when it comes to shrinking small cities where the population
decreased sharply under the influence of the urban expansion of megacities. Hence, it is necessary to
investigate the evolution rule of land use in these regions. This study takes Qishan County in Shanxi
Province as the research subject and analyzes the land use change over the last 20 years with remote
sensing technology. Comparing the two LUCC models of the CA-Markov Model and the LCM Model,
an optimal model is used to predict and simulate land use change under three potential scenarios in
2030. The conclusions are stated as follows: (1) From 2000 to 2020, the cultivated land area increased
originally and subsequently decreased, and forest land continued to decrease at a progressively slower
speed. In contrast, the urban land area expanded significantly. (2) The comprehensive dynamic
change in water land is the most significant, indicating that this is an unstable land resource in the
region and more attention should be given to this matter. (3) The scenario of water area protection
indicates that the inhibition of the transition of water areas can protect their vulnerable ecological
environment without negatively impacting economic development. Furthermore, the ongoing focus
on economic development in the region is related to the rapid disappearance of cultivated land,
which is not an optimistic perspective for the area’s ecosystem. The results of this study implied land
transition features and mechanisms in Qishan County, providing novel insights for decision support
for county-level land use planning.

Keywords: transition matrix; dynamic index; suitability atlas; transition probability image; CA-
Markov model; LCM model

1. Introduction

Along with the continuous expansion of the urban scale, the contradiction between
the global population, resources, and environmental protection has become increasingly
prominent in the 21st century, leading to a series of issues regarding urban land use, which
have directly affected the ecological environment and security of cities [1]. For example,
land productivity has been seriously damaged, the quality of land resources decreased,
and the ecological service function of land degraded, resulting in habitat and species
loss [2]. Land use/land cover change (LUCC) is of great significance to regional and global
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environmental change, so it has become a frontier and hotspot of international research,
attracting the attention of scholars worldwide [3,4].

Many scholars have recently utilized remote sensing to undertake land-use change
studies [5]. For instance, Zhao et al. [6] and Chen et al. [7] simulated future land-use changes
in different scenarios based on different land-use needs and policies. Some scholars have
conducted more in-depth research on sustainable land use planning. Liu [8], for example,
studied the ecosystem services of various types of green roofs, which were demonstrated
as an urban ecological tool in sustainable land use planning. Furthermore, researchers have
developed many land use and land cover change models to better understand, evaluate
and predict land-use change, such as the Cellular Automaton (CA), Gray Prediction Model,
SD Model, Markov Model, CA-Markov Model, and Land Change Modeler (LCM) [9,10].
Due to the different simulation mechanisms of LUCC models, they have their advantages
and limitations and can lead to various simulation results. Therefore, to accurately predict
the spatial pattern of regional LUCC, it is extremely important to select the most suitable
LUCC model by comparing different LUCC simulation models. It has been proved by
previous studies that the CA-Markov and the LCM models are advantageous when it
comes to simulating the location, quantifying land use change, and predicting the future
land-use spatial distribution, and these methods have been widely used in the field of
urban studies [11,12].

However, studies on LUCC have mainly been conducted for megalopolises and urban
agglomerations in China, while issues related to land-use structure in shrinking cities are
seldom discussed. With the polarized development of cities and urban agglomerations [13],
the loss of urban population, land abandonment and high housing vacancy rate, and vitality
decrease to different degrees became common issues in many small and medium-sized
cities and less developed areas [14]. Qishan County is located in the transitional area
between the Weihe River Plain and Loess Plateau and is considered a representative of a
shrinking city. The area has been handling severe environmental issues, including fragile
ecology, drought, and soil erosion, and urban development problems involving population
loss, which are common in the Loess Region [15]. More research on the evolution of
the land use structure of shrinking cities is necessary to comprehensively investigate the
evolution rule of urban land use, especially considering the transformational development
of a country like China.

This study takes Qishan County, Shanxi Province, as the main subject and analyzes
the dynamic evolution and future trend of land use change with remote sensing technology
based on the CA-Markov and LCM models. Furthermore, three scenarios were added to
compare and analyze land use planning. The results of this study implied land transition
features and mechanisms in Qishan County, providing novel insights for decision support
for county-level land use planning.

2. Material & Method
2.1. Study Area

The geographical coordinates of Qishan County are in the range of 107◦33′–107◦55′E
and 34◦07′–34◦37′N, and its elevation ranges from 495 to 2160 m. The area is part of the
Shanxi Province, and the county is located in northeastern Baoji city, 136 km from Xi’an city,
the provincial capital to the east. The county covers an area of 856.45 square kilometers
with a subhumid continental monsoon climate of the warm temperate zone. In this county,
the average temperature is 12 ◦C, the percentage of sunshine is 47%, and the average annual
rainfall is 623.8 mm.

Containing nine towns, 101 administrative villages, and 15 communities in its jurisdic-
tion, Qishan County is a city that emphasizes the development of agriculture and tourism.
In 2020, the region’s economic index GDP reached 16,910 million and had been increasing
considerably over the past 20 years. As indicated by the seventh national population census
in China, the permanent population of Qishan County was 365,200 thousand in 2020, but it
has been decreasing continuously over the past 15 years. Especially in the past five years,
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there has been a reduction of nearly 100,000. Qishan County is a water resource shortage
area, and the per capita water resources are 1/5 of the national average. The geographical
location of Qishan County is illustrated below in Figure 1.
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Figure 1. Geographical Location of Qishan County (2020).

2.2. Data Source

Global land cover data from 2000, 2010, and 2020 were downloaded from Global-
Land30 (http://globeland30.org (accessed on 10 October 2021)) to calculate land use. Based
on results from existing research [16,17], the natural factor and accessibility factor data
were prepared to be the driving factors in the model building. Natural factor data included
altitude and slope, and were downloaded from public platforms. The accessibility factor
data include road distance, water distance, and residential area distance, and it needed
to be processed using ArcGIS software based on the original platform data. The spatial
resolution of the factor data in this study is 30 m, and the details are listed in Table 1.

http://globeland30.org
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Table 1. The resource of land use data and driving factor data.

Data Type Data Name Data Resource

Land cover data Land cover data in 2000, 2010, 2020 http://globeland30.org/ (accessed on
10 October 2021).

Natural factor
Altitude https://earthexplorer.usgs.gov/ (accessed on

10 October 2021).
Slope Extracted from altitude image

Accessibility factor

Road distance
Euclidean distance from roads which deserved

form National Catalogue Service for
Geographic Information

Water distance
Euclidean distance from water areas which

deserved form National Catalogue Service for
Geographic Information

Residential area distance
Euclidean distance from residential areas
which deserved form National Catalogue

Service for Geographic Information

2.3. Methodology
2.3.1. Technical Pathway

The technical pathway (Figure 2) mainly includes data preparation and simulation
and prediction processes. The land use change over the past 20 years was analyzed based
on the land use data from 2000, 2010, 2020. In the simulation process, the present land-use
data and driving factors were entered into the CA-Markov and LCM models to simulate
the land use in 2020. The Kappa coefficient was used to compare the simulation results in
2020 of the CA-Markov and LCM models and to select the optimal model for the study
area, which was then used to predict the land use under three scenarios in 2030.

2.3.2. Present Situation Analysis

(1) Reclassification of Land Use
The original land use maps include seven types of land: cultivated land, woodland,

grassland, shrubland, river, urban land, and wetland. Similar land types were combined
to conduct an in-depth study on the land types with important characteristics in land use
change in Qishan County. Among them, the grassland area is small, which is not a typical
land type in Qishan County. Since these areas are mainly scattered sparse forest grassland
and shrub grassland, we combined grassland into forest for analysis. The reclassification
included four land types, i.e., cultivated land, forest, water, and urban land, as a foundation
for subsequent analyses on the area change of land use and transitional type. Refer to
Table 2 for details of the reclassification system of land use:

Table 2. Land use classification system in this paper.

Classification Original Land Use Type

1 Cultivated land Cultivated land
2 Forest Woodland, grassland, shrub land
3 Water River, wetland
4 Urban land Urban land

(2) Dynamics of Land Use
The dynamics of land use can reflect its temporal and spatial variation, and an indi-

vidual dynamic stands for the quantity change of a specific land use type of the research
subject within a certain period [18]. A positive value represents an increase in area, whereas

http://globeland30.org/
https://earthexplorer.usgs.gov/
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a negative value represents a decrease in area. The greater its absolute value is, the greater
the net change in land. The formula of the individual dynamic index is:

K =
Ua − Ub

Ua
× 1

T
× 100% (1)

where K is the dynamic of a specific land use type during the study period, Ua and Ub
represent the areas of certain land use types at the beginning and the end of the study,
respectively. T is the study interval set as ten years, and K is the annual change rate of the
land use type researched.
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Compared with the individual dynamics, the integrated dynamic index focuses on
the processes rather than the results of the change, which solves the problem that the final
area of land types barely changes when the transfer in and transfer out of local classes are
quite similar because it calculates the absolute value of the conversion area between land
types [11]. The formula of the integrated dynamic index is:

LC =

[
∑n

i=1 ∆LUab
2 ∑n

i=1 LUa

]
× 1

T
× 100% (2)

where LUa is the area of land use type “a” at the beginning of the study, ∆LUab is the
absolute value of the area of a land use type (except for “a”) transferred from the land use
type “a”. T is the study interval defined as 10 years in this study, and LC is the annual
change rate (absolute value) of land use change of the research subject during the interval.

(3) Transition Matrix of Land Use
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The land use matrix is crucial for analyzing the land type change in a region, as it
describes the transition among various land use types at the beginning and the end of a
certain period of time [19–21]. This is the basis for the subsequent analyses on land use
change and the establishment of LUCC models.

2.3.3. Model Establishment

(1) CA-Markov Model
The CA-Markov Model is used to predict the land-use transition quantity in the

future according to the history of transition probability and follows the spatial distribution
principle that land with high suitability will be transferred preferentially in land use
prediction. It is a combination of the spatial operation of the cellular automata (CA) model
and the quantity prediction of the Markov chain (Markov) model. The CA model is
advantageous in generating the potential transition maps by taking the spatial structure
and neighborhood state into consideration, and the Markov model can provide an LUCC
transitional area matrix based on the time variation [11].

CA-Markov is used to determine the trend of each state at each future moment accord-
ing to the initial probability of different states of a system and the transition probability
between the states [22]. The simulation process of CA-Markov based on Terrset software is
described as follows:

a. Transition Analysis with Markov Chain. The matrices of land use transitions,
including the probability matrix and area matrix from 2000 to 2010 and 2010 to 2020, were
obtained after 2000 and 2010 and were set as the reference years, respectively. The land
use data were input into the Markov model, and the interval and prediction period were
defined as ten years;

b. Creation of a multi-criteria evaluation model. The five driving forces, i.e., altitude,
slope, road distance, residential area distance, and water distance, were selected, and
upon determination of their weight, a multi-criteria evaluation model (MCE, Multi-Criteria
Evaluation) was created [11,12];

c. Establishment of a suitability atlas. The suitability atlas is a key file for predicting
land use distribution and the basis for the cellular evolution of the CA model. In this paper,
the suitability images of each land use type were generated upon running the created
MCE model and finally synthesized into a raster group file to establish the final suitability
atlas; and

d. Establishment of the model. The land use classification map was selected as the
starting point of prediction and inserted into the CA-Markov model. Then, the model was
run to predict the land use status after the input of the historical transition matrix and the
suitability atlas of land use types.

(2) LCM model
Similar to the CA-Markov model, the Land Change Modeler (LCM) predicts the

change in the number of land types based on the Markov transition matrix, but its spatial
distribution is based on the transition probability. Here, multi-Layer perceptron (MLP) was
used to generate a transition probability atlas. The MLP model is a kind of artificial neural
network model with empirical learning and decision-making driven by algorithms [23]. It
can randomly generate and verify the operational relationship between the driving force
and transition probability. The same number of training samples and verification samples
are selected in each iteration, with their root mean square error and prediction accuracy
updated simultaneously. When the number of iterations or prediction accuracy reaches the
threshold value, the training is immediately stopped, and the transition probability image
is the output [24,25].

Similar to the suitability atlas, the transition probability atlas is the key data for
predicting the spatial distribution of land use change. In this paper, a transition probability
atlas was created using the MLP module based on Terrset software, and then a predicted
map of land use classification could be generated based on the transition matrix and
transition probability atlas.
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(3) Model accuracy verification
The accuracy of the LUCC model was measured by the Kappa coefficient, which can

be calculated using the CROSSTAB tool in GIS Analysis under IDRISI. Under the same
operational rules, if the Kappa coefficient calculated as per the actual annual land use data
and the simulated predicted data is less than 0.4, the simulation is unsuccessful; if it is
between 0.4 and 0.75, the simulation result is average; and if it is greater than 0.75, the
simulation result is good and consistent with the actual situation. The equation used in this
process is [26].

k =
xp,i − xr,i

xr,i
× 100% (3)

where k is the error precision; xp is the predicted area of type i land; and xr is the actual
area of type i area.

2.3.4. Multi-Scenario Prediction

In this paper, the land use change in Qishan County in 2030 was predicted using the
LUCC model with a better simulation effect. However, given that future land planning
interventions, incentives, and restrictions may also change the process of land development,
three specific scenarios were set in the in-depth analysis based on its historical land use
changes: “natural state” with the status quo unchanged, “economic development state”
with the accelerated expansion of urban land, and “water conservation state”. The specific
scenarios are as follows:

Scenario 1: Natural state. The present evolutionary trend will continue in Qishan
County without any human intervention. The historical transition area matrix from 2000 to
2020 is used for this state.

Scenario 2: With a policy prioritizing economic development, urban land would
further expand continuously. In this scenario, based on the historical matrix from 2000 to
2020, the grids of other types of land converted to urban land increased to 110%.

Scenario 3: Water conservation state. Qishan County is short in water resources
and has serious soil erosion. In recent years, local governments have strengthened the
comprehensive treatment of water pollution and implemented water resource protection
policies. In this state, the conversion of water to other types of land is prohibited, and the
area of water converted to other types of land is reset to zero.

3. Results and Analysis
3.1. Land Use Change Analysis
3.1.1. Characteristics of Dynamic Changes in Land Use

After reclassification of the original land cover data with ArcGIS software, Terrset
software was used to analyze the current land use map of Qishan in 2000, 2010, and 2020
(Figure 3) and the dynamic area changes in land use types (Figure 4).

According to Figure 4, the main land use types in Qishan County were cultivated
land and forest, accounting for approximately 55% and 34% of the total area, respectively.
Between 2000 and 2020, the dominance of cultivated land and forest did not change, but
there was a negative trend. The specific changes are as follows: (1) The area of cultivated
land first increased and then decreased. It increased by 13.21 km2 from 2010 to 2020 but
decreased by 28.05 km2 from 2010 to 2020. (2) The forest has been decreasing in the past
20 years, with its proportion dropping from 35.24% in 2000 to 33.13% in 2020. (3) The urban
land first decreased slightly but then rebounded with a total increase of 29.79 km2, and
its proportion increased from 9.24% in 2000 to 12.72% in 2020. This expansion was the
greatest among all land types. (4) The change in the water area was small, at just 0.1 km2.
However, the water area underwent a substantial decrease of 1.5 km2 in the first ten years
from 2000–2010 and a substantial increase of 1.4 km2 in the latter 10 years from 2010–2020.
Because the water area itself is relatively small and was only 3.25 km2 in 2000, its changes
were more evident.
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Figure 4. Situation analysis of Qishan. (a) Land use area in Qishan from 2000 to 2020; (b) land use
area change in Qishan from 2000 to 2020.

According to the single and comprehensive dynamic change of each land use type
presented in Table 3, the dynamic change of forest and cultivated land was relatively small
and less than 1%, mainly because their area base was relatively large. The dynamic change
in water was the most significant one. From 2000 to 2010, the single dynamic change
was 4.63%, and the comprehensive dynamic change was 5.08%, indicating a significant
reduction in water in this period. From 2010–2020, the single dynamic change was 8.02%,
and the comprehensive dynamic change was 1.62%, indicating a significant increase in the
water area and a declining intensity of its outward transition. Hence, it can be said that the
water area in Qishan is small and unstable, and the water ecosystem in the region requires
further attention.

3.1.2. Changes in Land Use Types

The transition matrices of land use area and probability in Qishan from 2000 to 2010
and from 2010 to 2020 were established to analyze the land use transfer in Qishan from
2000 to 2020, (Figure 5).
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Table 3. Dynamic degree of land use change in Qishan from 2000 to 2020.

Land Use Type
Single Dynamic Degree Comprehensive Dynamic Degree

2000–2010 (%) 2010–2020 (%) 2000–2010 (%) 2000–2010 (%) 2010–2020 (%) 2000–2020 (%)

Cultivated land 0.28 −0.58 0.43 0.43 1.02 0.59
Forest −0.35 −0.15 0.54 0.54 0.36 0.40
Water −4.63 8.02 5.08 5.08 1.62 2.52

Urban land −0.15 3.98 2.46 2.46 1.82 1.46
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Figure 5 shows that the transfer scale during 2000–2010 from large to small is as follows:
19.18 km2 of urban land was converted into cultivated land; 15.12 km2 of cultivated land
was converted into urban land; and 13.18 km2 of forest was converted into cultivated
land. It can be seen that cultivated land and urban land were converted into each other.
The results show that urban land conversion to cultivated land was greater by 4.06 km2.
Given the changes and transfer of the comprehensive land use area, the net increase in
cultivated land from 2000 to 2010 was 13.21 km2, and the main sources were urban land and
forest, with 19.18 and 13.18 km2 in area, respectively. The cultivated land was also mainly
converted into urban land and forest, with 15.12 and 4.87 km2 in area, respectively. The net
increase in cultivated land mainly came from forest and urban land, with areas of 8.31 and
4.06 km2, respectively. The net conversion of forest to cultivated land and residential land
was 8.31 and 2.78 km2, respectively. The net conversion of urban land and water was small;
there was a certain mutual transformation between urban land and cultivated land; and
water was mainly converted into cultivated land and forest.

Furthermore, we observed mainly two types of large-scale conversion from 2010 to
2020: the conversion of 42.68 km2 of cultivated land into urban land and the conversion
of 14.10 km2 of urban land into cultivated land. Compared with the first ten years, there
are three main differences in the change in land area and land transition matrix in the last
ten years. First, the status of urban land was reversed in the mutual transformation with
cultivated land, where a large amount of cultivated land was converted into urban land.
In the second set of 10 years, 42.68 km2 of cultivated land was converted into urban land,
which was much greater than that in the first ten years. Second, the reduction in forest
land slowed, also slowing down the conversion of forest to cultivated land from 13.18 to
5.85 km2. Third, water was restored, and the main conversion was from cultivated land
and forest. In contrast to the changes in the first ten years, 0.9 km2 of cultivated land and
0.7 km2 of forest were restored to water.
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3.2. Establishment of the LUCC Model
3.2.1. Construction of the CA-Markov Model

First, the land use transition matrix from 2000 to 2010 was established based on the
Markov module. Then, the suitability image of each land use type was generated using the
MCE module based on the comprehensive driving forces. The weight of the driving forces
of each land use is shown in Table 4 below.

Table 4. Weight of driving forces for each land use type in the CA-Markov model establishment.

Land Use Type Driving Force 1 Driving Force 2 Driving Force 3

Cultivated land Slope 0.6 Altitude 0.2 Water distance 0.2
Forest Altitude 0.6 Slope 0.4 -
Water Water distance 1 - -

Urban land Slope 0.43 Road distance 0.42 Residential area distance 0.15

The suitability image of each land type is shown in Figure 6a. Darker colors represent
higher suitability and possibility of conversion into the underlying land type within the
grid. The CA-Markov model was used to obtain the land use simulation in 2020 (Figure 6b)
based on the obtained transition matrix and the suitability atlas of land use types.
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3.2.2. Construction of the LCM Model

Similarly, the transfer model was trained using the multi-layer perceptron (MLP)
neural network, based on the five driving forces, i.e., altitude, slope, road distance, urban
land distance, and water distance. Because it can be challenging to generate a complex
transfer model that simultaneously satisfies the prediction accuracy of all five types of
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transfer [27], forest→cultivated land and forest→urban land were combined into one
transfer model. The four transfer types were generated with the accuracy shown in Table 5.

Table 5. The MLP accuracy of transition submodels in LCM model establishment.

Num Accuracy (%) Transfer Type

1 76.39 Forest→Cultivated land
Forest→Urban land

2 66.48 Cultivated land→Forest
3 90.23 Cultivated land→Urban land
4 79.24 Urban land→Cultivated land

Five transition probability images were further generated based on MLP, as shown
in Figure 7. Then, based on the obtained transition matrix and the land use transition
probability images, the LCM model was used to obtain the land use simulation in 2020
(Figure 8).
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3.2.3. Comparison of Model Accuracy

We used the CROSSTAB tool in GIS Analysis under IDRISI to calculate the Kappa
coefficient, which was then used to test the reliability of the two LUCC models. The Kappa
coefficient of the CA-Markov model was estimated to be 81.08% based on the confusion
matrix of its prediction map and actual land use classification map. Similarly, the Kappa
coefficient of the LCM model was estimated to be 78.1% based on the confusion matrix
of its predication map and actual land use classification map. Since the Kappa coefficient
of both models was greater than 75%, we concluded that both have strong consistency
between the simulation result and the actual situation. However, the Kappa coefficient of
the CA-Markov Model was greater than that of the LCM model, so the simulation results
of the former model were more accurate in terms of quantitative accuracy and spatial
accuracy, indicating that CA-Markov Model is more suitable for the future prediction of
land-use spatial structure simulation in this area. Therefore, the CA-Markov model was
adopted in the prediction of land use distribution in Qishan in 2030.

3.3. Multi-Scenario Prediction of Land Use

With 2020 as the starting point, the verified CA-Markov model was used to predict the
land use in Qishan in 2030. Given the possibility that future land planning interventions,
incentives and restrictions will change the land development process, we outlined three
scenarios to simulate the land use classification in 2030 (Figure 9). The statistics of land use
area and changes under the three scenarios are shown in Table 6 below:
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Table 6. Prediction of land use change in Qishan under different scenarios from 2020 to 2030.

Land Use Type Reference Natural State (km2) Economic Development (km2) Water Area Protection (km2)

Cultivated land
Area 437.13 433.11 436.88

Change −19.57 −23.59 −19.82

Forest
Area 282.12 281.88 281.89

Change −4.38 −4.63 −4.62

Water
Area 4.26 4.25 4.77

Change 1.12 1.11 1.62

Urban land
Area 131.62 135.90 131.60

Change 22.83 27.11 22.82

Table 6 shows that the common trends under the three scenarios from 2020 to 2030
are shrinking areas of cultivated land and forest and increased areas of urban land and
water. The results show that cultivated land will decrease by 19.57 km2, and the forest will
decrease by 4.38 km2 within 10 years. Although the area base of forest and cultivated land
in Qishan is extensive, the reduction year by year is a potential threat to Qishan.

Compared with the land use area in the natural state scenario, in the economic devel-
opment scenario, the cultivated land decreased by 4.02 km2, and the urban land increased
by 4.28 km2. It can be concluded that if the national authorities continue to give priority to
economic development, considerable cultivated land will be converted into urban land, and
forest will also be affected, which may threaten food security and local ecology. Therefore,
it is necessary to adopt appropriate planning restrictions on the expansion of urban land.

Under the scenario of water protection, as the conversion of water into other land
uses is prohibited, the water area increased significantly by 45% compared with that in
the natural state. However, other land types did not change significantly, indicating that
under the premise of not impeding economic development, the prevention of water area
reduction has a certain effect on protecting the region’s fragile water ecosystem.
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4. Discussion

Between 2000 and 2020, the water area of Qishan County underwent a substantial
decrease in the first ten years and a substantial increase in the latter 10 years. This is
related to the implementation of large-scale remediation of soil erosion and water resource
occupation by the local government in recent years. However, the urban land area increased
most significantly in the last 20 years. These phenomena shed light on a paradox regarding
the coexistence of population loss and residential spatial expansion in shrinking cities,
which is consistent with Song [28] and Xu [29]’s conclusion that urban land expanded
blindly in some shrinking cities in China. This scenario may lead to secondary issues such
as vacant industrial land and residential buildings [30], which may be explained by policies
focused on economic development being the mains targe of China’s national authorities,
since urban land expansion is associated with economic improvement. Especially in the
last ten years, the urban area in China has largely increased, and the economic index GDP
of Qishan County has doubled.

In this study, the land use classification of Qishan County in 2030 is predicted under
three scenarios: natural state, economic development with expansion of urban land, and
water conservation with restricted conversion. The results show that both cultivated
land and forest are decreasing in any scenario and, especially considering the strong
background of economic development, the area of cultivated land decreases more sharply
and the urban land increases more rapidly compared with the area in the natural state.
This urbanization process is related to the government’s long-term priority and focus on
economic development and may have a series of negative impacts on human life and the
environment [31,32]. Considering potential measures to restrict the encroachment of water,
the water area increased by 45%, while other land use types were not affected, indicating
that under the premise of not hampering economic development, restricting the conversion
of water into other land use types can somehow protect the fragile water ecology.

Based on the outcomes of our research results above, we make the following sug-
gestions for the local governments of Qishan County. First, in urban planning, priority
should be given to avoiding the blind expansion of residential land and construction land,
improving the utilization efficiency of urban space, and handling the contradiction between
the expansion of residential land and population loss. Second, land policies should be
implemented to prevent the occupation of water and cultivated land and the negative
orientation of land use in terms of environmental and social ecosystem services. Further-
more, it is necessary to adopt certain planning restrictions to achieve rational economic
development. In addition, existing construction land resources in Qishan County could be
optimized to reduce damage caused by new construction to the environment. Finally, when
planning future land use in a county, stakeholder knowledge and innovation of suitable
sustainable local land-use patterns should be increased.

5. Conclusions

This study provides an analysis of land use change in Qishan from 2000 to 2020. Upon
comparison of two LUCC models, the CA-Markov model was used to predict and analyze
land use under three scenarios in 2030. The conclusions are as follows:

(1) From 2000 to 2020, the area of cultivated land first increased and then decreased;
the area of forest continued to shrink but at a slower rate; and the water area first decreased
and then increased. In contrast, the urban land expanded considerably, especially in the
latter ten years from 2010 to 2020. This chaotic spatial distribution has severe negative
implications for the landscape. Certain controlling measures are needed to limit the increase
in construction land and improve the utilization rate of land resources;

(2) The comprehensive dynamic change in water is the most significant, indicating
that due to its original small area, water land type is an unstable resource in Qishan County.
Even though large-scale remediation of soil and water resources has been implemented by
the local government in recent years, more attention should be given to protecting water
ecosystems; and
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(3) Results from the CA-Markov model used for the simulation and prediction of land
use change under three different scenarios in 2030 pointed out some relevant possibilities.
First, the scenario of water conservation shows that prohibiting the conversion of water
can better protect the fragile water ecological environment without hampering the region’s
development. The rapid disappearance of cultivated land under the scenario of economic
development may threaten food security, and reasonable planning is needed for rational
economic development.
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