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Abstract: Protecting and enhancing forest carbon sinks is considered a natural solution for mitigating
climate change. However, the increasing frequency, intensity, and duration of droughts due to climate
change can threaten the stability and growth of existing forest carbon sinks. Extreme droughts
weaken plant hydraulic systems, can lead to tree mortality events, and may reduce forest diversity,
making forests more vulnerable to subsequent forest disturbances, such as forest fires or pest infes-
tations. Although early warning metrics (EWMs) derived using satellite remote sensing data are
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now being tested for predicting post-drought plant physiological stress and mortality, applications of
unmanned aerial vehicles (UAVs) are yet to be explored extensively. Herein, we provide twenty-four
prospective approaches classified into five categories: (i) physiological complexities, (ii) site-specific
and confounding (abiotic) factors, (iii) interactions with biotic agents, (iv) forest carbon monitor-
ing and optimization, and (v) technological and infrastructural developments, for adoption, future
operationalization, and upscaling of UAV-based frameworks for EWM applications. These UAV
considerations are paramount as they hold the potential to bridge the gap between field inventory
and satellite remote sensing for assessing forest characteristics and their responses to drought condi-
tions, identifying and prioritizing conservation needs of vulnerable and/or high-carbon-efficient tree
species for efficient allocation of resources, and optimizing forest carbon management with climate
change adaptation and mitigation practices in a timely and cost-effective manner.

Keywords: drought-induced tree mortality; climate extremities; climate mitigation potential of
forests; drone remote sensing; biotic factors of tree mortality

1. Introduction

The use of forests as a natural solution to mitigate climate change is becoming in-
creasingly popular due to their unparalleled ability to capture and store carbon dioxide
(CO2) [1]. Global forests are a net carbon sink of around 7.6 billion metric tons of CO2
year−1, which is around one-third of fossil-fuel-based CO2 emissions [2]. However, human
activities, such as fossil fuel use and deforestation, are increasingly adding to the CO2
concentration in the atmosphere, causing increases in atmospheric temperature and climate
change, and consequently increasing the frequency, intensity, and duration of droughts.
Climate-change-driven droughts threaten the stability of existing forests as carbon sinks
and affect the climate change mitigation potential of forests in the long run [3].

Climate-change-driven droughts, such as the ones observed in Amazonia following
the 2015–2016 El Niño event and in California during 2012–2016 and 2020–2022, can result
in landscape-scale tree mortality events, a decline in biodiversity, the proliferation of in-
vasive species, and/or loss of ecological functions that can lead to significant increases in
carbon emissions from the forest ecosystems to the atmosphere [3–6]. Droughts can stunt
plant growth and change plant architecture, resulting in lower primary growth, reduced
size/number of leaves, limited fruit production, increased dead/live biomass ratio, and
modifications in their reproductive phases [7–9], in addition to increasing autotrophic respi-
ration and promoting wildfires [10,11]. Moreover, plants’ responses to drought conditions
can vary depending on their stomatal adjustment capabilities—with anisohydric plants
continuing the transpiration process irrespective of reduced soil water content, whereas
the isohydric plants reduce stomatal conductance to limit transpiration [12]. The age-class
and structural diversity of forests, environmental gradients (e.g., topography, temperature,
light availability), and competition also play significant roles in determining the impacts of
droughts on forest carbon sequestration and storage capacity [13,14].

In addition, drought-induced forest mortality may reduce forest diversity [15], which
in turn can be associated with increased vulnerability to future disturbances such as pest
outbreaks [16] or the substitution by alternative ecosystems with new species adapted
to new fire regimes [17]. Long-term and/or intense droughts have been found to trigger
landscape-level tree mortality for years after the drought episode. Drought-associated tree
mortality in these cases is referred to as “die-off”, whereas partial mortality impacting
only peripheral plant parts is usually referred to as forest “dieback” and “decline” [18].
Climate-change-driven droughts and tree mortality entail serious global threats such as
decline in ecosystem services and depletion of sequestered forest carbon [19,20], because
tree mortality can occur faster than recovery of biomass growth [21].

The increasing frequency and magnitude of drought occurrence and impacts neces-
sitates an increasing need for intensive monitoring and anticipation of drought impacts
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over multiple scales to understand drought impact at the forest and tree level over time. In
this regard, the development of EWMs (early warning metrics) and indicators for moni-
toring drought impacts and forest and tree mortality using integrated data streams from
satellite, UAVs (unmanned aerial vehicles) and ground-based remote sensing techniques
is invaluable.

Despite the existence of sufficient research revolving around the impacts of droughts
on tree mortality and growth during the dry seasons, early warning metrics (EWMs) for
tree physiological stress and mortality after drought scenarios are rarely studied, especially
at operational scales [22]. Apart from the highly complex nature of forest–water–climate
relations, the paucity of reliable high-quality and continuous data makes it harder for
scientists to create dependable predictive models. Given the independent nature of isolated
droughts and spatial variability of post-drought tree mortality and tree species’ hydraulic
traits, field-based methodologies are not practical at regional scales. In addition, climate
extremes are not common and are often only able to be studied through retrospective
measures. Therefore, recent studies have investigated the possibility of developing EWMs
for predicting spatial variability of post-drought tree stress and mortality using satellite
remote sensing-based tools [22–24]. However, most of the EWMs are at an early stage
and there is a need to bridge the gap between literature and applications through the
adoption and integration of state-of-the-art, yet affordable and user-friendly, remote sensing
technologies such as UAVs. The advantages of UAVs over satellite imagery and field-based
inventory are explained in Section 3.

The integration of the different UAV remote sensing tools to derive and develop
EWM frameworks will allow us to address questions such as: What are some tree-level
remotely sensed variables that can help us estimate tipping points of plants in post-drought
conditions? What happens before a tree of a particular species dies and how can the
changes happening at the tree level in terms of physiological structure and leaf traits be
captured? Which species are more prone to drought-related tree mortality? What areas
were most affected by previous droughts and how are the dynamics of tree mortality and
carbon recovery within/across species varying with time? Therefore, in this article, we
aim to discuss the status of remote-sensing-based EWMs and the recent advances in UAV
applications that could be leveraged for predicting post-drought tree stress and mortality.
We outline the most important EWMs derived from ground-based LiDAR (light detection
and ranging), aircraft, satellite, and UAV data, and the possible sampling approaches that
will allow the integration of UAV data with satellite imagery. We discuss the pathways
through which EWMs can push forward precision forestry endeavors, the extension of
algorithms for generating modified EWMs from the collected data, and questions of scale
and resolution of expected remote sensing products. Lastly, we provide twenty-four
approaches, classified into five categories: (i) physiological complexities, (ii) site-specific
and confounding (abiotic) factors, (iii) interactions with biotic agents, (iv) forest resource
monitoring and optimization, and (v) technological and infrastructural developments to
guide the development of EWMs.

2. Status of Remote-Sensing-Based Early Warning Metrics

Various EWMs have been developed and used in recent years using remote sensing
data from satellite, airborne, and ground-based (terrestrial) sensors in forest environments.
The variables which have contributed towards analysis of drought-induced tree mortality
using these remote sensing data can broadly be categorized into the following groups:
(i) topographic variables (such as elevation and slope), (ii) vegetation indices (such as the
NDVI (Normalized Differential Vegetation Index) and EVI (Enhanced Vegetation Index)),
(iii) nonvegetative counterparts (such as NPV (nonphotosynthetic vegetation), and (iv) in-
formation on biotic agents (treating them as drivers of tree mortality). Satellite remote
sensing data have been used for monitoring drought stress and tree mortality through
utilizing reflectance from the visible and infrared spectrums, which can be used to estimate
canopy water loss and carbon ecosystem dynamics [25]. Both Landsat and Sentinel-2 series
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satellite data are widely used due to their relatively high spatial resolution (30 and 10 m
pixel resolution, respectively) [23,26]. Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite data are also widely used alone or in combination with Landsat data to
detect the impacts of drought stress on tree mortality due to their high temporal resolution
(1–2 days) [14,27,28].

Using remote sensing satellite data, it is possible to monitor the vegetative condition
of large forest areas using derived vegetation indices such as NDVI, NDWI (Normalized
Difference Water Index), NDRE (Normalized Difference Red Edge Index), GLI (Green Leaf
Index), EVI, GNDVI (Green Normalized Differential Vegetation Index), and GCI (Green
Chlorophyll Index). These indices can be used singly or in combination to map drought-
induced tree mortality in forests [29–31], where NDVI was identified as an index that
differentiates various levels of tree mortality severity arising from droughts [32–34]. Details
of such recent studies that have utilized existing or developed new vegetation indices for
analyses of drought-induced tree mortality using various remotely sensed data can be
found in Supplementary Material Table S1. NDVI has been widely used in various remote-
sensing-based studies [35,36] because it is straightforward to interpret and apply and is
openly available in a level 2b processed state at a global level at high spatial resolution,
with the data freely provided by NASA (National Aeronautics and Spaces Administration)
and ESA (European Space Agency).

Nonvegetative metrics, such as NPV, depict the properties of nonphotosynthetic parts
of the tree and include information on dead and senescent vegetation, plant litter, and
nonphotosynthesizing branch and stem tissues [37], and have been used to gain insights
and analyze tree mortality. For example, NPV metrics showed a positive correlation to leaf
area index, as well as spatial patterns in tree hydraulic stress underlying mortality, such
that NPV-based EWMs were reported to be successful in explaining tree mortality [23]. The
spatial pattern of drought-induced AGB (aboveground biomass) loss from sudden aspen
decline and tree mortality was more accurately depicted through NPV-related estimations
than standard greenness indices (such as NDVI) at a local scale [38]. Subsequent studies
further underscored the robustness of NPV measurements in detecting tree mortality at
regional scales [39].

Remote sensing data can also be used to account for the influences of biotic agents,
and especially pests, which assists with the understanding of spatial patterns of outbreaks
and the generation of simulations and predictive models for post-drought tree mortality.
For instance, [40] generated budworm infestation maps and spatial patterns from Landsat
imagery, and reported that budworm outbreaks (causing defoliation in North American
coniferous forests) followed autumn and summer rainfall deficits that were 12% and 20%
lower than average, respectively. Other relevant studies include [41–43]. However, few
remote sensing studies have examined the influence of biotic factors as co-drivers of post-
drought tree mortality [44].

Hydraulic-based approaches that integrate models of plant hydraulics with land
surface models can also provide insights into tree mortality by taking into account the
water variation in plants, by identifying locations with high drought-induced tree mortality
risks. Nonetheless, studies integrating remote sensing data into hydraulic modeling based
approaches are very rare. Only a few studies, such as that of [45], have integrated a
hydraulic-based threshold approach and Landsat imagery to detect regional patterns of
plant water stress thresholds that correspond with the loss of vascular transport capacity
from air entry to the xylem leading to tree mortality. The authors of [46] discussed the
applicability of microwave remote sensing (e.g., frequencies using active radar and passive
radiometry) for retrieving variations in vegetation water content, which were in turn linked
to a range of tree responses such as fluxes of water and carbon, mortality, and flammability.

Aerial detection survey data, LiDAR, and topographical variables such as elevation,
slope, and aspect have been used to detect seasonal variations in tree status and mortality in
drought-prone locations [47–49]. For instance, [50] made use of remote sensing data (aerial
photographs, AVIRIS, USGS LiDAR) and derived topographic variables with a random
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forest algorithm to investigate Bishop pine mortality after a couple of years of intense
drought, and observed that dead trees were mostly found on shallow slopes and at the
upper elevation limit in the stand where cloud frequency is lowest. Tree survivorship rate
was found to be highest for large trees at moderate elevation, and in general, drought or
environmental stress agents were most likely to appear at the margins of the climate zone
to which the tree is adapted [51,52].

Severe water stress has also been extensively monitored using hyperspectral and, to
some extent, multispectral remote sensing of leaf water content to predict both equivalent
water thickness and gravimetric water content as indicators of water stress [53,54]. A
list of past, current and planned hyperspectral sensors deployed from UAVs, aircraft
and satellite is given in Supplementary Tables S2–S5. Canopy water content is closely
linked to the equivalent water thickness via leaf area index and is defined as the product
of the latter two [55]. The change in canopy water content as an EWM during drought
periods, measured using laser-guided imaging spectroscopy, has a strong spatially explicit
relationship with post-drought gross conifer mortality [25]. The absorption features in
the near-infrared and shortwave-infrared have been exploited in different studies, and
strong negative correlations have been observed between leaf water content and reflectance
within individual wavelengths [56,57]. A number of studies have used indices derived
from near-infrared and shortwave-infrared bands to predict leaf water content [54,58],
and a summary of these is given in [59] (Supplementary Material Table S2). Simulations
using radiative transfer models that link leaf and canopy physical models have also been
widely used to estimate the equivalent water thickness [60,61], and this approach has
been successfully used at the canopy level to predict water content using hyperspectral
imagery [61]. Recently, microwave remote sensing-derived indicators, such as relative
water content, have also been tested for their ability to predict large-scale water stress
variations and tree mortality [62]. Although many of the aforementioned studies have been
conducted at the leaf level [63] (Supplementary Material Table S3), less research has made
predictions at the landscape level.

Although there have been notable improvements in the field of airborne and satellite
remote sensing-based EWMs in recent years, major gaps exist in operational decision
making that impede effective post-drought tree mortality assessment and carbon man-
agement, especially at tree-level. However, the use of remote sensing satellite sensors to
detect tree stress and mortality is limited to forest areas with open canopies—as in other
cases, the mortality signals were often obscured by overlapping crowns and/or understory
greenness [30,64]. Landsat images are usually of poor quality due to their moderate spatial
and temporal resolution data. Other multispectral satellite remote sensing data sources,
such as Worldview, QuickBird, GeoEye-1, Rapideye, etc., with higher spatial and temporal
resolution images can be used to more accurately detect tree stress and mortality, but these
imageries are expensive for large areas and long-term monitoring studies and affected by
cloud cover. Therefore, there is the need for integration of satellite and airborne data with
high temporal resolution data from UAVs with a spatial resolution that allows sampling at
both the canopy and tree level, to improve on the development of EWMs for tree mortality.

3. Potential of Unmanned Aerial Vehicle (UAV)-Based Endeavors

In addition to satellite remote sensing imagery, UAVs that integrate hyperspectral,
thermal, multispectral, and near-infrared sensors have been extensively used in the recent
past for local-scale forest monitoring and species-level response to environmental changes
to derive EWMs. This is because UAVs provide a cost-effective and easy-to-use alternative
high-resolution imagery that ranges from meters to millimeters. This is crucial for studies
that require data at high spatial and temporal resolutions, especially in cloudy areas
or densely forested landscapes where satellite imagery is not dependable [65–67]. The
applications of UAVs in the forest sector have exponentially increased in the past decade
due to advancements in the field of robotics, artificial intelligence, sensors, and data science
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algorithms [68–70]. The advantages of using UAVs in forest management to develop EWMs
are shown in Figure 1.
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Figure 1. Impacts of climate-change-driven droughts on forests and possible pathways through which
operationalization of UAV-derived early warning indicators can assist post-drought tree mortality
and biomass assessment.

The implementation of UAVs would allow us to observe the relationship between
NDVI and drought, infestations, productivity, leaf senescence, and partial dieback and
mortality at a finer resolution (tree level) as well as at more frequent intervals, which are
limitations of satellite imagery. Different species display changes in different plant traits
under drought conditions, and high-density point clouds/high resolution imagery from
UAVs will assist with species classification and species-level analysis information over
small areas that can be integrated with satellite and field measurements to produce more
reliable data/results. Because satellite-imagery-derived NPV of dying trees shows similar
correlation with drought stress and poor site condition, NPV estimated from satellite
imagery cannot be generally used as an early warning drought metric in a wide variety of
forests. More regular, high-quality time series data acquired over a long-term period from
UAVs are necessary to differentiate drought stress from other causal factors such as poor
site conditions.

Because UAVs can be used to acquire more data per unit area at small spatial scales,
there is more extractable information at the tree level, including reliable vegetation indices.
This is extremely beneficial for performing species classification and microscale analysis
related to drought responses. Recent improvements in UAV technology, driven by longer
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flight times and greater carrying capacity, have made them a viable platform for data
capture. UAV sensors can be used to characterize indicators of water stress at a fine
resolution. For instance, [71] used UAV-acquired multispectral imagery to detect stress
in a mature Pinus radiata D. Don plantation using the NDVI, GNDVI, and RENDVI (Red
Edge Normalized Difference Vegetation Index). Previous research has demonstrated the
possibility of operating UAVs fitted with airborne LiDAR for characterizing leaf area
index at the landscape level [72]. Similarly, recent advances in UAV hyperspectral sensor
technology now allow collection of fine resolution hyperspectral data that are accurately
georeferenced, and a list of available sensors is given in [73] (see Supplementary Table S1).
Detection of drought stress ideally requires data in the range of 400–2500 nm, as leaf water
content has been found to be strongly related with wavelengths from 900–2500 nm.

From an operational standpoint, UAV technology has the potential to fill the data
gap between field inventory and satellite remote sensing for assessing forest character-
istics and their responses to drought conditions. With the increasing use of UAVs and
the greater availability of technologies for data processing, along with robust sampling
strategies, we can verify and monitor forest structure at the individual tree scale over
tens to hundreds of hectares when integrated with satellite data [74–77]. UAV-derived
EWMs can provide detailed assessments and measurements of various tree physiologi-
cal complexities, site-specific factors, and forest carbon distributions for mitigating the
impact of drought and optimizing forest carbon levels at multiple scales depending on
supplementary data availability.

The use of UAVs in combination with a wide variety of tools and techniques (e.g.,
GNSS (Global Navigation Satellite Systems), ground truthing, ground-based LiDAR, GIS
(Geographic Information System), etc.) to produce high-resolution data are an essential
part of precision forestry and can be extremely useful in detecting early warning signs
of droughts, analyzing drought impacts, and helping in tactical and operational decision
making [78,79]. In addition, UAVs can play a prominent role in the commercial forestry
domain, which is also facing the brunt of climate-change-driven droughts and tree mortality,
along with associated events and risks such as wildfires and insect outbreaks [80].

Herein, we argue that UAVs hold immense potential for forest resource management
and precision forestry in the event of a drought as UAVs allow us to shift from using
remotely sensed data on an area basis (e.g., 20 × 20 m) to using remotely sensed data on a
tree-level basis. Responses of individual species in multiple environments with varying
drought intensity can also be measured, providing further insights into the spatial–temporal
distribution of tree mortality and drought vulnerability. From UAV-mounted sensors, more
usable information (e.g., 3D point clouds) can be obtained per unit area and this can assist
with generating new benchmarks for performing cross-validations and for scaling up data
from the site level to the landscape level. Figure 1 underscores several possible UAV-based
pathways that could be explored for assessing drought-induced tree stress.

4. Prospective Approaches and Recommendations for UAV Applications

In general, the proposed approaches address broader issues in remote sensing and
forest ecology and how the recent advances made in the field of UAV-based technologies
can be used for bridging the gap between ground-based and satellite remote sensing data
and developing new metrics to predict drought-induced tree stress and mortality. The
twenty-four prospective approaches and associated recommendations are classified into
five categories, including (i) physiological complexities, (ii) site-specific and confounding
(abiotic) factors, (iii) interactions with biotic agents, (iv) forest resource monitoring and
optimization, and (v) technological and infrastructural developments (Figure 2).
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Figure 2. Conceptual framework for the prospective approaches and recommendations for using
UAV-based technologies to monitor drought impacts at different scales, early detection of post-
drought outbreaks, and how to integrate site-specific, confounding factors and other values in
developing the early warning metrics. Also shown are technological innovations that could, in
general, improve the efficiency and accuracy of monitoring and prediction of drought impacts.

4.1. Physiological Complexities
4.1.1. Thresholds and Tipping Points

Assessing plant mortality at the tree level is often challenging, mainly due to the
complex nature of trees in which hydraulically independent units may survive, while
unhealthy parts of the plant die [81]. In parallel, the existence of lag effects adds new
constraints to the accurate estimation of drought-induced tree mortality [48]). The concept
of a “point of no return” for plants can be used when trying to define or assess the exis-
tence of a physiological threshold after which the likelihood of tree mortality progresses
irreversibly [82,83]. The point of no return, sometimes called tipping point of the tree, most
commonly refers to the cessation of water transport, loss of living aboveground tissue,
and/or hydraulic conductivity/water potential gradients which do not recover even when
soil moisture increases [22,84].

UAVs can be useful in assessing tipping points of plants, as they allow close to real-
time monitoring of changes in forest conditions at a tree scale, thereby recording early
warning signals of tree stress. UAVs can overcome the limitations in spatial resolution
of satellite data because they better match the scale at which individual tree mortality
occurs [22]. The detection of physiological stress at the tree level can assist with the
derivation of mortality-related risk factors [22,85]. Physical traits observable from UAVs—
such as tree crown defoliation, leaf coloration, canopy loss, leaf area index, stem structure,
and tree size—should be utilized as surrogates and be associated with hydraulic failure,
carbon starvation, and/or reduced defense [86,87]. This information can also help estimate
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the change in carbon sequestration capacity of individual trees and thereby assist with
updating biomass maps at regional levels.

Detection of reductions in canopy water content, relative water content, and leaf water
content using remote sensing techniques is a promising method to detect tree physiological
stress (such as hydraulic failure) through the course of a drought and therefore could
be used to physiologically monitor, manage, and forecast mortality [25,62,88]. Transfer-
ring these technologies to UAV platforms, improving the number of data samples, and
analyzing the different species present in the study areas would provide tools to detect
gradual/chronic versus short-term/abrupt weakening of plant systems and associated
biomass levels. We recommend further research that focuses on deriving integrated quan-
titative metrics to represent the extent of forest mortality and consider the inclusion of
climatic thresholds and lag effects while measuring biophysical parameters.

4.1.2. Canopy Structure and Plant Functional Traits

Hydraulic failure and its interactions with biotic factors have been frequently associ-
ated with drought-induced tree mortality. The water potentials (Ψ) at which stem hydraulic
conductivity is reduced by, respectively, 50% (Ψ50) and 88% (Ψ88), are suggested as thresh-
olds and probable indicators of hydraulic failure that cause tree mortality [22,89]. However,
this tolerance is highly variable both between and within species, and across space and
time due to factors such as plant development, seasonality, and life history [45]. Limited
knowledge on intraspecific plant functional trait variations and covariations, and interac-
tion among traits, increases uncertainty in model predictions and restricts the assessment
of adaptive capacity of trees following stressors such as droughts [90]. Repeated UAV ac-
quisitions of important data can identify and classify tree species based on plant functional
traits at the tree level and species level, to characterize within-species trait variation and
assist understanding of the transition in properties across age groups and species with high
accuracy, and thus improve the accuracy of model predictions.

As drought events have the potential to cause significant reductions in net primary
productivity of forests [91], understanding different responses of plant functional traits to
droughts is important to predict changes in carbon storage. In this regard, exploration of
UAV hyperspectral data and time series images would be beneficial. Leaf area index, which
is linked to an apparent ordering of co-occurring species’ risks to drought mortality, can be
extracted with high confidence using UAV multispectral and/or point cloud data [44,92,93].
UAV-derived biophysical parameters can facilitate the development of direct relationships
and improve our understanding of tree size, tree growth and with wood density at the
species level, which has been found to have some influence on drought-induced mortality
rates [94].

4.1.3. Forest Health Mapping

UAV data may be necessary to bridge the resolution gap of satellite-based remote
sensing and ground level surveys and improve our predictions of tree health, disturbance
regimes, disease spread, and recovery rates [11,95,96]. UAV data over small areas allow us
to extract detailed forest metrics at affordable rates and can complement satellite data over
larger areas in order to identify coarse and large-scale forest deterioration, stress, and dis-
ease progression in post-drought environments. For example, Kattenborn et al. [97] tested
the applicability of UAV-based reference data acquisitions as alternatives to traditional field
surveys and demonstrated the possibility of scaling up UAV-estimated species cover to
spatial scales presented by Sentinel-1 and Sentinel-2. Samiappan et al. [98] utilized UAV-
sourced high-resolution multispectral imagery to derive NDVI and SAVI (Soil-Adjusted
Vegetation Index) to identify and map Chinese tallow and found greater than 90% consensus
between the ground reference data and the tallow identified from the multispectral imagery.

In addition, Watt et al. [99] used multispectral UAV data and satellite data from
the WorldView 3 platform to predict weed cover in forest plantations. Similarly, UAV
imagery was found to highlight physiological stress caused by herbicide more accurately
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in comparison to RapidEye imagery [71]. UAV technology has also been used to assess pest
damage and identify the threshold of detection of tree crown defoliation in Mediterranean
pine forests [11,86]. Dash et al. [85] tracked changes in canopy color and density of herbicide
injected trees, on high-resolution time-series UAV data—during a disease outbreak which
was simulated in mature Pinus radiata (D. Don) trees—and confirmed the utility of UAV
data for monitoring the physiological stress in trees. UAV-derived metrics have been
used to calibrate measures of burn severity derived from Landsat 8 imagery following a
wildfire [100]. Therefore, systematic UAV flights close to ground surveys make it possible
to attain consistent data samples explicating spatial patterns of forest health in drought-
affected areas.

4.1.4. Nonphotosynthetic Vegetation

The NPV index is a prominent element of vegetation productivity in grasslands, sa-
vannas, shrublands, and dry woodlands, and is essential for understanding and assessing
carbon sequestration [101]. Measurements of NPV cover can highlight the response of
vegetation to drought and mortality caused by disturbance events, and this serves as an
essential early warning drought metric of climate change impacts on vegetation in multiple
forest ecosystems [23,102]. Long-term drought can result in increased NPV in vegetation
across a range of vegetation types from crops to native shrubs and trees, indicating differ-
ences in susceptibility to water stress [103]. NPV cover can be estimated utilizing lignin
and cellulose absorption features in the shortwave-infrared range. However, since most
of the NPV is obscured under longleaf tree canopies, only exposed NPV has an effect on
the spectral reflectance [104]. Furthermore, separating NPV and background soil cover is a
challenge in the visible and near-infrared wavelength spectrum since they possess identical
featureless spectral reflectance curves, and because these bandwidths are used by NDVI
and other indices for image classification [100,105]. Higher-resolution images acquired
through UAVs can be useful because finer spatial resolution imagery allows the masking of
soil layers through various machine learning processes. UAV data could also help improve
the accuracy, by differentiating the signals which we take in from nonphotosynthetic vege-
tation index, to understand the relation between the drought stress signal and poor site
vulnerability.

Currently, NPV studies are mostly centered on the estimation of NPV cover using
passive optical data rather than NPV biomass; only a few studies have made the best
use of hyperspectral, LiDAR, synthetic aperture radar, and data from UAVs. This trend
is expected to change in the future with recent advances in extracting and combining
multisensor data, and these methodologies include UAV-based frameworks [106]. The
combinations of machine learning algorithms and multispectral data from UAVs have been
found to detect and quantify the dead canopy woody component (such as dead stands and
fallen trees) of secondary dry forest plots with accuracy values higher than 95% [107]. Data
from UAVs can also characterize the transition between live to dead biomass pools and
identify factors that can quantify compartmentalization of death/senescence of trees.

4.1.5. Spatial Variability

Forest gap formation associated with drought-related tree mortality and forest dieback
have been found to be spatially distributed, varying in size and vulnerability based on a
multitude of environmental and site-specific parameters [50,108,109]. Spatial attributes of
patches related with drought impact can yield significant insights around drought inten-
sity [109]. Satellite/aircraft-based remote sensing provides fundamental underlying data
for analysis of spatial patterns and temporal trends related to drought-induced tree mor-
tality [50,110,111]. UAVs are becoming a feasible option for analyzing spatial variation in
drought-associated tree mortality, growth rates, resilience, and vulnerability. For example,
Buras et al. [112] used UAV-based remote sensing for investigation of Scots pine dieback
after drought using parameters such as canopy area, tree height, nearest neighbor distance,
and minimum distance to forest edge, and found that dieback (tree mortality) was driven
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by drought and carbon depletion especially at forest edges. Such findings not only assist
with forest management practices but also help elucidate feedback loops related to forest
edge effects and identify areas vulnerable to droughts.

UAVs can be used to identify forest gaps and quantify spatial gap patterns at stand levels
and/or validate satellite-image-derived gap fraction products [68,113,114]. Zhang et al. [115]
demonstrated how UAV-based canopy parameters are able to delineate local biodiversity
patterns while assisting several gap dynamics hypotheses and theories within the ecology
domain, which otherwise need the existence of expensive long-term monitoring field sites.
This highlights the importance of UAV-based metrics in characterizing the status of carbon
sinks after formation of forest gaps. The role of drought in creating spatial patterns, age,
landscape structure, and changes in other characteristics associated with biomass is yet to be
studied and determined for a plethora of different regions and forest types. In this regard,
application of UAV swarms and establishment of UAV user networks will be extremely useful
for scaling and comparison purposes.

4.2. Site-Specific and Confounding Factors
4.2.1. Secondary Forest Sensitivity

Secondary forests constitute a significant portion of global tropical and temperate
forests, possess considerable biomass sequestration capability, and have the potential for
cost-effective climate change mitigation and for lessening biodiversity loss [66,116,117].
However, water availability has a significant impact on the biomass resilience of sec-
ondary forests, where fewer and/or more variable rainfall patterns in the tropics predicted
with climate change may reduce their biomass recovery rates and forest resilience [118].
Elias et al. [117] reported higher vulnerability of secondary forests to drought stress, lower
carbon balance, and growth rates in tree species in drier periods in the Brazilian Amazonia,
which could diminish the efficiency of the secondary forests carbon sequestration and
climate change mitigation capabilities. As large-scale forest landscape restoration efforts
are employed around the world it is important to monitor these planted secondary forests
and identify their vulnerabilities in the face of climate-change-driven droughts [69].

Given that a lot of secondary forests comprise small trees, UAV-borne sensors (red–
green–blue, multispectral, hyperspectral, and LiDAR) have the advantage over coarse-
resolution satellite imagery to identify local stand density, tree size distribution, and species
diversity of regrowing trees and provide detailed forest monitoring information to assess
changes in forest structural attributes, biomass, and tree health in restored secondary
forests [66,119]. In addition, if UAV–LiDAR data can be integrated with data from NASA
GEDI (Global Ecosystem Dynamics Investigation), it should be possible to investigate
how the distance from forest edge—due to ongoing logging and forest fires—affects the
degradation, growth rate, and/or carbon sequestered by existing secondary forests of
different age groups [120].

4.2.2. Multiple Forest Disturbances Effect

Attribution of causality is a major challenge in detecting climate-change-driven tree
mortality through existing monitoring methods [22]. A robust monitoring system should be
able to detect forest disturbances, accurately identify proximate causes, and be incorporated
into predicting trends [121]. For instance, Maillard et al. [122] investigated the association of
forest fragmentation and drought severity patterns with spatial trends in forest fires using
precipitation and temperature data, Landsat 8 images, and ultra-high-resolution images
from UAVs and found that forest edges and human-utilized zones suffered the greatest
impact from forest fires, and spatial trends of drought intensity impacted the extremity
of forest fires. Integrating UAV-based remote monitoring protocols with satellite imagery
would offer more flexibility with the ability to control temporal and spatial resolution,
characterization of disturbances over larger areas in a shorter time period, and for isolating
the influence of individual forest disturbance types. Therefore, development of UAV-based
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novel monitoring networks is essential for a faster, accurate, and more automated detection
of multiple disturbance types [66,123].

4.2.3. Species Diversity

High species diversity is widely considered as an element of a climate-resilient forest
ecosystem [124]. Studies have shown that forests with high species diversity are also diverse
in plant community hydraulics, and these forests are more resilient to drought-related tree
mortality compared to species-poor forests [125,126]. However, recent evidence reveals that
tree diversity and drought resistance are not always positively correlated [127]. Therefore,
understanding tree species interactions and underlying competition among species for
resources are important in assessing post-drought tree mortality. We propose using UAV-
based remote sensing technology in EWMs to assess positive and negative interactive
relationships between different species, which would contribute to the overall resilience
and carbon sequestration capacity of the system. Stabilizing feedback may exist where tree
mortality increases the survival of neighboring trees due to release from competition for
resources [22], and adaptation to drier conditions [128]; these can be tracked in a timely
manner using UAV-based frameworks due to the possibility of improved revisit times.

4.2.4. Soil Characteristics

Soil characteristics such as the physical, chemical, and biological properties play a
major role in determining the drought susceptibility in forests. UAVs allow the moni-
toring of soil systems temporally and spatially in a satisfactory manner—especially for
agroecosystems, forest, and grassland. UAV-based soil moisture estimations can be un-
dertaken using a variety of data sources and methods, including multispectral data and
vegetation indices [129], hyperspectral imagery and machine learning algorithms [130],
visible images [131], and UAV-borne ground-penetrating radar [132]. The use of UAVs
reduces measurement intensity, has zero impact on soils, is relatively low cost, and has high
flexibility and efficiency compared to traditional methods [133,134]. UAVs can be used to
efficiently detect early changes in stem biomass caused by prolonged drought conditions
that lead to drastic biomass reductions (>50%), mainly in the stems [135,136].

Generally, trees grown in soils with high salinity in coastal woodlands/forests are
more susceptible to mortality in an event of extreme drought as soil salinization leads to
the dispersion of clay particles that reduce drainage. Researchers have highlighted the
use of UAV-borne multispectral remote sensing [137] and hyperspectral imaging [138]
as powerful tools to determine soil salt content. UAV-mounted multispectral and hyper-
spectral sensors have been used by previous researchers [139–141] to estimate soil organic
carbon in arable/bare soils. However, unlike bare soils, heavy organic matter accumulation
in the surface layer of forest soils may interfere with the UAVs’ capacity to quantify the
aforementioned soil properties, and further research should focus more on drought-related
changes in carbon storage and tree mortality.

4.2.5. Topography

Topography (elevation, slope, aspect, and convexity) can influence soil moisture
content, leading to variable responses of tree species during drought conditions, especially
in mountainous areas. Since topographic convergence (i.e., where the wind flow is, in
general, forced up/around a high elevation region resulting in heavier precipitation) is
directly linked with plant water demand, it can play a vital role as a predictor of ecosystem
productivity and can provide insights to the plants’ response to droughts and post-drought
conditions [142]. Tai et al. [142] observed less mortality of aspen in topographic convergent
areas than that of topographic divergent areas. Trees on ridges and upper slopes are more
susceptible to droughts, which is attributable to high drainage and exposure to wind,
whereas trees growing in valleys are relatively resistant to droughts due to provision of
additional water through lateral hydrologic flow [143,144]. Further, Elliott et al. [145] found
slower growth rates of tree species at the upslope position compared to the cove position.
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With recent advances, high-resolution/accurate digital elevation models (DEMs) can
now be derived from LiDAR mounted on UAVs, which can be used for microscale analysis
to obtain greater insight into the role of topography in post-drought tree mortality. These
derived DEMs can then be used to calculate changes in various topographic metrics such as
slope, terrain curvatures, elevation, etc. [146], at a fine resolution, which are important for
understanding the forest response to drought stress. Although global DEMs exist (~30 m
pixel resolution), fine resolution DEMs acquired from UAVs can more easily detect newly
formed small and manmade changes to the landscape topography [147]. This might be
crucial in post-drought studies as these fine level features can affect rainwater trajectories
and vertical distribution of below-surface moisture and the ability of the vegetation to tap
into this moisture.

4.2.6. Climate Extremities

Climate teleconnections refer to the phenomenon in which climate anomalies are
interconnected to each other at large distances. Their occurrences and how they correlate
with ecoclimate conditions may be used as an EWM to predict drought-like conditions
and drought-induced events. Field et al. [148] found that fires and smoke occurring across
the Indonesian Kalimantan region indicated a nonlinear and sensitive relationship to
El Niño Southern Oscillation drought conditions. There exist significant relationships
between the most relevant climate extremities (Tropical North Atlantic Oscillation) and
the area burned by fires, with variations across and within continents and biomes [149].
Studying teleconnections in relation to drought conditions may also provide insight into
the conditions that are favorable for ecological growth, versus which climatic conditions
would impede growth. For instance, Wharton et al. [150] reported that an increase in the
strength or frequency of El Niño Southern Oscillation with Pacific Decadal Oscillation and
Pacific/North American Oscillation in phase will increase the variability of CO2 absorption
in conifer trees located in the Pacific Northwest region. Multitemporal application of
UAVs should be used for this purpose at local scales, and differences in tree responses
during and after (both short and long term to include the lag effects) droughts should
be studied in detail. This is because it is extremely difficult to isolate and quantify the
impacts of teleconnections and concomitant droughts on tree mortality at local scales from
coarse-spatial-resolution satellite imageries.

4.3. Interactions with Biotic Agents
4.3.1. Individual Tree Physical Characteristics

Drought-induced tree mortality usually occurs as a result of hydraulic failure, carbon
starvation, and/or insect/pathogen attacks [89]. The effects of water stress have been found
to be highly variable among trees within a stand as well as among stands of different forest
types and densities [151–153]. Larger trees, in general, are more vulnerable to droughts
than smaller trees. Mapping individual trees and stands using vegetation greenness and
predicting their drought response in advance using UAVs is important in developing EWMs.
Individual tree detection and estimation of forest structural properties can be carried
out using UAV–SfM (structure from motion) and UAV–LiDAR to derive relationships
between acquisitions of plant resources, interspecies interactions, and the possibility of
withstanding droughts [154,155]. UAV-derived tree-level metrics (such as tree crown size
and tree heights) could indirectly pinpoint the drought-resistance capability and patterns
of mortality outbreaks associated with structural overshoot.

Whole-tree biomass and carbon dynamics can be estimated using UAV–LiDAR, and
could be tested for its relationship with tree mortality from carbon starvation to identify
the onset of a negative carbon balance during severe drought and in combination with
high temperatures and high vapor pressure density [22]. Drought-induced xylem em-
bolism is a prominent factor that is linked to tree mortality. Thus, application of UAVs
for characterization of existing species in a forest system would allow the prediction of
drought-induced embolism in xylem tissues that can be derived based on the relationship
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between pit membrane thickness and embolism resistance [156,157]. UAV-based thermal
infrared imaging has been used to detect changes in canopy temperature in relation to
variation in stomatal conductance, allowing the characterization of genotypic variability
under drought conditions [158].

4.3.2. Early Pest Detection and Spatial Distribution of Insects

Above-average temperatures which are characteristic of droughts can directly affect
insect and pathogen functional fitness as well as alter tree suitability and predisposition to
attacks [22]. The use of UAVs for detection of pest infestations is becoming popular due
to advantages/benefits, especially at the individual tree level during early and various
other stages of infestation [11,159,160]. For instance, UAVs have been used for detection
and quantification of damage from the Eucalyptus Longhorned borers in eucalyptus stands
and detection of bark beetle infestation at the individual tree level at different stages
of infestation [161]. The increases in plant nutrient concentrations and remobilization
of soluble nitrogen forms to younger leaves have been found to be favorable for insect
metabolism and population development [162]. In this regard, extraction of leaf area
index, understory leaf area index, and/or forest structure—which can provide estimates
of younger leaves—from UAV–hyperspectral and/or UAV–LiDAR data can be deemed
beneficial for predicting possible threats of insects in drought and post-drought periods.
The early detection of pest attacks following droughts is important for implementing
management strategies (i.e., phytosanitary cuts, prophylactic treatments) to reduce the
danger of elevated tree mortalities, degradation of forest stands, and biomass losses.

4.4. Forest Resource Monitoring and Optimization
4.4.1. High-Priority Carbon Offsets and Role of Indigenous People

UAVs can be used to obtain and validate the satellite-data-based overview of forest
attributes and characteristics which can determine aboveground biomass and carbon
sequestration levels and thereby support high-quality carbon offset projects. UAV oblique
photography was accurately used in the aboveground biomass estimation of subalpine
coniferous forests in the region of the Minjiang River [163]. UAVs can be used to obtain
time series data over small areas in restoration and afforestation assessment/site selection
projects that target high-quality carbon offsets in cooperation with forest local landowners
and indigenous communities [69]. This is crucial in establishing successful carbon credit
systems as local and indigenous communities possess traditional ecological knowledge and
innate understandings of their forests, leading to reduced deforestation and degradation
rates [164].

Local projects have been developed to train indigenous communities in UAV map-
ping and monitoring to identify carbon-efficient trees, vulnerable species, early warning
signals of tree mortality, and tree-level parameters that can provide insights into impacts
of climate-change-driven droughts [165–167]. Thus, ensuring participation of indige-
nous/traditional communities in high-quality carbon offsets using UAVs and also redirect-
ing corporate/company carbon offsets to assist Indigenous communities with ecosystem
services, soil stabilization, and water purification would help achieve forest regeneration
and also improve the livelihoods and rights of forest guardians. However, extra care
and attention should be taken to make sure that these technological interventions are not
disturbing the living conditions and stability of Indigenous communities.

4.4.2. Scaling Strategies

Previous studies have tested various multiscale approaches using UAVs in associa-
tion with satellite imagery for scaling up plant water content and vegetation fractional
cover [168,169]. In these cases, collection of samples from several UAV sites were proposed
to be used for training satellite data to examine vegetation at larger extents. This can
further help the scaling of prevalent UAV-based workflows to drought prone ecosystems
as long as UAV datasets are sampled across a large study domain, capturing diverse fea-
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tures/signals present within the landscape, and appropriate inferences are made with
respect to observations from satellite imagery. For example, comparison of aggregated clas-
sified high-resolution pixels from UAV orthomosaics with the values extracted from satellite
imagery for the corresponding pixel area could provide insights into the applicability of
the data collected.

UAVs have been successfully used with NASA GEDI spaceborne LiDAR for large-
scale multilayer fuel components measurements and load model characterization using
sample plots [170]. Similarly, UAV thermal infrared sensors could also serve as potential
scaling tools when integrated with ECOSTRESS data as they can bridge the disparities
arising from the scales (i.e., in situ data versus ~69 m cross-track × 38 m in-track spatial
resolution of ECOSTRESS). However, we need to analyze the within-pixel estimates of
spatial and temporal variability offered by UAVs (as they fly low and can be used based
on our demands) in a diligent manner to better understand and improve scaling issues, if
any [171].

4.4.3. Pandemic–Vulnerability Metrics

In the midst of a pandemic, UAV monitoring of forested areas and mapping of tree
mortality is ideal—given the limitations on fieldwork and available labor—to identify
degraded and deforested areas which have previously undergone drought periods. The
COVID-19 pandemic led to a reduction in conservation funding in many parts of the world
and a decrease in forest monitoring due to pandemic restrictions [172,173]. The lack of forest
monitoring and regulation also means that there is a high chance of losing all the carbon
sequestered through forests due to illegal logging and fire activities. For example, lockdown
during COVID-19 was associated with an upsurge of forest fires in Colombia’s Amazon,
which was correlated with an increase in the presence of armed groups in these areas [174].
Such anthropogenic activities harm ecological diversity and threaten forest resilience,
making the forests more vulnerable to droughts in the future. UAV technology was
successfully used to assess and monitor forests and identify reductions in canopy coverage
and density associated with tree mortality during pandemic restrictions [88,175,176].

4.4.4. Input to Earth System Science Models

In the last few decades, there has been an increasing focus on development of Earth
system models owing to the need for better comprehension related to feedback between
climate change and the carbon cycle [177]. Several Earth system models that exist today
incorporate numerous biogeochemical processes and offer important insights into climate
variation, role of anthropogenic undertakings, and decision making in the form of climate
adaptation and mitigation actions [177,178]. In the context of this review, several forest and
environmental attributes captured via remote sensing/UAVs related to tree mortality and
droughts can aid in improving these models, making them more efficient and sensitive to
short-term climate anomalies and scales. UAV-derived plant physiological traits can be
included in Earth system models for simulation of land–plant–atmosphere feedbacks and
extreme climate phenomenon, since they have a direct influence on drought intensification.
Spectral and structural data collected using UAVs can also possibly serve as dependable
Earth system model validation data in post-drought scenarios.

4.4.5. Post-Drought Species Community Trajectory

Post-drought species community dynamics have the potential for ecosystem reorgani-
zation at least in the short-term, and are dependent on multiple factors, including drought
characteristics, environmental requirements of the species, plant traits, and ecosystem
legacies, of which several are trackable using existing UAV technologies [179]. This can
have major implications for biomass levels, biodiversity, and ecosystem services; therefore,
understanding regeneration dynamics and vulnerability for future stressors is important.
These post-drought ecological trajectories are influenced by management intensity and
other stressors, such as when pathogens act as co-drivers of tree mortality [179]. However,
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it should also be noted that a positive indication of certain characteristics for some plant
communities might mean a negative indication in others [35]. UAVs could assist with
development of methods to identify which behavior could imply an appropriate signal
when approaching a novel post-drought plant community, given the flexibility it can offer
in terms of data sampling frequency and enhanced data quality.

4.4.6. Optimizing Field Data Collection

Previous studies have suggested that a coordinated monitoring network which com-
bines inventory plot data with satellite imagery data is a suitable method to detect changes
in forest coverage and potential drought areas [22]. UAV applications in forest monitoring
would help optimize field data collection one step further—in particular, with the min-
imization of manual labor required and timely identification of tree mortality hotspots.
UAV–LiDAR data will be able to provide site specific information such as changes in terrain,
forest characteristics, and conditions which may be indicative of tree mortality and drought
and are useful for reducing sample size and for filling data gaps in field surveys [97,180].
Once drought-prone areas are identified and/or validated using the UAV data, experi-
mental studies measuring physiological and ecological interactions could be conducted,
allowing inferences to be drawn regarding how current climate conditions are impacting
the mortality rate of various tree species [175,181]. This would help address several scales
and time-related EWMs limitations that researchers [22,182] have faced while attempting
to study and predict tree mortality and determine the location of drought prone areas.

4.5. Technological and Infrastructural Developments
4.5.1. Deep Learning and Object Identification

Neural networks and corresponding deep learning algorithms have been identified
as a key technology for object detection using UAVs, given the detail of forest- and tree-
level information that can be extracted from the fine-resolution images and 3D point
clouds. When UAV imagery is used as input to deep learning, it is possible to detect small
newly planted trees [66,183], accurately classify tree classes [184,185], identify tree species
in secondary forests, and map tree trunks after logging, which are crucial steps towards
quantifying post-drought tree mortality patterns and biomass recovery rates [65,66,186,187].
The use of these approaches facilitates tree-level detection, which opens up a range of
additional applications (e.g., development of tree level growth models). The advantage
of using UAV data for deep learning—over airborne or satellite systems—is that we can
acquire more pixels per tree, which makes tree-level detection more robust as there is
usually a minimum number of pixels required for accurate object identification. Further
research should extend these deep learning applications to detect mortality of the newly
planted trees from drought.

4.5.2. Data Fusion

Data fusion is driven by the need to overcome spatial and temporal resolution limi-
tations associated with moderate- to high-spatial-resolution data (e.g., Landsat and UAV
data, respectively), while simultaneously making use of the advantages offered by both.
High-spatial-resolution data are generally acquired over small areas using UAVs and these
datasets offer improved sampling characteristics compared to satellite imagery. Collec-
tion of such data also requires appropriate timing and knowledge of when tree mortality
occurs so that data can be collected before, during, and after mortality occurs [188]. How-
ever, UAVs’ ability to map tree mortality at larger spatial scales is limited, and even if
such remotely sensed data are available via specific satellites, these can be costly, may
not be open-access, and/or their availability may be geographically limited. In addition,
moderate-resolution and time series satellite data, which cover broader spatial scales, may
not be able to provide the resolution to accurately detect and map changes/parameters
related to drought-induced tree mortality.
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These issues could be addressed through adoption of a multisensor, multiscale ap-
proach, which can make use of data derived from in situ measurements, UAVs, and
satellites, among various other instruments, in a holistic way to address the several chal-
lenges posed in mapping the extent and severity of tree mortality [168,169,188]. Using
a data fusion approach, UAV data have been used to analyze individual tree mortality;
airborne LiDAR data were employed for delineation of the canopy crown, calculating
canopy cover and relative mortality proportion; and Landsat imagery was used for scaling
up estimates of tree mortality to a greater spatial scale at the regional level [188]. Data
fusion has also shown potential for understanding the effects of droughts on forests, in
terms of increased mortality, weak plant hydraulic systems, stunted growth, and changes
in biomass and carbon sequestration capability [189–191].

4.5.3. Operational Aspects

Remote sensing applications are a vital source of timely, cost-effective, and compre-
hensive information required for sustainable forest management. However, improving the
operationalization of remote sensing research, data, and algorithms is essential for maxi-
mizing the utilization of these tools and technologies in applied forest management [192].
Data integration and coordination is another important aspect of operationalization of
forest monitoring systems as part of an EWMs framework. Many existing operational forest
monitoring systems track only a few specific attributes at national to global scale, but to
effectively monitor structural, functional, and compositional attributes of a forest system,
integration of multiple sources of data is needed [193]. UAVs can be used in remote and
inaccessible areas with several revisit times to sample data/areas with more flexibility and
efficiency to help address the limited sample size and sampling biases from field surveys.

For effective carbon management and for enhanced resource-use efficiency in man-
aging threats, EWMs should have a regional-scale focus. The challenge in developing
UAV-based EWMs for post-drought forest management is to balance the need for regional-
scale-focus satellite data with local-scale inputs from higher-accuracy UAV data. Presently,
there are numerous platforms for remotely sensed data from satellites but this is not the
case for UAVs, most probably as a significant proportion of data collection is undertaken at
the individual/enterprise level. Thus, the creation of an online UAV open-source platform
and database would be useful. Within such a system, academic and industry researchers,
forest managers, and related professionals could voluntarily upload their data associated
with different forest types and different UAV-mounted sensors. They could also engage in
data aggregation, sharing, visualization, and analysis for post-drought mortality detection
and carbon assessment.

4.5.4. Technical Advancements, Market Integration, Scope, and Collaborations

Emerging technologies, such as UAVs, can help map and predict changes related to the
Earth’s ecosystems and climate to assist decision making for a sustainable future. Depend-
ing on their intended use, UAVs can be manufactured in a lightweight and energy-efficient
way by using different energy sources such as wireless charging and solar power [194].
More recently, UAVs can also be modified and customized for post-drought tree mortality
assessment and carbon management. Conceiving new policy designs, business models,
financing options, and certification standards will be necessary to help us acquire a better
understanding of physiological drought vulnerability at multiple spatial, temporal, ecologi-
cal, and evolutionary scales. In parallel, this activity will encourage collaboration between
foresters, biologists, anatomists, environmental modelers, researchers, policymakers, and
other stakeholders.

One method used to combat climate change is carbon offsets, where businesses that
have high emissions and are unable to reduce emissions pay to keep trees from being cut
down elsewhere, which helps cancel out their carbon emissions. However, estimating how
forests around the world are offsetting emissions at various spatial scales is challenging.
Integrating UAVs/satellite-based remote sensing along with artificial intelligence can be



Remote Sens. 2023, 15, 2627 18 of 29

used to measure forest characteristics, stored carbon, reforestation, and deforestation for
various forest projects [195]. Companies can adopt UAV services cost-effectively by offering
discounts based on carbon credits, and this type of initiative can encourage landowners,
individuals, private entities, and enterprises to use UAVs for reforestation and forest
monitoring to promote voluntary participation in carbon markets. Efforts need to be made
to make high-resolution data more accessible as a tool to keep companies and individuals
more engaged and ensure accountability. New applications that can derive and use a
multitude of data from the UAVs and compile them into a user-friendly interface should be
developed along with rigorous quality assurance control protocols that support automation
and standardization.

4.5.5. UAVs for Sowing Seeds and Plant Characterization

Recent research highlights the importance of planting trees for mitigating future
droughts, as reforestation increases local and downwind summer rainfall [196]. UAV-
supported seed sowing, with support from seed enablement technology, is a suitable type
of technology which may be used to improve seedlings’ survival rates in water-stressed
environments and protect forest biomass of secondary forests in response to EWMs. UAV-
supported seed sowing uses high-resolution UAV mapping and optimization of target
areas based on machine learning techniques, which then informs the UAV flight plan [173].
UAVs are then dispatched in “swarm operations” over target areas in a predetermined,
optimized, and efficient pattern in order to disperse seed pods, which contain nutrients,
biochar, and other ingredients to ensure the survival of the seedling [197]. UAVs could be
used to sow seeds and track the growth of seedlings of selected species in post-drought
conditions according to EWMs (including edaphic properties). This will help to improve
forest diversity and increase forest resilience and carbon sequestration, which will thereby
contribute to mitigating climate change and drought impacts.

Data collected from UAVs also allow for more robust characterization of drought
resistance at the individual tree level. This type of assessment could be achieved through
tree delineation using LiDAR 3D point clouds from UAVs and then characterization of leaf
water content using hyperspectral imagery or stomatal closure through thermal imagery.
The characterization may enable the identification of clones or genotypes that are more
drought-resistant, which will allow managers to realize productivity gains through allo-
cating these drought-resistant clones to areas that are likely to suffer from drought at the
present time or in the future.

5. Limitations of UAV-Based Endeavors

Although UAVs are an alternative remote sensing tool for aircraft and satellite for small
forest areas and tree-level monitoring, for most practical applications in large-scale forest
monitoring, UAVs remain a poor choice relative to aircraft and ground-based measure-
ments, including ground-based LiDAR. Importantly, for most jurisdictions, UAVs cannot be
used in forests without a line of sight from the drone to the UAV operator/pilot. To operate
UAVs with line of sight in forests, the highest levels of pilot certification (equivalent to a
full UAV pilot’s license) and the highest level (aircraft certification) for the UAV is required.
Operating such UAV and sensors are more time-consuming and expensive than aircraft, as
even the largest civilian UAVs can cover only relatively small areas. The deployment of a
UAV with professional components such as an initial measurement unit (IMU) and Global
Positioning System (GPS) often results in a far higher cost per hectare evaluated, compared
to more traditional products derived from satellites or manned aircraft. Although UAVs
offer higher spatial and temporal resolution imageries, only a few forest management
schemes can afford such expensive investment costs in forest monitoring. Thus, satellite
and aircraft remain a more practical and cheaper option for monitoring of larger areas.

The practical implementation of UAVs in forest monitoring requires a dense network
of forest roads accessible by vehicles, and such a road network is absent in most forests.
Carrying and operating a UAV to locations remote from vehicle access becomes very
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challenging; this problem is exacerbated by the inability to recharge batteries in remote
areas unless batteries, generators, and fuel are available or taken by the operator. UAVs
need open spaces to launch and land, and such gaps are difficult to locate in dense forest
and may be large distances from areas of interest. These operational limitations highlight
the relative advantages of undertaking biomass assessment using field observations and
terrestrial LiDAR, that can be scaled through sensors mounted on fixed wing aircraft
or satellite.

Image spectroscopy and LiDAR sensors that are small and light enough to fit on
UAVs remain extremely expensive and difficult to operate. Operationally, these UAV-based
systems are not “plug-and-play” equipment and pose significant constraints in terms of the
economics of data acquisition and data volumes generated over larger areas. In addition,
UAVs that are capable of longer flights (20–30 min) and operating with image spectrometers
and LiDAR are heavy (approximately 25 kg) and awkward to transport in extensive and
remote forest environments. Although UAVs can be used for developing operational
frameworks and models of EWMs at a local scale, this is only a part of the information
required for an EMW framework that can also be filled with aircraft and terrestrial LiDAR.
These limitations explain why UAVs are not commonly used to characterize EWMs for
larger-spatial-scale mapping, but are highly useful at small spatial scales. Despite the
observed limitations of using UAVs in forest management, we argue that, with careful
improvements, UAVs could be used for early identification of variation in physiological
traits of plants resulting from drought stress and for improving tree-level sample collection.

6. Conclusions

In this review article, we discussed several potential forest management and remote
sensing applications where UAVs can play a crucial role in overcoming operational lim-
itations of contemporary data collection models/sampling approaches, provide greater
insights into forest carbon reserves, and contribute towards generating EWMs with regard
to climate-change-driven droughts and related tree mortality. Although UAVs, at the
moment, cannot be treated as a panacea for prediction of EWMs, we provide prospective
approaches and future directions to researchers for advancing the field. UAVs can easily
collect repeated data at a high temporal and spatial resolution to characterize EWMs within
predrought, drought, and post-drought environments. Scaling UAV-collected datasets
in conjunction with global/satellite remote sensing data should be treated as a priority.
Reproducible, seasonal, and transferable datasets can be generated using UAVs that are
applicable to a broad range of forest systems experiencing droughts. Data fusion strategies
combining multisensor, multiscale approaches that can integrate data derived from in situ
measurements, UAVs, and satellites in effective ways should be formulated. These frame-
works should be used to capture and quantify post-drought tree mortality and forest carbon
allocation in vivo and could greatly assist development of wall-to-wall maps of biomass
densities. However, case-by-case analysis and/or site-specific background information
might be required to determine the most important metrics to be collected using UAVs.

The results of our literature survey underscore that various biotic and abiotic factors
such as topography, hydrology, tree size, pests, etc., play a significant role in drought-
induced tree mortality. It may become difficult to consider these factors in isolation or
identify all the parameters that would be relevant for prediction models given the com-
plex interactions between them. However, UAVs—in association with robust sampling
strategies—can bridge the gap between labor-intensive field surveys and spaceborne map-
ping of tree mortality. The amalgamation of data from different UAV platforms and sensors
could produce a wealth of information that can be used to understand mortality patterns
at different scales. Advances in artificial intelligence and biostatistical models can further
increase the efficiency in mapping and monitoring forest health data collected by UAVs
and are expected to drive forward research related to climate-change-driven droughts and
forest carbon management. Most importantly, making predictions at the tree level is a major
shift that UAVs will facilitate and is certainly not possible using satellite data. Hence, the
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use of UAVs in commercial forestry and their utilization for precision forestry applications
need to be expanded from a drought-monitoring perspective. We hope that future research
endeavors in this field will encourage and support researchers, policymakers, and forest
ecologists to translate the ideas presented in this paper into practical outcomes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15102627/s1, Table S1: Recent research studies related to
development of early warning metrics of drought-induced stress and mortality in forests using
remote sensing-based data; Table S2: List of available UAV-compatible hyperspectral sensors and their
specifications. Table S3: List of other available airborne hyperspectral sensors and their specifications;
Table S4: List of decommissioned or inactive satellite missions carrying hyperspectral sensors and
their specifications; Table S5. List of launched, operational and planned satellite missions carrying
hyperspectral sensors and their specifications. References [198–233] are cited in the supplementary
materials.
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