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Abstract: Operational forest monitoring often requires fine-detail information in the form of an ortho-
mosaic, created by stitching overlapping nadir images captured by aerial platforms such as drones.
RGB drone sensors are commonly used for low-cost, high-resolution imaging that is conducive to
effective orthomosaicking, but only capture visible light. Thermal sensors, on the other hand, capture
long-wave infrared radiation, which is useful for early pest detection among other applications.
However, these lower-resolution images suffer from reduced contrast and lack of descriptive features
for successful orthomosaicking, leading to gaps or swirling artifacts in the orthomosaic. To tackle
this, we propose a thermal orthomosaicking workflow that leverages simultaneously acquired RGB
images. The latter are used for producing a surface mesh via structure from motion, while thermal
images are only used to texture this mesh and yield a thermal orthomosaic. Prior to texturing,
RGB-thermal image pairs are co-registered using an affine transformation derived from a machine
learning technique. On average, the individual RGB and thermal images achieve a mutual informa-
tion of 0.2787 after co-registration using our technique, compared to 0.0591 before co-registration,
and 0.1934 using manual co-registration. We show that the thermal orthomosaic generated from our
workflow (1) is of better quality than other existing methods, (2) is geometrically aligned with the
RGB orthomosaic, (3) preserves radiometric information (i.e., surface temperatures) from the original
thermal imagery, and (4) enables easy transfer of downstream tasks—such as tree crown detection
from the RGB to the thermal orthomosaic. We also provide an open-source tool that implements our
workflow to facilitate usage and further development.

Keywords: orthomosaicking; thermal drone data; RGB drone data; multi-modal image co-registration;
forest health monitoring; gradient descent-based image registration

1. Introduction

Forests are essential ecosystems that provide immense economic, social, and ecological
value. Monitoring forest health is critical to understanding the challenges these ecosystems
face and devising successful management strategies to foster healthy and resilient forests [1].
For example, forest monitoring is important for the detection of bark beetle attacks [2,3]
and assessing tree losses due to deforestation [4]. In recent years, drones have become
increasingly popular for close-range monitoring of forests to capture high-resolution images
of focus areas [5–8]. Drones can be fitted with multiple-sensor instruments that take
synchronized nadir images at regular intervals as the drone flies over areas to be imaged [9].
Optical sensors that capture information from various parts of the electromagnetic spectrum
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are commonly used for forest health monitoring applications [5]. Among them, RGB sensors
take images in the visible range of the spectrum (i.e., three channels—red, green, and blue)
and have been extensively used for many applications, owing to their low cost and high
resolution [10]. On the other hand, thermal sensors capture images that measure surface
temperatures, which is beneficial for numerous applications, e.g., forest fire monitoring [11]
or detection of insect-induced canopy temperature increases [12], for instance, those created
by bark beetle infestations of Norway spruce (Pinus abies) trees [13]. To facilitate monitoring
in Geographic Information Systems (GIS) for such applications, drone-collected images
need to be orthorectified and stitched together to generate an orthophoto mosaic (hereafter
orthomosaic). For instance, a GIS polygon layer with the location, size, and shape of the
crowns of young trees can be automatically derived by an artificial intelligence (AI) from a
drone RGB orthomosaic of a regenerating cut block [14].

Existing workflows usually generate orthomosaics for RGB and thermal data of forests
separately [15]. However, thermal images typically lack enough contrast and salient
features to enable smooth orthomosaicking [16], and temperature fluctuations can create
different salient features in overlapping images from adjacent flight lines [17]. Hence,
some practitioners prefer to skip the thermal orthomosaic entirely and directly work with
individual thermal images [12,18], but this complicates the transferral of information to GIS.
Specifically, current standard methods that work well for RGB images [10] cannot reliably
generate orthomosaics when it comes to thermal images of forests and crop fields [17,19–21].
Thermal orthomosaics generated with these standard workflows suffer from swirling
artifacts as well as gaps, leading to incomplete coverage of the entire area of interest
(Figure 1a). These artifacts are caused by poor depth estimation during the structure from
motion (SfM) [22] stage of orthomosaicking [23].
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Figure 1. Comparison of (a) existing thermal orthomosaic generation workflows and (b) our proposed
workflow that leverages intermediate outputs from RGB orthomosaic generation. Thermal-only
processing workflows are prone to gaps and swirling artifacts (shown in red), which are tackled by
our proposed workflow.

Previous works have attempted to leverage simultaneously acquired RGB imagery to
overcome the drawbacks of thermal-only workflows. A technique to improve the thermal
orthomosaicking workflow by deriving the thermal image positions using RGB image
alignment was proposed in [17]. Once the RGB image alignment is optimized, the external
orientation parameters (xyz coordinates along with pitch, yaw, and roll angles) of each
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image are transferred to its thermal counterpart, and these are used as initial parameters
in the SfM workflow for the set of thermal images. While a viable option, the second SfM
process may introduce artifacts due to the previously mentioned issues inherent to thermal
images. Likewise, [24] performed SfM for RGB and thermal images separately prior to
registering (aligning) the resulting point clouds for the multi-modal 3D reconstruction
of buildings. However, the thermal SfM step can introduce issues here as well. Similar
to [17,25] proposed a workflow in which the external orientations of the RGB–thermal
image pairs were aligned, but without any subsequent registration step. As the authors
observed, using unregistered images leads to errors in the mosaic even for the urban setting
they considered. Another combined approach was proposed in [26], where each pair of
RGB and thermal images was stacked into a 4-channel image prior to orthomosaicking and
separated afterward. However, this method requires an additional object-based geometric
alignment stage that relies on the manual selection of objects clearly visible in both types of
images and that cannot fully resolve distortions due to different focal lengths in the lenses
of the thermal and RGB cameras. Similarly, [27] used a technique that relies on manually
supplied pixel location correspondences between image pairs to fuse RGB and thermal
point clouds of 3D structures. As precursors of our proposed automated co-registration
(i.e., aligning the pixel-wise geometry of image pairs), the enhanced correlation coefficient
(ECC) [28] was applied with varying levels of success to RGB and thermal images of
crop fields at different heights: [29] used ECC to register images taken 1.6 m above the
crop canopy, [30] applied ECC-based registration to drone imagery at a flight height of
30 m, and more recently, [31] used ECC to register images of olive groves at a 45–50 m
altitude for generating aligned point clouds. However, these studies did not include the
generation of orthomosaics. An edge feature-based image registration technique with the
aid of image metadata was proposed in [32], whereas other works relied on point feature
extraction [33–35]. Although these methods perform well for urban/generic settings, their
application to nadir forest images is limited due to the lack of distinctive features in these
scenarios. Moreover, they did not include orthomosaicking.

We propose a new integrated RGB and thermal processing workflow to overcome
the mentioned challenges of thermal orthomosaicking of forest imagery. It is applicable
to drone instruments that can simultaneously capture both RGB and thermal images. The
proposed workflow is summarized in Figure 1b. It relies on an orthomosaicking algorithm
based on texture mapping, as implemented in [36]. Texturing is a crucial step in this imple-
mentation of orthomosaicking, where rather than orthorectifying and stitching together the
individual drone photos, a 2.5D mesh representing the outer envelope of the dense point
cloud is created, and then the mesh is textured by projecting onto each small triangular
mesh surface a particular patch of a drone photo from which it is best observed; the ortho-
mosaic is then simply the orthographic projection of that textured mesh. Following this
process applied directly to the RGB images, we obtain an orthomosaic along with important
intermediate outputs—a surface mesh of the study site, the estimated external camera
orientations used for texturing, and undistorted RGB images that have been corrected
for radial and tangential distortions. Next, we co-register the simultaneously acquired
RGB–thermal image pairs and rerun the orthomosaicking process from the texturing step
using the intermediate RGB outputs. This involves re-texturing the previously constructed
surface mesh with the thermal images, based on the camera orientations estimated using
the RGB images. Thus, we generate two geometrically aligned orthomosaics, where the
same objects appear in the same pixel locations of both the RGB and thermal orthomosaics.
Because we do not use thermal images for SfM, which would perform poorly due to the
low contrast and lack of features in these images, we avoid the gap and swirling issues
present in thermal-only orthomosaicking workflows, as shown in Figure 1b.

Before the RGB intermediate outputs can be reused with the thermal images as de-
scribed, we need to precisely align the geometry of the individual thermal and RGB images
to ensure that objects appear in the same pixel locations in each RGB–thermal pair. We do
this through an intensity-based image co-registration method using gradient descent, in-



Remote Sens. 2023, 15, 2653 4 of 25

spired by [37,38]. In particular, the precise co-registration of RGB–thermal pairs is achieved
through a multi-scale framework utilizing the matrix exponential representation [39,40] and
the normalized gradient fields (NGF) loss function [38]. According to [38] and confirmed by
our results, this loss function is more suitable than ECC for multi-modal drone imagery of
forests. The co-registered thermal images are what we use to replace the RGB undistorted
images prior to rerunning the orthomosaicking process.

Rather than relying on manually selected objects like in [26,27], our geometric align-
ment is automated and offers more degrees of freedom than just displacement. In ad-
dition, bypassing the SfM process for the thermal images helps overcome the issues of
lower contrast and lower resolution, and is thus preferable to previous feature-based tech-
niques [32–35]. The proposed workflow assumes that the RGB and thermal nadir images
are captured simultaneously during the same flight (i.e., using a multi-sensor setup), which
is the case for many commercially available drone cameras, for instance, the DJI Zenmuse
H20T, DJI Zenmuse XT2, DJI Mavic 3T, senseFly Duet T, FLIR Hadron RGB/Thermal
Camera Module, and Autel EVO II Dual 640T. A slight delay in the capture times of the
two sensors does not cause any problems, so long as the delay is systematic and there are
an equal number of RGB and thermal images taken during the flight.

We demonstrate the effectiveness of our proposed orthomosaicking workflow using
drone data from multiple dates over a forest stand in central Alberta, Canada. Aside from
the high quality of the thermal orthomosaics generated (no gaps or swirling artifacts),
we also demonstrate that the orthomosaicking process preserves the radiometry of the
images—both the individual thermal images and the corresponding part of the generated
orthomosaic have the same thermal information. To highlight the utility of our proposed
workflow that outputs geometrically aligned RGB and thermal orthomosaics, we use a
pre-trained deep learning model for individual tree crown detection from RGB images [41].
We show that the bounding boxes detected from the RGB orthomosaic can be directly used
to extract tree crowns from the thermal orthomosaic (since they appear at the same pixel
locations). As a further contribution, we provide a tool with an extensive graphical user
interface (GUI) that simplifies the implementation of our integrated RGB–thermal ortho-
mosaic generation workflow. The developed tool is open-source to facilitate modification
for specific projects and to encourage the integration of additional functionalities.
In summary, the contributions presented in this paper are the following:

1. We propose an integrated RGB and thermal orthomosaic generation workflow that
bypasses the need for thermal SfM by leveraging intermediate RGB orthomosaicking
outputs and co-registering RGB and thermal images through an automated intensity-
based technique.

2. We show that our workflow overcomes common issues associated with thermal-only
orthomosaicking workflows while preserving the radiometric information (absolute
temperature values) in the thermal imagery.

3. We demonstrate the effectiveness of the geometrically aligned orthomosaics generated
from our proposed workflow by utilizing an existing deep learning-based tree crown
detector, showing how the RGB-detected bounding boxes can be directly applied to
the thermal orthomosaic to extract thermal tree crowns.

4. We develop an open-source tool with a GUI that implements our workflow to
aid practitioners.

2. Materials and Proposed Workflow

We first describe the dataset used in our experiments and then provide an in-depth
description of the proposed integrated orthomosaicking workflow for thermal images.
Following this, we explain how an example downstream task is used to highlight the utility
of our workflow. Next, we outline our GUI tool that implements the proposed workflow, as
well as provide recommendations for its use. At the end, we describe how we empirically
assessed the performance of our proposed method.
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2.1. Cynthia Cutblock Study Site

We repeatedly collected drone data from an 8-hectare forest stand approximately
3.5 km to the northeast of Cynthia, central Alberta (Canada), referred to as the Cynthia
cutblock in this paper. The location is shown in Figure 2. The region is at an elevation
of around 950 m above sea level. Lodgepole pine (Pinus contorta ssp. latifolia) and aspen
(Populus tremuloides) make up the majority of the tree species found within the cutblock. A
Zenmuse H20T instrument mounted on a DJI Matrice 300 RTK quadcopter was used to
take nadir RGB and thermal images of the cutblock. The H20T is fitted with three cameras.
The wide-angle RGB camera takes images of 3040 × 4056 pixels and covers the most terrain
(83◦ field of view (FOV)). The thermal images are 650 × 512 pixels and have a FOV of 41◦.
The zoom camera (not used in this study) can go up to 4◦ FOV and has dimensions of
5184 × 3888 pixels. The two RGB sensors are CMOS sensors, whereas the thermal one is
an uncooled VOx microbolometer that produces 16-bit radiometric JPEGs (RJPEGs). We
considered a total of five flights on different days in 2022 over the Cynthia cutblock using
the described camera setup (20 July, 26 July, 9 August, 17 August, and 30 August). Each
flight lasted approximately 30 min and was conducted between 10 a.m. and 1 p.m. Weather
conditions varied across all flights—air temperature was between 20 ◦C and 25 ◦C, relative
humidity was between 40% and 61%, and cloud cover was limited. Specific air temperature
and relative humidity values during each flight are reported in Table 1, where the values are
averages from the three nearest weather stations. The drone was flown at 120 m above the
ground, following the same flight path across all dates. The thermal and wide-angle RGB
images were taken simultaneously, such that thermal images had a 75% side overlap and
80% front overlap. Roughly the same number of image pairs (∼800) were captured during
all flights. The EXIF header of each JPEG image contains the GPS coordinates of the drone
when that image was taken. This information is helpful for individual image localization
and georeferencing during the orthomosaicking process. Each output orthomosaic covers
an area of around 30 hectares encompassing the cutblock.

Cynthia

Figure 2. Left: Location of Cynthia cutblock in Alberta, Canada. Red lines indicate provincial borders.
Right: A close-up of the area including the village of Cynthia.

Table 1. Summary of Cynthia cutblock data for each flight date. Temperature and humidity values
are taken from three weather stations closest to the cutblock and averaged.

20 Jul 26 Jul 9 Aug 17 Aug 30 Aug

Number of RGB–Thermal Image Pairs 827 828 820 825 814
Average Air Temperature (◦C) 20.3 20.8 19.8 24.5 25.4
Average Relative Humidity (%) 42.7 61.0 53.0 40.7 46.3

2.2. Proposed Integrated Orthomosaicking Workflow

Here, we describe our proposed workflow for generating a thermal orthomosaic by
leveraging RGB data. Our workflow relies on Open Drone Map (ODM) [36], an open-source
framework that implements a texturing-based orthomosaicking algorithm similar to that
described in [42]. ODM is described in further detail in Section 2.2.1, but briefly, a textured
surface mesh reconstruction of the scene is first produced to yield an orthomosaic, rather
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than relying on a digital surface model (DSM) for orthorectification of images prior to
stitching. We leverage the intermediate outputs generated from the RGB orthomosaicking
process (i.e., surface mesh reconstruction and external camera orientations) to initialize the
thermal orthomosaic generation, bypassing the need for SfM with thermal images, and
therefore avoiding the issues present in thermal-only orthomosaicking workflows. Instead,
we only use thermal images to texture the surface mesh previously reconstructed from the
RGB images and thereby obtain a high-quality thermal orthomosaic.

The proposed integrated orthomosaicking workflow comprises four stages, as shown
in Figure 3: (1) RGB orthomosaic generation, (2) thermal image conversion (from R-JPEG
to grayscale TIFF), (3) RGB–thermal image co-registration, and (4) thermal orthomosaic
generation. The proposed workflow has also been implemented as an open-source tool,
which is presented with more details in Section 2.4.
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Figure 3. Our integrated RGB–thermal orthomosaicking workflow. Example images of each type of
data are also included, connected by dashed lines. Stage 3 is depicted in more detail in Figure 4.

The rest of this section provides a brief summary of our integrated workflow, and
the following subsections describe each stage in more detail. In the first stage, ODM is
used to generate an RGB orthomosaic. This relies on structure from motion (SfM) [22], a
computer vision process that automatically aligns the overlapping drone photos. After
this, a dense point cloud and a surface mesh of the study area are derived together with
the estimated camera orientations, as shown in the dotted bubble on the right side of
Figure 3. Undistorted RGB images are also obtained as intermediate outputs—these are the
original input RGB images, but are corrected for radial and tangential distortions. After the
RGB orthomosaic is generated, we duplicate the ODM project along with its intermediate
outputs and replace the undistorted RGB images with thermal ones, which are created in
the following two stages.

In the second stage, we preprocess the thermal images to obtain, out of the native R-
JPEG format, a single-channel (i.e., grayscale) image that displays the surface temperature
of each object. In the third stage, we compute the transformation matrix that co-registers
every preprocessed thermal image with its corresponding undistorted RGB image, such
that both are geometrically aligned and objects appear in the same pixel locations in both.
Note that this geometric alignment (i.e., co-registration) is different from the ‘alignment’
during SfM, which yields the external orientations of the cameras.

Finally, in the fourth stage, we replace the undistorted RGB images in the duplicate of
the ODM project with the co-registered thermal images obtained from the previous stage
and restart the ODM process from the texturing step. In this way, we avoid using any
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thermal images for SfM. Instead, we only use the co-registered thermal images to texture
the surface mesh previously derived from the RGB images during the first stage. This
stage outputs a high-quality thermal orthomosaic that is geometrically aligned with the
RGB orthomosaic.

2.2.1. RGB Orthomosaic Generation

In the first stage of our proposed workflow, we use ODM to generate the RGB ortho-
mosaic of the study site from the collected RGB nadir drone images. If the FOVs of the
RGB and thermal cameras differ drastically, such as for the H20T instrument, the central
regions of the RGB images are cropped so that each RGB–thermal pair depicts roughly
the same scene. This is necessary for effective geometric alignment in the RGB–thermal
image co-registration stage later on. The exact amount of cropping depends on the specific
cameras used. In general, the cropping must maintain sufficient forward and sideways
overlap between adjacent images for effective orthomosaicking. In our case, we crop the
3040 × 4056 wide-angle RGB images to 1622 × 1216 pixels (60% reduction in width and
height). An additional advantage of cropping wide-angle RGB images is that it mitigates
lens distortion from the edges of such images from propagating to the orthomosaic. Without
cropping, relief displacement (tree lean) effects would likely occur in the RGB orthomosaic
due to the relatively low flight height [23]. Moreover, reducing the image size by cropping
enables faster processing in ODM. Once the RGB orthomosaic is successfully generated by
ODM, we duplicate the project to be used in later stages.

The key steps involved in the orthomosaic generation process of ODM are summa-
rized as follows. The 3D structure of the area of interest (AOI) is reconstructed using the
SfM technique within ODM, namely OpenSFM [43]. This involves extracting tie points
(corresponding to salient features) from images using the scale-invariant feature transform
algorithm [44] and then matching tie points from overlapping images. These points are
then located in 3D space using parallax. Next, the external orientation of the camera for
each image is refined in an iterative process called bundle adjustment. Finally, new points
are added to the initial point cloud of tie points using a process called multiple view 3D
reconstruction based on depth maps [45], yielding a dense point cloud with thousands of
points per square meter.

The SfM process additionally performs internal camera calibration, providing esti-
mates for the focal length, principal point, and distortion coefficients of the camera model.
The same internal camera parameters apply to all RGB images, since they are all captured
by the same sensor. The estimated distortion coefficients are used to undistort every indi-
vidual RGB image under the Brown–Conrady distortion model [46]. This models the radial
distortion in the RGB images using coefficients k1, k2, and k3, and tangential distortion with
coefficients p1 and p2, both arising from the camera lens shape. Briefly, every pixel location
in the original image is mapped to its corresponding location in the undistorted image,
meanwhile correcting for the distortions using these coefficients. More details about the
exact formulation can be found in [46]. Compared to the (distorted) image taken from the
wide-angle lens, the undistorted image is warped to look closer to what it would look like
using a pinhole camera. For instance, straight lines in the real world that appear curved in
the captured image are recovered as straight in the undistorted image.

OpenMVS [47] is then used to produce a textured mesh with the undistorted images:
outliers in the dense point cloud are filtered out, and the 2.5-dimensional surface mesh,
i.e., a warped surface typically made of small triangles that represents the outer envelope
of the point cloud, is generated using Screened Poisson Reconstruction [48]. At this point,
the estimated external orientations (one for each image) and camera internal parameters
(same for all images) are used to determine how to texture the triangular mesh surfaces,
which involves selecting for each small triangle the undistorted image from which it is
best observed. This is performed through Triangle to Image Assignment, whichs takes
into account each image’s proximity to the triangle, the triangle’s amount of occlusion (if
any), and the viewing angle’s steepness relative to the triangle surface [42]. Once assigned,
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the relevant pixels of the undistorted images are projected on to the triangular surfaces
using the calculated transformation matrices from the exterior and interior parameters.
Finally, the orthomosaic is generated as the orthographic projection of the textured mesh
onto the horizontal plane defined by the chosen coordinate system (NAD83 UTM 12 N
in our case). The default ground sampling distance (GSD) corresponds to the average
pixel size on the mesh surface. In our case, we rounded GSD up to 5 cm. This results
in a single, high-resolution RGB orthomosaic of the study area. This texturing-based
orthomosaicking is different from alternative methods that use a digital surface model to
orthorectify individual images that are later stitched together.

2.2.2. Thermal Image Conversion

The 3-channel, 8-bit RJPEG images captured by the H20T camera, which are intended
for visualization (as in the top left of Figure 3), are converted to absolute surface tempera-
ture readings in degrees Celsius and stored as 32-bit floating point TIFF images. This is
performed through the DJI Thermal SDK (software development kit) using the ‘measure’
functionality, with average emissivity as 0.95 and distance to target as >25 m for all flights.
Relative humidity and reflected temperature (i.e., air temperature) are set independently
for each flight using the values reported in Table 1. The SDK outputs one binary file for
each image, which are then rasterized into grayscale TIFF images such as those in Figure 3.

2.2.3. RGB–Thermal Image Co-Registration

As a result of the initial cropping of the RGB images, the footprint of a preprocessed
thermal image roughly coincides with that of its corresponding undistorted RGB image.
In this stage, the geometry of the image pairs is more precisely aligned through image co-
registration. Specifically, we compute an estimate to the optimal geometric transformation
matrix M∗ that co-registers every thermal image with its corresponding undistorted RGB
image, such that objects appear in the same pixel locations in both. In this work, we
compute a single affine linear transformation matrix, i.e., a 3 × 3 matrix with 6 degrees of
freedom that preserves parallel lines. The same transformation applies to all image pairs
as they all come from the same instrument that simultaneously captures both modalities.
This has the advantage of being computationally efficient while not adversely impacting
co-registration performance, as we will demonstrate in Section 3. Once we have a close
approximation to the optimal M∗, we use it to warp all the thermal images to emulate their
undistorted RGB counterpart, using the concept of inverse warping [49]. For every pixel
location (xout, yout) in the warped output thermal image, the pixel location (xin, yin) in the
input thermal image is obtained by performing matrix multiplication of the inverse of M∗

with the homogenous coordinates (xout, yout, 1)T . Note that the third dimension is used
to scale coordinates in the projective plane and set by convention to 1. Then, we assign
the value at the pixel location (xin, yin) in the unwarped image to (xout, yout) in the warped
image, performing re-sampling through bicubic interpolation.

In this work, we investigate two methods for computing the optimal transformation
matrix M∗. One is to manually supply up to four-point correspondences between a pair of
RGB and thermal images, and then to solve a system of linear equations for an estimate
of M∗ [50]. Although these correspondences need to only be supplied once, the quality of
co-registration (and optimality of the computed transformation matrix) heavily depends
on their correctness.

In the second method, M∗ is automatically computed through intensity-based image
co-registration using gradient descent optimization, inspired by [37,38]. Given a set of N
thermal images and their corresponding N RGB counterparts, we compute an approxima-
tion to the optimal transformation matrix M∗ that aligns the geometry of the pairs. The
gradient descent optimization iteratively refines the 6 learnable parameters (i.e., variables)
within a Homography Module that encapsulates the computation of the transformation
matrix M [37]. We use intensity-based co-registration, which does not rely on extract-



Remote Sens. 2023, 15, 2653 9 of 25

ing features from both images, working instead directly with the pixel values and image
gradients [38]. Figure 4 summarizes this process, and a detailed description follows below.

First, both sets of images need to be preprocessed to facilitate further computations.
We resize the grayscale thermal images extracted during the previous stage by upscaling
through bicubic interpolation to match the dimensions of the undistorted RGB images
(i.e., from 640 × 512 to 1622 × 1216). We then min–max normalize the resized thermal
images. As for the undistorted RGB images, we convert them to a single-channel luminance
representation using the weighted formula L(x,y) = 0.2125R + 0.7154G + 0.0721B for each
pixel location (x, y), as defined in the rgb2gray function of the scikit-image processing
library [51]. We also min–max normalize the resulting grayscale images.
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Figure 4. Steps involved in our automated intensity-based image co-registration. After preprocessing
the images, K RGB and thermal image pairs are systematically sampled for batch processing. The
parameters of the Homography Module [37] represent the values in the transformation matrix being
computed and are learned during gradient descent optimization [52] of the normalized gradient
fields (NGF) loss [53] between each transformed thermal Gaussian pyramid and its corresponding
RGB pyramid.

The gradient descent-based optimization is a computationally intensive process. To
avoid loading all image pairs into the hardware memory (CPU or GPU) while still ensuring
the transformation matrix computation is robust, we sample a batch of 64 image pairs,
which we deemed sufficient after empirically testing different batch sizes. Furthermore,
working with a batch rather than a single pair ensures less variance in gradient calculations
while encouraging good convergence during gradient descent [52]. Although any image
pairs can be selected for the batch as we are trying to compute a single linear transformation
matrix that applies to all pairs, appropriately choosing batch pairs is important for good
co-registration performance. We, therefore, perform systematic sampling: the RGB–thermal
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image pairs are first ordered by acquisition time and every j-th pair is selected for the
batch, where j = bN/Kc and K is the batch size. Besides the intuitive reasoning that the
computed M should be more robust due to more complete coverage of the AOI within
the batch, our quantitative results will also show that systematic sampling is preferable to
random sampling for batch pairs. A multi-resolution Gaussian pyramid is then constructed
for all the grayscaled, normalized RGB and thermal image pairs in the batch, where each
smaller layer is obtained by blurring followed by sub-sampling from the previous larger
one [39]. We utilize a batch size of 64, with 11 levels in each pyramid at a downscale factor
of 1.5. Blurring is performed with a filter mask twice the size of the downscale factor that
covers more than 99% of the Gaussian distribution, and sub-sampling is performed through
pixel averaging. This multi-resolution framework ensures that the current estimate of M
will be refined simultaneously at multiple scales, allowing for more precise and robust
co-registration [54].

During gradient descent, the following objective function is optimized to find the
transformation matrix M that warps every thermal image T to most closely align its
geometry with that of its corresponding RGB image R [37],

min
M

L(R, Warp(T, M)), (1)

where L is the normalized gradient fields (NGF) loss function [53]. This loss function is
well suited for optimization and is also preferable for multi-modal images [38]. It is based
on the principle that two images are well-registered if intensity changes occur at the same
locations. NGF computation requires the x-direction gradient (∇x I(x, y)) and y-direction
gradient (∇y I(x, y)) of the image I at every pixel location (x, y), which we numerically
approximate using central finite difference [55],

∇x I(x, y) ≈ I(x + 1, y)− I(x− 1, y)
2

, ∇y I(x, y) ≈ I(x, y + 1)− I(x, y− 1)
2

(2)

Then, the NGF loss L(I, J) for two grayscale images I and J as in [38],

L(I, J) =
1

w ∗ h

w

∑
x=1

h

∑
y=1

[(
∇x I(x, y)
‖∇I(x, y)‖ −

∇x J(x, y)
‖∇J(x, y)‖ )

2 + (
∇y I(x, y)
‖∇I(x, y)‖ −

∇y J(x, y)
‖∇J(x, y)‖ )

2], (3)

where h and w are the numbers of rows and columns in both images, and ‖∇I(x, y)‖
denotes the point-wise gradient magnitude at pixel (x, y).

For the gradient descent-based optimization to work, M is encapsulated as the
learnable parameters v within a simple differentiable module, termed the Homography
Module [37], using the matrix exponential representation [56],

exp(A) =
∞

∑
k=0

Ak

k!
. (4)

The matrix exponential formulation has the following two desirable properties [40]. Its
computation is differentiable, which is necessary for learning the Homography Module’s
parameters v through backpropagation during the gradient descent optimization. Moreover,
the output of the matrix exponential function (i.e., the computed transformation matrix)
is always invertible, so we can reliably combine forward and inverse transforms for more
robust NGF loss computation. In practice, using 10 terms closely approximates the sum of
the infinite series. Using the matrix exponential representation, the objective function in
Equation (1) can be rewritten as

min
v

L(R, Warp(T, M(B, v))), (5)
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M(B, v) = exp(
6

∑
i=1

viBi), (6)

where M(B, v) is the current estimate of the affine transformation matrix, derived from the
current parameters v = {vi|i = 1, ..., 6} of the Homography Module and the constant basis
matrices B = {Bi|i = 1, ..., 6}. These 3 × 3 matrices are generators of the group of affine
transformations on the 2D plane, as described in [37]. Therefore, any affine transformation
matrix may be computed using this formulation. Before commencing training, we initialize
vi = 1 for all i = 1, ..., 6. Figure 5 summarizes the mechanism of the Homography Module
and how the matrix exponential is implemented within it.

A = A/1

A = eye(3) 
(3x3)

M = eye(3) 
(3x3)

A = A*CSum Matrices 
 (over i)

 C 

A = A/2

A = A*C

A = A/10

A = A*C
...

 matrix sum  matrix sum
...

 matrix sum
Output: M 
(3x3)

A = A/2

A = A*C A = A*C

A = A/10

 6 Scalar-Matrix
Products 

 Bi*vi

Figure 5. Internal mechanism of the Homography Module, which leverages the matrix exponential to
compute the affine transformation matrix M using 6 basis matrices B and learnable scalar parameters
v. The same 3 × 3 matrix C is used to update A at each of the 10 substeps, which are finally summed
to yield M. The term eye(3) denotes the identity matrix of size 3 × 3.

At every step of the optimization loop in Figure 4, the current parameters v of the
Homography Module are used to derive M. Using M, we compute the average NGF loss
between RGB and warped thermal pairs (forward transform loss), as well as between
thermal and warped RGB pairs (inverse transform loss) at every image pyramid level and
sum both losses. The total multi-resolution loss is the sum of bi-directional losses over all
levels of the pyramid. Backpropagation [57] is used to learn the parameters within the
Homography Module v by using the partial derivatives with respect to v of the computed
multi-resolution NGF loss to adjust v in a way that decreases loss. We utilize the Adam
optimizer [58] (as implemented in the PyTorch software library [59]) with a learning rate of
0.005. All other optimizer hyperparameters are unchanged from their defaults. After each
training iteration, the computed loss should decrease and the estimates of v should be closer
to their optimal values. Training is terminated once convergence is reached (i.e., loss stops
decreasing), for which we found 200 iterations to be sufficient during all our experiments.
At this point, the best approximation to the optimal transformation matrix M∗ has been
found. In the final step of this stage, we use M∗ to warp all the resized, non-normalized
thermal images. We warp the non-normalized images because we want to preserve the
original absolute temperature values during orthomosaicking in the next stage.

Note that the described intensity-based co-registration we utilize is different from
previous feature-based registration techniques that match salient feature descriptors be-
tween the images, for example in [32]. It is also different from the mutual information
(MI)-based registration in [37], which trains an additional neural network to approximate
MI for image pairs as a measure of similarity of their gray-level histogram distributions,
and performs gradient descent with respect to MI loss to compute the transformation
matrix for registration. They consider pixels that belong to edges (determined by Canny
edge detection) to compute MI, but we use all pixels in our intensity-based registration to
compute NGF loss, since we observed Canny edge detection to not be robust for the aerial
forest images in our dataset. Lastly, in comparison to the pair-specific diffeomorphic (non-



Remote Sens. 2023, 15, 2653 12 of 25

linear) transformations used in [38] for medical image registration that deforms images
unevenly, we restrict the computation to a single linear transformation matrix for all image
pairs, which is both efficient and effective for our work as our results will corroborate.

2.2.4. Thermal Orthomosaic Generation

In the final stage of our proposed workflow, we first replace the undistorted RGB im-
ages in the duplicate of the RGB orthomosaic project with the co-registered thermal images
obtained from the previous stage. Then, we rerun this duplicated ODM project starting
from the texturing step. The same external camera orientations estimated from the RGB
SfM process during orthomosaicking are reused here. As a result, the co-registered thermal
images are used to texture the surface mesh previously obtained as an intermediate output
of the RGB orthomosaicking process. In this way, ODM outputs a thermal orthomosaic.
Because the individual undistorted RGB and thermal images were co-registered in the
previous stage, the RGB and thermal orthomosaics are also co-registered (i.e., geometri-
cally aligned)—each tree appears at the same pixel locations in both orthomosaics. Both
orthomosaics also contain the same georeferencing information, and hence they line up
exactly when viewed using GIS software (see the next section).

2.3. Downstream Tree Crown Detection Task

To highlight the versatility and utility of the proposed workflow, we will demonstrate
how the generated orthomosaics can be used for a practical downstream task, specifically
tree crown detection. We will use DeepForest [41], a pre-trained deep neural network, to
delineate individual tree crowns from the RGB orthomosaic. This model was pre-trained
using RGB images, not thermal ones. However, since our workflow generates geometrically
aligned orthomosaics, our results in Section 3.5 will show that the same bounding boxes
obtained from the RGB orthomosaic apply directly to the thermal orthomosaic generated
from our proposed workflow.

The DeepForest network is based on the one-stage object detection RetinaNet [60]
framework. Its backbone comprises a ResNet-50 [61] neural network that extracts multi-
scale features from the image, and a feature pyramid network (FPN) [62] that combines
semantically low-resolution features with low-level, high-resolution ones. Each level of the
FPN feeds its computation to a regression head that locates bounding boxes in the image
and to a classification head that outputs a confidence score for each box. This score denotes
the model’s confidence that a tree crown is contained within the predicted box.

2.4. Proposed Open-Source Tool

To facilitate the usage of our proposed workflow, we have created an open-source
tool that offers both a command line interface and a graphical user interface (GUI) that
was developed using the PyQt5 Python library. As shown in Figure 6, every setting for
each stage of our workflow can be easily customized from the GUI depending on the
specific requirements of a project. The tool runs on the Windows operating system. It
leverages GPU acceleration if a graphics card is available. The tool offers the option to
toggle each processing stage, including the downstream tree detection, and to specify their
relevant hyperparameters. For example, it is possible to specify the batch size, the number
of pyramid levels, and the degrees of freedom in the co-registration stage. Additionally,
there is an option to either supply manual point correspondences for a chosen image pair
or to compute the transformation automatically using the described intensity-based co-
registration. The tool also offers the option to select RGB-only or thermal-only processing.
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Figure 6. Graphical user interface (GUI) for our open-source orthomosaicking tool.

2.5. Performance Assessment

We generate all orthomosaics at a ground sampling distance (GSD) of 10 cm, which
is close to the spatial resolution of the original thermal images taken at nadir. The drone
images used are those collected from the Cynthia cutblock, as described in Section 2.1.
Although we used the same H20T camera for all flights, we compute separate transfor-
mation matrices for the geometric alignment of each flight individually. We compare the
quality of four different co-registration techniques on individual thermal and RGB image
pairs. The first is the baseline, i.e., not performing any co-registration of thermal and
RGB images, similar to that in [25]. The second is manual co-registration, where an affine
transformation matrix is computed using three-point correspondences supplied manually
by a user when looking at a randomly chosen RGB–thermal pair, similar to that in [27].
We conducted 10 repeated trials and report the best result obtained. The third technique
is our proposed intensity-based registration framework using the NGF loss function, as
described in Section 2.2.3. For the fourth, we simply replace NGF with the enhanced
correlation coefficient (ECC) [28] as the loss function in our proposed workflow. ECC seeks
to maximize the pixel-wise correlation between image pairs and has been used in previous
works for RGB–thermal co-registration [29–31]. We compare these techniques using mutual
information (MI) as a quantitative metric, which measures how well the intensity in one
image can be predicted given the intensity in the other. Thus, it can be used to measure
the similarity in gray-level distributions for two images using their histograms. We also
use MI in further experiments to determine the optimal design choices for other parts
of our proposed workflow, such as batch size for sampling. We then present qualitative
comparisons by displaying the co-registered images and orthomosaics of the unregistered
baseline and our proposed NGF-based workflow. Additionally, we use the Bhattacharyya
coefficient [63] to compare the histograms of randomly chosen original thermal images and
their corresponding patch in the thermal orthomosaic to show that our workflow preserves
radiometric information in the form of absolute temperature values. We then present the
performance of the downstream tree crown detection task on the thermal orthomosaics
using the RGB-detected tree crowns, and finally provide information on the processing
times of our workflow. The observed results are discussed in Section 4.
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3. Experimental Results
3.1. Quantitative Results

Typically, image registration techniques are evaluated against a ‘gold standard’ regis-
tration using a measure of positional error between known ground truth correspondence
points when available [64]. However, we do not have this information for our study site for
the two modalities, as many of the image pairs lack any salient geometric feature to be used
as ground truth. Specifically, points on swaying tree crowns due to wind are not suitable,
and easily identifiable hotspots in thermal images do not necessarily correspond to salient
features in the RGB images (and vice versa). Therefore, we propose to use the MI between
an RGB and thermal image pair as a quantitative metric to measure the performance of each
image co-registration technique. Better co-registration corresponds to a higher MI value.
For all image pairs, we compute MI using the histograms of the min–max normalized
images with 100 equally spaced bins, as described in [37].

Figure 7 shows the MI between the individual RGB and thermal images from the
August 30 Cynthia flight. The unregistered images have a median MI of 0.054. Performing
manual image co-registration improves the median MI of the image pairs to around 0.203.
Although this is a considerable improvement, it could be even higher if more accurate
point correspondences are provided. The transformation matrix computed automatically
using intensity-based co-registration with NGF as the loss function results in the highest
MI, with a median value of 0.324. Using ECC in place of NGF produces a significantly
lower median value of 0.198, close to the performance achieved by manual registration.
Except for July 26 where ECC performs slightly better than NGF, similar results in terms of
relative performance were obtained for the other flights (Table 2). These results indicate
that the intensity-based co-registration using NGF most closely aligns the geometry of the
RGB and thermal images compared to the other co-registration techniques.

Unregistered Manual ECC NGF
Image Registration Technique for Thermal Images
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Figure 7. Box (interquartile range, IQR) and whisker (within 1.5× IQR) plot showing mutual
information (MI) of the 814 individual RGB–thermal image pairs using different co-registration
techniques from the August 30 Cynthia flight data. NGF is normalized gradient fields [38], while
ECC is enhanced correlation coefficient [28]. The white circles denote mean values.

In Table 2, we report the average MI from co-registering all individual thermal and RGB
images using different design choices within our proposed workflow. There is one column
for each flight in the Cynthia cutblock data, and the final column reports the arithmetic mean
over all five flights. The rows are divided into multiple sections, one for each design choice.
Each design choice is tested independently while setting all others to their best-performing
options (indicated in bold). We make the following observations from the reported results:
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(1) Co-registration using NGF outperforms the other techniques on average over the 5 flights
by 0.2196 units over unregistered, 0.0853 units over ECC, and 0.0575 units over manual.
(2) Restricting the transformation matrix to six degrees of freedom (affine) results in a
slightly higher average MI than allowing eight degrees of freedom (perspective). (3) The
multi-resolution Gaussian image pyramid framework performs immensely better than
using only the single highest-resolution image by 0.2519 units. (4) Using larger batches leads
to higher average MI, with a batch size of 64 yielding the most performance improvement
by least 0.02 units over smaller batches. Finally, (5) systematically sampling image pairs for
the batch marginally improves performance compared to choosing pairs randomly. Setting
each design choice to its best-performing option yields the highest average MI of 0.2787,
indicated in bold. In comparison, the average MI between the perfectly registered red
and blue channels of the same RGB images from the August 30 flight is 1.4896, which is
predictably higher than the reported values between grayscaled RGB and thermal pairs of
different modalities.

Table 2. Average MI of individual RGB and thermal images obtained using different design choices
in our proposed workflow for five flights over the Cynthia cutblock. The best values are emboldened.

Design Choice Jul 20 Jul 26 Aug 09 Aug 17 Aug 30 Mean

Unregistered 0.0539 0.0473 0.0695 0.0589 0.0658 0.0591
Manual 0.2417 0.1781 0.2612 0.2247 0.2003 0.2212
ECC 0.1658 0.2141 0.1742 0.2051 0.2079 0.1934
NGF 0.2999 0.2003 0.3181 0.2715 0.3038 0.2787

Perspective 0.2994 0.1995 0.3176 0.2707 0.3052 0.2785
Affine 0.2999 0.2003 0.3181 0.2715 0.3038 0.2787

Single-resolution 0.0239 0.0323 0.0271 0.0262 0.0247 0.0268
Multi-resolution 0.2999 0.2003 0.3181 0.2715 0.3038 0.2787

Batch size = 1 0.0420 0.0396 0.0602 0.0506 0.0477 0.0480
Batch size = 4 0.1420 0.0759 0.1053 0.1343 0.1036 0.1122
Batch size = 16 0.3003 0.1966 0.3176 0.2672 0.3017 0.2767
Batch size = 32 0.2966 0.1982 0.3182 0.2679 0.2999 0.2762
Batch size = 64 0.2999 0.2003 0.3181 0.2715 0.3038 0.2787

Random sampling 0.3000 0.1963 0.3177 0.2682 0.3023 0.2769
Systematic sampling 0.2999 0.2003 0.3181 0.2715 0.3038 0.2787

3.2. Qualitative Results

The quality of the generated thermal orthomosaic depends on the accuracy of the geo-
metric alignment between the individual RGB and thermal images. If the co-registration is
poor, some tree crowns tend to appear twice while others are missing from the orthomosaic.
Additionally, objects tend to not line up correctly. Figure 8a shows the RGB orthomosaic
generated for the Cynthia cutblock from the August 30 flight. Figure 8b shows the ortho-
mosaic obtained by texturing using unregistered thermal images. Although there are no
gaps (similar to the RGB orthomosaic), the poor quality of this thermal orthomosaic is
noticeable from the jagged nature of the vertical paths through the trees (cutlines). Using
the co-registered images obtained after applying the transformation matrix computed with
NGF and the other best-performing design choices denoted in Table 2, a higher quality or-
thomosaic is generated, as shown in Figure 8c. The cutlines are straight, and no individual
trees are missing or duplicated.

The co-registration performance can also be observed by interlacing an undistorted
RGB image with its corresponding thermal image before and after co-registration, as shown
in Figure 9. Prior to co-registration, there is an offset between the images that is especially
noticeable from the larger individual trees in the top row, as well as from the road and
parked vehicles in the bottom row. The geometric alignment of the two images significantly
improves after co-registration. This explains why our co-registration technique results
in a higher quality orthomosaic when the images are used to texture the surface mesh
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reconstruction. Because of the geometric alignment of the individual RGB and thermal
images, the resulting orthomosaics are also geometrically aligned.

(a) RGB Orthomosaic

(b) Thermal Orthomosaic from Unregistered Images (c) Thermal Orthomosaic from NGF-registered Images

Figure 8. Visualization of orthomosaics generated from August 30 Cynthia cutblock data. (a) Geo-
referenced RGB orthomosaic. (b) Georeferenced thermal orthomosaic from unregistered images.
(c) Georeferenced thermal orthomosaic from NGF-registered images. The improved quality of the
orthomosaic in (c) is especially evident from the circular inset showing a straight path between the
trees (similar to (a)) compared to the jagged path in (b).

Figure 9. Checkerboard visualization of two undistorted RGB images interlaced with their corre-
sponding thermal images (a) before and (b) after performing image co-registration with our proposed
workflow. Colored squares correspond to the RGB images and grayscale ones to the thermal images.
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3.3. Robustness of Transformation Matrix Computation

As mentioned previously, we compute five separate transformation matrices for per-
forming co-registration, one for each of the five flight dates. Since the same H20T instrument
is used across all flights, the computed transformation matrices are expected to be iden-
tical in theory. In practice, variations may arise due to differences in lighting conditions
during the times of data acquisition, for example. Table 3 reports statistics of the average,
minimum, and maximum values of each component of the affine transformation matrices
computed for all five flights. The maximum coefficient of variation (CoV) is observed to
be 33.69% for M2,1 (the component that controls vertical shear). Despite this high relative
value, the maximum absolute difference from the average for this component across the
5 flights is merely 0.00536, and therefore leads to a minor impact on the final transformation.
For instance, with the point (400, 300) in the original image (approximately the middle
point between the image center and top left corner), applying the 3 × 3 transformation
matrix corresponding to the highest value of M2,1 yields the point (390.36, 269.04). On the
other hand, applying the matrix with the smallest value of M2,1 yields (391.74, 266.85). The
Euclidean distance between these 2D image points is just 2.59 pixels, or around 13 cm on
the ground. This confirms that our co-registration workflow is robust, with only minor
differences in the computed transformation matrices across different flights.

Table 3. Average, minimum, and maximum observed values for each affine transformation matrix M
component over all flights, obtained through NGF-based co-registration. The coefficient of variation
(CoV) for each component is reported in the final column. Mi,j denotes the value in the ith row and
jth column. M3,1 and M3,1 are always 0 for affine transformation matrices and thus omitted.

Component Average Minimum Maximum CoV (%)

M1,1 1.01442 1.01380 1.015200 0.05
M1,2 0.00618 0.00579 0.006600 4.45
M1,3 0.02537 0.02075 0.030240 12.19
M2,1 −0.00861 −0.01397 −0.005990 33.69
M2,2 0.94546 0.94442 0.946730 0.08
M2,3 −0.06670 −0.08146 −0.049870 16.40
M3,3 1.04259 1.04153 1.043970 0.09

3.4. Radiometric Analysis

Here, we show that our workflow preserves the radiometric information present in the
individual thermal images that are used to generate the orthomosaic. Specifically, we show
that the captured absolute temperature values are the same before and after orthomosaick-
ing for any given region. Figure 10 shows the central 256 × 204 pixel region of a sample
thermal image and its corresponding patch (of the same size) extracted from the thermal or-
thomosaic generated by our workflow. Cropping for this experiment is performed to ensure
the orthomosaic patch corresponds to only this single image, as the texture mapping tends
to only use the central portion of images during orthomosaic generation. It also shows that
their temperature histograms (in bins of 0.1 ◦C) are nearly identical. The level of similarity
between the histograms can be quantified using the Bhattacharyya coefficient [63], which
measures overlap between two statistical populations. For 50 randomly chosen thermal
images across all 5 flights, the average Bhattacharyya coefficient with their corresponding
orthomosaic patches is 0.992 (minimum 0.984, maximum 0.998). This is very close to the
theoretical maximum value of 1. Therefore, our orthomosaicking workflow successfully
preserves radiometric information, i.e., absolute temperature values.
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Figure 10. Visual and radiometric similarity between thermal images and the thermal orthomosaic.
(a) A thermal image, (b) its corresponding patch in the thermal orthomosaic generated from our
proposed workflow, and (c) temperature histograms for both in equally spaced bins of 0.1 ◦C.

3.5. Downstream Task Performance

Figure 11a shows some examples of the detected tree crown patches from RGB ortho-
mosaics using the DeepForest pre-trained tree crown detector. The confidence score of each
prediction in the figure is greater than 75%—there is only one tree centered tightly within
each patch. In total there were 8729 trees detected with confidence over 50%. We use the
same bounding box coordinates on the thermal orthomosaic, and the patches are shown
in Figure 11b. As a result of the good geometric alignment between the generated ortho-
mosaics, the same trees appear in each of the corresponding pairs at the same locations.
Hence, the proposed workflow enables applying an external model trained solely on RGB
images to correctly detect individual tree crowns from the generated thermal orthomosaic
from our workflow.

Figure 11. Visualization of downstream tree crown detection task performance for the August 30
Cynthia data. (a) Detected tree crowns from the RGB orthomosaic. The percentages represent the
detection model’s confidence score for each RGB crown. (b) Corresponding patches extracted from
the thermal orthomosaic at the same pixel locations as in (a).
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3.6. Processing Time

The CPU-only processing time for 814 RGB images (cropped to 1622 × 1216) and
814 thermal images (640 × 512) for the August 30 flight through all stages of the proposed
workflow was around 2 h and 25 min (with around 75 min for co-registration). This result
was for a machine running on a 12th Generation Intel Core i9-12900 K 3.19 GHz processor
with 32 GB of RAM. With a single NVIDIA GeForce RTX 3090 GPU, the total time was
reduced to around 80 min. The bulk of this processing time is taken up by the ODM
process with RGB images for obtaining the surface mesh and undistorted RGB images. The
co-registration stage takes just around 10 min.

4. Discussion

The quantitative results reported in Section 3.1 emphasize the importance of choosing
the correct hyperparameters during the RGB–thermal image co-registration stage. Auto-
mated intensity-based co-registration through gradient descent of the NGF loss function
on average outperformed the other co-registration techniques, owing to its suitability for
gradient descent optimization and multi-modal data [38]. Using ECC as the loss function
resulted in a higher MI for one of the flights (July 26), but overall it performed poorly
compared to using NGF. This indicates that ECC as a loss function in our proposed work-
flow is not as robust to different data as NGF for co-registering RGB and thermal drone
images of forests. Manually supplying point correspondences for co-registration performed
slightly better than ECC but worse than NGF, possibly due to human errors in selecting
the exact pixels for correspondence. These errors stem from the possibility that hotspots
(i.e., bright points) in a thermal image may not correspond to easily identifiable features in
the RGB counterpart, and vice versa. Regarding the transformation matrix, restricting it to
six degrees of freedom (affine) yielded a slightly better mean MI than allowing all eight
degrees of freedom (perspective). This is because the RGB and thermal sensors lie on the
same plane (or at least parallel planes) in the drone instrument, and both capture nadir
images. Hence, there is only a variation in the scale and translation, with possible rotation
and skew between the two sets of images [32]. Allowing the two additional degrees of
freedom in perspective transformation matrices led to a non-zero level of warping in the
z-direction (perpendicular to the image plane). While this did not significantly reduce MI
(and actually increased MI for the August 30 flight), we observed that it introduces a regular
pattern of distortion in the generated orthomosaic due to the misalignment of the image
planes. Hence, our proposed workflow only considers affine transformation matrices.

The quantitative results further show that using a multi-resolution Gaussian pyramid
framework is essential for proper co-registration—only relying on the single-scale original
image significantly deteriorated performance even compared to the unregistered images.
This is consistent with previous research showing that multi-resolution frameworks are
beneficial for image registration [54]. It can also be seen from our results that batch process-
ing consistently outperformed single-image processing due to the computation of average
gradients during optimization that reduces variance and promotes good convergence [52].
Using larger batch sizes increased performance for all flights, and although a batch size of
16 or 32 yielded competitive results with a size of 64, the latter option performed the best
on average across all flights. Finally, our results corroborate the intuition that systematic
sampling of image pairs for batch processing offers a good starting point for successfully
performing co-registration. Compared to random selection, systematic selection was more
robust, resulting in a slightly higher mean MI value. Overall, the reported results justify
the specific design choices of the intensity-based co-registration stage within our proposed
integrated workflow by demonstrating the robustness and high performance of the au-
tomated co-registration using the NGF loss function, multi-resolution image pyramid
framework, batch processing, and systematic sampling. In our experiments, we achieved
the highest MI of 0.2787 by using this co-registration framework. This may seem low
compared to the average MI of 1.4896 for the blue and red channels of the undistorted RGB
images. However, this can be explained by the fact that thermal and RGB images carry
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very different information, so the MI for two perfectly co-registered optical images (i.e., red
and blue channels of the same RGB image) has to be much higher than that of a precisely
co-registered optical–thermal pair.

The qualitative results shown in Section 3.2 confirm that the selected design choices for
the co-registration workflow, which individually were the best-performing options in terms
of MI, collectively yield a high-quality thermal orthomosaic that is geometrically aligned
with its RGB counterpart. The co-registration of individual RGB and thermal images allows
us to properly reuse the intermediate outputs of the RGB orthomosaicking process to
bypass the more problematic initial stages of the thermal orthomosaic generation. As a
result, gaps and swirling artifacts [23] are not present in the generated thermal orthomosaic,
demonstrating that our proposed integrated workflow overcomes these common issues of
thermal-only processing workflows. The orthomosaic generated from unregistered thermal
images is of poorer quality because the lack of geometric alignment of the individual RGB–
thermal pairs renders the camera orientations inapplicable to the unregistered thermal
images during texturing. Despite variations in conditions such as lighting across different
flights, the five transformation matrices computed for RGB–thermal co-registration show
only minor variances as reported in Section 3.3, thereby additionally demonstrating that
our workflow is robust for different flight data. The results in Section 3.4 further show
that our thermal orthomosaic generation preserves radiometric information—absolute
temperature values are unchanged by the orthomosaicking process. This is evidenced by
the intensity histograms of image patches before and after orthomosaicking appearing
highly similar and yielding a Bhattacharyya coefficient close to 1, the theoretical maximum.
Additionally, the tree crown detection performed in Section 3.5 validates that the generated
orthomosaics are indeed geometrically aligned while simultaneously demonstrating the
value of this alignment. The perfect match of the RGB crown boxes when applied to the
thermal orthomosaic arises from the geometric alignment performed during the RGB–
thermal image co-registration stage of our proposed integrated workflow. If the individual
images themselves are unregistered, the generated thermal orthomosaic has inconsistencies,
for example, the jaggedness of straight cutlines. Another less-noticeable yet significant
issue of improper co-registration we observed is that some trees in the study area become
missing, while others are duplicated.

In the remainder of this section, we discuss additional recommendations to effectively
utilize our proposed workflow (and developed tool). Within our workflow, it is required
to first crop the central region of the RGB images This can be performed by specifying
an appropriate scale in our GUI tool. For our H20T camera, we cropped the 1622 × 1216
central region out of the original 4056 × 3040 wide-angle RGB images (i.e., 40% of width
and height). When working with wide-angle RGB images, this has the added benefit of
preventing the barrel distortion present near the edges of such images from propagating
to the generated orthomosaic (so that there is no visible tree lean) without significantly
reducing the overlap between successive images. This results in a high-quality RGB
orthomosaic, as shown in Figure 8a.

The implementation of the thermal extraction stage within our workflow (and tool)
is specific to thermal images captured using a camera supported by the DJI Thermal SDK
(e.g., Zenmuse H20 series, Matrice 30 series, and DJI Mavic 3 enterprise). If using our tool
with these cameras, the input thermal images to our tool can be the unprocessed RJPEG files.
For unsupported cameras, there is an option to skip this stage and instead directly specify
the path to the converted thermal images that should be used. These images should be
similar to the 32-bit floating TIFFs output by the DJI Thermal SDK, i.e., images representing
temperature values.

In a multi-resolution framework, the exact number of levels and the downscale factor
also affect co-registration performance. A good minimum size for the width of the smallest
image level is 20 pixels, so we recommend the following formula for a given downscale
factor d and original image width w, the number of levels L should be set to dlogd(

w
20 )e.

Based on this formula, we found that d = 1.5 and L = 11 performed well for the Cynthia
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cutblock data. Additionally, the success of co-registration depends on the learning rate and
number of gradient descent iterations during optimization. These typically vary depending
on the dataset, but we found 200 iterations at a fixed learning rate of 0.005 to be sufficient
to reach convergence in all experiments, using the Adam optimizer [58]. In addition to co-
registration performance, hardware memory constraints and processing time are important
considerations. Datasets with more images or with larger image dimensions necessitate
longer processing times. Larger image dimensions also require more hardware memory,
and so a smaller batch size may be needed; in our experiments a batch size of 32 or even
16 led to competitive results and should be safe alternatives.

An important choice we make in this work is that a single linear transformation
matrix can be used to co-register all thermal and undistorted RGB image pairs. Our results
showed that this choice yields good thermal orthomosaicking performance in terms of
both quality and geometric-alignment with the RGB orthomosaic. An alternative, pair-
specific diffeomorphic co-registration can be performed, as in [38] for medical images.
This non-linear warping has the advantage of accounting for any uncorrected differential
distortions present in the image. However, it has significant drawbacks that prevent its
effective application for our purpose. First, it is not robust for a given flight—since we
would be computing a specific transformation for each pair, if any of the registrations
performed worse than the others, that part of the orthomosaic would be of poorer quality
and possibly even unusable. Second, it is not computationally efficient to compute a non-
linear transformation for each pair, especially for longer flights having more image pairs.

5. Conclusions

In this work, we have proposed a new workflow that generates two geometrically
aligned orthomosaics from simultaneously acquired RGB and thermal drone images. Com-
pared to previous workflows that process thermal data separately and hence generate
lower-quality orthomosaics that suffer from gaps and swirling artifacts, our proposed
workflow leverages the intermediate outputs of RGB orthomosaic generation and only
uses thermal images for texturing, thereby overcoming those issues. Using an automated
intensity-based image co-registration method, we achieve good geometric alignment be-
tween the individual thermal and RGB images, which allows us to use the thermal images
to properly texture the surface mesh previously reconstructed from the RGB images. The
co-registration optimizes the NGF loss function that is based on image gradients and is
found to outperform both manual registration and registration using ECC, an alternative
technique commonly used in previous works. The co-registration of the individual im-
ages translates to the co-registration of the two generated orthomosaics. This geometric
alignment of the thermal and RGB orthomosaics is advantageous for downstream forest
monitoring tasks, as demonstrated by the tree crown bounding boxes detected from the
RGB orthomosaic by a deep learning model being directly applicable to the same tree
crowns in the thermal orthomosaic generated from our workflow. We also showed that
our proposed workflow preserves the radiometric information present in the individual
thermal images. In addition, we have developed a free open-source tool that implements
our proposed workflow. The tool we present is easy-to-use and flexible, allowing all the
underlying algorithms’ parameters to be conveniently tweaked through a GUI for specific
project applications as required.

While we have shown good alignment for forest images, our proposed method (and
the developed tool) can be easily tested for other applications that need multi-modal
orthomosaics, such as urban or agricultural monitoring. The open-source nature of our
tool inherently allows for continuous improvement in the future, and we believe it will
be a valuable resource for the remote sensing community. Our workflow can be easily
extended to generate orthomosaics captured from other sensors—such as multispectral or
hyperspectral—as long as the images are simultaneously captured with the RGB images
using a multi-sensor camera. Future work includes making our tool work reliably for these
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different modes of data. Specific postprocessing techniques such as thermal drift correction
can also be integrated into our tool in the future.
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