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Abstract: With the development of image segmentation technology, image context information
plays an increasingly important role in semantic segmentation. However, due to the complexity of
context information in different feature maps, simple context capture operations can easily cause
context information omission. Rich context information can better classify categories and improve the
quality of image segmentation. On the contrary, poor context information will lead to blurred image
category segmentation and an incomplete target edge. In order to capture rich context information
as completely as possible, we constructed a Multi-Pooling Context Network (MPCNet), which is
a multi-pool contextual network for the semantic segmentation of images. Specifically, we first
proposed the Pooling Context Aggregation Module to capture the deep context information of the
image by processing the information between the space, channel, and pixel of the image. At the
same time, the Spatial Context Module was constructed to capture the detailed spatial context of
images at different stages of the network. The whole network structure adopted the form of codec
to better extract image context. Finally, we performed extensive experiments on three semantic
segmentation datasets (Cityscapes, ADE20K, and PASCAL VOC2012 datasets), which fully proved
that our proposed network effectively alleviated the lack of context extraction and verified the
effectiveness of the network.

Keywords: semantic segmentation; context information; convolutional neural network; attention
module

1. Introduction

Image segmentation is an important part of computer vision, and semantic segmen-
tation is a basic task of image segmentation. Semantic segmentation involves pixel-level
semantic image processing, which is mainly utilizes the relationship between pixels and
their surroundings. The development of deep learning has led to the widespread use
of image semantic segmentation in real-life applications, such as medical imaging [1–3],
assisted driving [4–7], and radar image processing [8–10]. Context information usually
represents the relationship between its own pixels and surrounding pixels, which is crucial
for visually understanding tasks. The main principle of image semantic segmentation
is to give corresponding semantic expression to all pixels in the image. This expression
not only pays attention to the meaning of its own pixels, but also needs to express the
relationship between its own pixels and surrounding pixels. Therefore, context information
is an important factor in image semantic segmentation. Contextual information is not
only often used in the field of segmentation, but is also a common method of problem
solving in other areas [11–13]. We divide the context information into semantic context
information and spatial context information according to different image feature maps.
Semantic context information is often contained in low-resolution, high-level feature maps,
which is mainly used to distinguish pixel categories. The spatial context information is
mainly used in a high-resolution, low-level feature map to help the pixel restore the spatial
details. The combination of these two context information types greatly improves the
quality of image semantic segmentation.
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With the development of the convolutional neural network, more and more methods
have been used to capture rich semantic context information. For example, Context-
Reinforced Semantic Segmentation [14] proposes a context-enhanced semantic segmenta-
tion network to explore the advanced semantic context information in a feature graph. It
embeds the learned context into the segmentation reasoning based on FCN [15] to further
enhance the modern semantic segmentation method. The Co-Occurrent Features Net-
work [16] designs a special module to learn fine-grained spatial information representation
and constructs overall contextual feature information by aggregating co-occurrence feature
probabilities in co-occurrence contexts. Context Encoding for Semantic Segmentation [17]
is used to capture the semantic information in the scene using the encoding and decoding
module to selectively filter the information with the same class of features. The Context
Deconvolution Network for Semantic Segmentation [18] proposes a context deconvolution
network and focuses on the semantic context association in decoding network. The Gated
Path Selection Network [19] has developed a gated path selection network. In order to
dynamically select the required semantic context, the gate prediction module is further
introduced. Unlike previous efforts to capture semantic context information, its network
can adaptively capture dense context. LightFGCNet [20] has designed a lightweight global
context capture method and combines feature information from different regions dur-
ing the upsampling phase to enable better global context extraction across the network.
BCANet [21] has designed a boundary-guided context aggregation module to capture the
correlation context between pixels in the boundary region and other pixels to facilitate the
understanding of the semantic information of the overall image. DMAU-Net Network [22]
presents an attention-based multiscale maximum pooling dense network, which designs
an integrated maximum pool module to improve the image information feature extraction
ability in the encoder section, thereby improving the network segmentation efficiency. The
Multiscale Progressive Segmentation Network [23] presents a multiscale progressive seg-
mentation network that gradually divides image targets into small, large, and other scales
and cascades them into three distinct subnetworks to achieve the final image segmentation
result. The Semantic Segmentation Network [24] presents a semantic segmentation net-
work that combines multi-path structure, attention weighting, and multi-scale encoding. It
captures spatial information, semantic context information, and semantic map information
of images through three parallel structures. The Combining Max-Pooling Network [25]
combines the traditional wavelet algorithm with a convolutional neural network pooling
operation to propose a new multi-pooling scheme, and it uses this scheme to create two
new stream architectures for semantically segmenting images.

There are many ways to use spatial context information. For example, the CBAM [26]
aggregates spatially detailed information about pixels through pooling operations and
generates different spatial context descriptors through a spatial attention module to capture
spatial detail context information. The spatial context is generally found in high-resolution
feature maps or in the connection of pixels to other pixels. As a result, they cannot capture
spatial context information for objects that reside at different scales. The Feature Pyramid
Transformer [27] uses specially designed converters to form feature pyramids in a top-down
or opposite interaction to capture high-resolution spatial context. To reduce the compu-
tational effort needed to capture more spatial context, the Fast Attention Network [28]
captures the same spatial context at a fraction of the computational cost by using different
orders of spatial attention. The HRCNet [29] maintains spatial contextual information
through a specific network structure, obtains global contextual information during the
feature extraction phase, and uses a feature-enhanced feature pyramid structure to fuse
contextual information at different scales. The CTNet [30] has designed a spatial context
module and a channel context module to capture the semantic and spatial context between
different pixel features by exploring inter-pixel correlations.

These methods have excellent performance in extracting semantic context and spa-
tial context information. For better image semantic segmentation, not only rich semantic
context, but also sufficient spatial context information is required. We believe that a good
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combination of these two context information types can better complete the semantic
segmentation task and improve the segmentation quality. Therefore, we designed a new
network structure: the Multi-Pooling Context Network (MPCNet). The MPCNet captures
feature context information in different stages through encoding and decoding structures.
Specifically, we designed a Pooling Context Aggregation Module (PCAM), which is com-
posed of multiple pooling operations and dilated convolutions. The application captures
rich semantic context information in low-resolution high-level feature map to improve the
utilization of semantic-related context in a high-level feature map. In addition, a Spatial
Context Module (SCM) was proposed, which is composed of maximum pooling and av-
erage pooling. It captures the spatial context in a low-level feature map and provides the
output to the encoder in the form of a jump connection to form each decoding stage, so as
to better restore the spatial details of pixels. Our MPCNet captures rich semantic context
information through the encoder and combines the spatial context information from the
decoder that is captured by jump connection to form the encoding and decoding structure
of the whole network, which not only improves the information conversion rate of pixels,
but also increases the utilization rate of the context information, thus improving the quality
of semantic segmentation.

The following are our main contributions:

(1) We constructed a Multi-Pooling Context Network (MPCNet), which captures rich
semantic context information through the encoder and restores the spatial context
information through the decoder formed by the jump connection. The whole network
realizes the effective combination of semantic context and spatial context with the
encoding and decoding structure, thus completing the semantic segmentation task.

(2) We designed a Spatial Context Module (SCM), which is composed of different types
of pooling layers. It transfers the spatial information in the low-level feature map at
the encoding stage to each decoding stage through the jump connection, improves the
information utilization of the spatial context, and, thus, increases the pixel location of
the semantic category.

(3) We designed a Pooling Context Aggregation Module (PCAM) consisting of a combi-
nation of different pooling operations and dilation convolution. It cooperates with the
encoder to capture different contexts in the high-level feature graph, thereby creating
rich semantic contextual information for pixel classification.

2. Related Work

In this section, we introduce some relevant semantic context and spatial context
information capture methods and popular semantic segmentation models.

2.1. Semantic Context Information

An image is composed of several pixels. Semantic segmentation is mainly performed
to label several pixels in the image. Successfully partitioning each pixel requires rich
semantic context information. Semantic context information can effectively improve the
semantic classification of pixel images. In recent years, semantic context has fully verified
its effectiveness in semantic segmentation methods. For example, PSPNet [31] collects
the feature information of pixels by pooling the pyramids of different sizes to obtain
rich semantic context for the semantic segmentation of images. ParseNet [32] uses the
average feature of the layer to increase the information of each location, and then adds
the semantic context to the full convolutional network to improve the image segmentation
quality. DeepLabV3+ [33] is designed to expand the convolutional composition of the atrous
spatial pyramid pool module to capture rich semantic contextual information, thereby
improving the segmentation performance of the network. DDRNet [34] establishes two
parallel depth branches and uses the two-branch structure to search the semantic context
in the low-resolution feature map. The Gated Full Fusion for Semantic Segmentation [35]
(GFF) uses gates to selectively fuse semantic contexts at all levels in a fully connected
way, uses gate control units to control the propagation of useful semantic contexts, and
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suppresses additional contextual information noise. These methods improve the semantic
segmentation performance through their unique network design. They pay more attention
to large-scale pixel semantic information. On the contrary, our network method aims to
combine the multi-scale semantic context information in the low-resolution feature map
and achieve the purpose of multi-scale semantic context information and increase the
feature receptive field through different pooling combinations and dilated convolutions, so
as to capture more relevant semantic context information.

2.2. Spatial Context Information

Several pixels in the image are closely connected; pixels themselves and between
pixels have different meanings. In the process of semantic segmentation, it is necessary to
know the different meanings between the pixel itself and other pixels, but these meanings
are often contained in the spatial context information. At present, many methods are
exploring how to better capture the spatial detail context information of images. One
example is the SpaceMeshLab—featuring Spatial Context Memorization. Furthermore,
the Meshgrid Through Convergence Consus For Semantic Segmentation [36] proposed a
spatial context memo, which preserves the input dimension through the bypass branch of
this spatial context and constantly communicates with the backbone network to capture its
spatial context information. Context Encoding and Multi-Path Decoding [37] propose a
scale selection scheme, thereby selectively fusing information from different scale features,
preserving the rich spatial context information fraction in the feature scale, and improving
the segmentation performance of pixel spatial details. BiSeNetV2 [38] introduces a new
feature fusion module to effectively combine spatial and semantic context information,
interactively explore spatial and semantic context information, and find different pixels for
semantic segmentation. SGCPNet [39] devises a spatial detail-oriented context propagation
strategy that uses shallow spatial detail to guide the global context and also effectively
recovers lost spatial detail information. These methods have performed well in completing
the capture of spatial context information, and have a good restoration and reconstruction
effect on pixel spatial details, whether from the multi-scale or multi-branch. The difference
is that our method compensates for the lost spatial context in the down-sampling process
by combining pooling operations and transfers it to the corresponding image up-sampling
stage in the down-sampling stage, which greatly compensates for the spatial details of
image segmentation.

3. Methodology

In this section, we first explain the framework of our Multi-Pooling Context Network
(MPCNet) and present the main principles of the two proposed modules—the Pooling
Context Aggregation Module (PCAM) and the Spatial Context Module (SCM).

3.1. Overview

The structure of the Multi-Pooling Context Network for semantic segmentation (MPC-
Net) proposed by us is shown in Figure 1. The network uses codec as its main architecture
that uses the pre-training residual network ResNet101 [40] as the encoding stage. Since
down-sampling loses the spatial details of the image, we used a 3 × 3 convolution with
a step size of 2 instead of the down-sampling operation of the backbone network. In the
last resolution stage, we set the step size to 1 and used a 3 × 3 dilation convolution with a
dilation rate of 2 instead of the convolution. In this way, the image features are retained
at resolutions of 1/4, 1/8, 1/16, and 1/16, and the number of channels corresponding to
each resolution is 256, 512, 1024 and 2048, respectively. These four feature resolutions also
represent four different coding stages. In order to capture more semantic contexts, we
applied the Pooling Context Aggregation Module (PCAM) in the last coding stage. At the
same time, the Spatial Context Module (SCM) was used to capture the spatial context infor-
mation of the first three coding stages, and the spatial information of the first three coding
stages formed the decoding stage in the form of jump connection with the flow fusion [41]
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and the output of PCAM module. In this way, the spatial details of the corresponding
image encoding phase will exist in the corresponding decoding phase.

SCM

SCM

SCM

PCAM

Encoder Decoder

ResLayer1

ResLayer2
ResLayer3

1

16

1

8
1

4

1

16
1

16

1
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1
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1

8

SCM Spatial Context Module Pooling Context Aggregation Module

ResLayer4

Figure 1. Overview of MPCNet. ResNet is used as the encoder backbone network, and its four
different resolution layers such as ResLayer1, ResLayer2, ResLayer3, and ResLayer4 are used as the
encoder stage. The PCAM obtains the semantic context of high-level features at the coding stage. The
SCM sends the spatial context extracted in each encoding stage to the decoder in the form of jump
connection. The whole network uses an encoding and decoding structure for semantic segmentation.
(Best in color).

Note that our MPCNet aims to capture more context information for semantic segmen-
tation. MPCNet captures three parts of the context in the encoder’s high-level feature map
by PCAM to form rich semantic context information, divides several categories of image
pixels, and then transfers the spatial context of the image pixels to the decoder in the form
of skip connection with the spatial context captured by SCM at each stage of encoding,
thus restoring the spatial details of the image pixels. In order to better capture the context
information, our entire model uses a codec–decode structure, extracts the context infor-
mation of the image using the backbone network as the encoder to reduce the resolution,
captures the semantic context information through PCAM, and combines it with the spatial
detail context captured by SCM in the form of jump connection. By sampling step-by-step
to form the decoder, each module structure of the whole network is clear, simple, and easy
to implement.

3.2. Spatial Context Module

With the continuous down-sampling of the convolutional neural network, the low-
resolution pixels of the image will lose the spatial detail information, thus resulting in
blurred target boundaries. To reduce the loss of spatial detail, the spatial position of the
target pixels was improved. We built the Spatial Context Module (SCM). Figure 2 shows
our proposed Spatial Context Module (SCM) structure. It can be seen from Figure 2 that
SCM is an integrated design of the whole module, which can be flexibly applied to any
network structure. Next, let us introduce SCM in detail.

First, we used high-resolution feature map as input, but because the number of feature
map channels in each stage was different, we used common convolution to unify the
number of channels, then used maximum pooling and average pooling operations to collect
different weight information of feature map, and then fused different weight information.
The context weight obtained was calculated by sigmoid function, and then all the weight
information output by sigmoid was selected by using the features of the unified channel,
filtering out redundant information, and preserving relevant spatial details. To prevent
the gradients from disappearing due to the increase in network depth, we initialized the
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connection of spatial contextual information to ensure smooth transmission of the gradients.
For spatial context module output Ooutput, the specific expression is

𝑋𝑖𝑛𝑝𝑢𝑡

AVG

MAX

⨀Conv Sigmoid ⨁ 𝑂𝑜𝑢𝑡𝑝𝑢𝑡

Max PoolingMAX

Avg PoolingAVG

Matrix Multiplication

⨀ Concatenate

Conv Standard Convolution

Figure 2. Overview of Spatial Context Module (SCM). It captures the spatial context information in
the high-level feature graph through different pooling operations.

Ooutput = Sig
[
Max

(
Conv

(
Xinput

))
� Avg

(
Conv

(
Xinput

))]
⊗ Conv

(
Xinput

)
⊕ Xinput, (1)

where Max represents maximum pooling, Avg represents average pooling, Conv represents
standard convolution, Sig represents sigmoid function, Xinput represents high-resolution
input features, � represents concat, ⊗ represents matrix element multiplication, and ⊕
represents element summation.

Our Spatial Context Module aims to capture spatial details in high-resolution feature
maps. First, we used the channel number of the convolution uniform feature map and
then used the pooling operation to obtain different information weights. Because the
maximum pooling can obtain more prominent pixel information weights on the image,
and the average pooling can obtain additional target information, we used two parallel
poolings to capture the weight information of the image, then used the probability function
to effectively select it, and finally filtered out redundant information and output spatial
details between image pixels. This preserved effective spatial context information in the
high-resolution feature map.

3.3. Pooling Context Aggregation Module

Semantic context is crucial for semantic segmentation. Semantic information of dense
pixels is generally reserved in low-resolution feature images, so it is necessary to reduce
the resolution of the image to extract rich semantic information. However, in an image
with complex background, we should not only pay attention to the semantic information of
low resolution, but also pay attention to the context information between its own semantic
pixels and surrounding pixels. In order to better capture the rich context information with
low resolution, we designed the Pooling Context Aggregation Module (PCAM). Figure 3
shows the structure of PCAM. From Figure 3, we can see that PCAM is composed of three
parts. Next, we will introduce the Pooling Context Aggregation Module in detail.
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𝑂𝑖𝑛𝑝𝑢𝑡
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Figure 3. Overview of Pooling Context Aggregation Module(PCAM). It is mainly composed of three
parts of context information by capturing the semantic context in the low-resolution feature map.

The Pooling Context Aggregation Module (PCAM) is composed of three different
parts, and the corresponding capture A f eature, B f eture, and C f eture has three parts of context
information. First, the input low-resolution feature Oinput performs maximum pooling
and average pooling operations, and it then uses 1 × 1 convolution to capture the context
information between its channels after each pooling module. The maximum pooling
channel information and average pooling channel information are fused to form a complete
channel context weight. The weight probability is expressed using the sigmoid function,
and then the channel weight is selected with the initial input characteristics to remove
redundant channel information, as well as preserve complete and rich channel context
information A f eature. Next, in the second part, we use ordinary and dilation convolution
to expand the receptive field of the input features, as well as fuse and retain contextual
information between pixels. Then, average pooling and convolution are used to select
weights for feature links, remove redundant information, retain useful information between
pixels, increase connectivity between pixels, and capture contextual information between
pixels B f eture. The last part is the spatial context information that is captured by the spatial
context module C f eture. The captured three-part context information is fused to form a
low-resolution semantic context Ooutput. The formal description of output is as follows:

Ooutput = A f eature � B f eature � C f eature, (2)

where A f eature, B f eture, and C f eture represent channel context information, context informa-
tion between pixels, and spatial context information, respectively. They are specifically
expressed as follows:

A f eature = Sig
[
Conv

(
Max

(
Oinput

))
⊕ Conv

(
Avg

(
Oinput

))]
⊗ Oinput, (3)

B f eature = Conv
(

Avg
(
Conv

(
Oinput

)
� Dconv

(
Oinput

)))
⊗

(
Conv

(
Oinput

)
� Dconv

(
Oinput

))
, (4)

C f eature = Sig
[
Conv

((
Max

(
Oinput

)
� Avg

(
Oinput

)))]
⊗ Oinput, (5)

where Max represents maximum pooling, Avg represents average pooling, Conv represents
standard convolution, Dconv represents 3 × 3 dilated convolution. Sig represents sigmoid
function, Oinput represents low-resolution input features, � represents concat, ⊗ represents
matrix element multiplication, and ⊕ element summation.

Our proposed Pooling Context Aggregation Module aims to capture rich semantic
context information of low-resolution feature maps through different pooling and convolu-
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tion operations. The channel weight is expressed by probability through maximum pooling
and average pooling, and the context information between its channels is obtained; in order
to preserve the connection between pixels, we use dilated convolution to capturing the
context information between pixels; because the low-resolution feature map also contains
spatial details, we use the spatial context module to capture its spatial context. Unlike the
high-resolution spatial context module, we remove the unified channel convolution and
initialization connection. The whole low-resolution semantic context is composed of these
three parts of context information. It not only divides the semantic categories of each pixel,
but also distinguishes itself and surrounding pixels by certain pixel categories. It ensures
the semantic correctness of different pixels.

4. Experimental Results

In this section, we compare numerical and segmentation results with ten image
semantic segmentation methods from recent years on the PASCAL VOC2012 dataset [42],
the Cityscape dataset [43], and the ADE20K MIT dataset [44].

4.1. Datasets and Experimental Settings

In this subsection, we first introduce the three semantic segmentation datasets used
for network training, and then detail the specific parameter details of the experiments.

4.1.1. PASCAL VOC2012

PASCAL VOC 2012 is a computer vision competition dataset. It is divided into three
sections according to the data training requirements: training, evaluation, and test sets.
Each set has roughly 1400 images. The categories of these images include not only humans
and animals, but also driving tools, indoor scenes, etc. There are 21 categories covering
many objects in our lives.

4.1.2. Cityscapes

Cityscapes is a vehicle driving dataset. It has a total of 19 street view category labels,
and the dataset is divided into three parts, including a training, evaluation, and test dataset.
The corresponding images are 2979, 500, and 1525, respectively, and each image has a high
resolution of 2048 × 1024.

4.1.3. ADE20K MIT

The ADE20K dataset is MIT’s open scene understanding dataset. It contains over 20 K
images of over 3000 object classes. Because of the complexity of the classes, the samples in
the dataset have different resolutions of up to 2400 × 1800 pixels.

4.1.4. Experimental Settings

We implemented our network on a single GPU using the Python language, which used
ResNet101 with a dilated convolution strategy as the backbone of the network. Specifically,
we replaced the pooling module with dilated convolution and resolved the size of Resnet’s
final output feature map to 1/16, thus avoiding 1/8, which would use too much GPU
memory, and ensuring sufficient contextual information.

Our experiments generally refer to most previous work [33,45,46] using pixel accuracy
(PA), intersection over union (IoU), and mean intersection of union (mIoU) as evaluation
metrics [47]. A combination of random gradient descent (SGD) [48] and cross-entropy loss
with a small batchsize dataset setup was used to train the network weights. For all datasets,
we used a horizontal random flip and random scaling. For the Cityscapes dataset, we used
a learning rate of 0.01, set the batchsize to 8, and set the training iterations to 160 K. For the
ADE20K and PASCAL VOC2012 datasets, we set the learning rate to 0.007, set the batchsize
to 12, and set training iterations to 100 K.
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4.2. Ablation Experiments with MPCNet

In this section, we designed ablation experiments on two modules of the MPCNet
(Pooling Context Aggregation Module (PCAM) and Spatial Context Module (SCM)) for the
Cityscape dataset. In the ablation experiments that follow, we set the training iterations to
100K for the convenience of the experiments.

4.2.1. Ablation Experiment for PCAM

To demonstrate the effectiveness of our proposed PCAM in MPCNet, we performed
ablation experiments on its components. Table 1 shows our proposed PCAM ablation
experiments on the ResNet101 backbone network for the Cityscapes dataset. We divided
PCAM into two parts for ablation experiments—one containing only channel context
A f eature and spatial context C f eature and one containing the context information between
pixels B f eature. From Table 1, we can see that, regardless of whether it contained only
channel context A f eature and spatial context C f eature or context information between pixels
B f eature, the PA and mIOU of the segmentation pixels were greatly reduced, and the results
were not as good as those of the three merges.

Table 1. PA and mIoU of our PCAM module for the Cityscapes dataset (A f eature, B f eature, and C f eature
denote the channel context, context information between pixels, and spatial context of our proposed
PCA module, respectively). (Note that the bold indicates the best value for that column).

Method A f eature B f eature C f eature PA (%) mIOU (%)

ResNet101 90.77 71.25
ResNet101 ! ! 94.76 77.88
ResNet101 ! 94.27 77.56
ResNet101 ! ! ! 95.81 78.05

To further evaluate the advancement of our PCAM, we compared the results with
PCAM using several classic context extraction modules: PPM [31], ASPP [33], and MMP [49].
To increase the fairness of the comparison data, we set consistent training parameters in
the comparison experiments. Table 2 shows the results of the module comparison. From
Table 2, we can see that our PCAM achieved 97.92% PA and 78.24% mIOU based on the
same parameter settings, which outperformed those with the PPM, ASPP and MMP. The
main reason is that our proposed PCAM aggregates the channel context, spatial context,
and inter-pixel context of the low-resolution feature map, thereby making maximum use of
the pixel information of the low-resolution feature map to capture more semantic context
information.

Table 2. Comparison of PA and mIoU of our PCAM module with the other three modules (PPM,
ASPP, MPM) for the Cityscapes dataset. (Note that the bold indicates the best value for that column).

Method BaseNet PPM ASPP MPM PCAM PA (%) mIOU (%)

MPCNet ResNet101 ! 94.56 76.43
MPCNet ResNet101 ! 95.15 77.68
MPCNet ResNet101 ! 95.01 77.21
MPCNet ResNet101 ! 97.92 78.24

4.2.2. Ablation Experiment for SCM

In order to verify the validity of the SCM module, we conducted an experimental
comparative analysis on the backbone network ResNet101 using SPM [49] with the same
ability to capture spatial context information. Table 3 shows the experimental analysis for
the Cityscapes dataset. From Table 3, we can see that the SCM module was superior to
the SPM in the ResNet101 baseline network, and its performance reached 76.74% mIOU.
The main reason is that our proposed SCM filters spatial information through different
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pooling, saves spatial location information in different stages, and transfers spatial details to
decoders through skip connections, thereby greatly restoring the pixel location to maintain
the consistency of semantic and spatial details.

Table 3. Comparison of PA and mIoU of proposed PCAM module with the SPM modules for the
Cityscapes dataset. (Note that the bold indicates the best value for that column).

Method SPM SCM PA (%) mIOU (%)

ResNet101 90.77 71.25
ResNet101 ! 94.76 75.58
ResNet101 ! 96.21 76.74

4.3. Segmentation Performances and Comparisons

In this subsection, to demonstrate the segmentation performance of our proposed
MPCNet, numerical and visualization results were compared with ten segmentation meth-
ods for three image semantic segmentation datasets.

4.3.1. PASCAL VOC2012

To validate the effectiveness of our proposed MPCNet, we conducted a numeri-
cal experimental comparison with excellent semantic segmentation algorithms of recent
years on the VOC2012 dataset. Table 4 shows comparison of the PA and mIOU for the
PASCAL VOC2012 dataset with ten other methods. Since some of the methods did
not run on this dataset, we ran the pixel precision (PA) of the FCN [15], PSPNet [31],
DeepLab [50], Denseaspp [51], OCNet [52], and DeepLabV3+ [33] on the same device. The
results of the OCRNet [53], OCNet [52], and ANN [54] were derived from SA-FFNet [55].
From Table 4, we can see that our method obtained 94.83% PA and 77.48% mIOU. Under
ResNet101, our PA was 0.99% to 6.1% higher than other methods. Our MPCNet could
achieve an mIOU of 77.48%, which was 1.06% higher than the SA-FFNet [55]. A comparison
of different experimental values reveals that our MPCNet maintains good pixel accuracy.

Table 4. Comparison of our proposed MPCNet’s PA and mIOU for the PASCAL VOC2012 dataset
with ten other methods.

Method BaseNet PA (%) mIOU (%)
FCN [15] ResNet101 88.73 62.20
DeepLab [50] ResNet101 92.84 78.51
PSPNet [31] ResNet101 93.11 82.60
DeepLabv3+ [33] ResNet101 93.78 80.57
Denseaspp [51] ResNet101 93.68 75.27
ANN [54] ResNet101 93.20 72.79
DANet [56] ResNet101 93.38 80.40
OCRNet [53] ResNet101 93.47 74.69
OCNet [52] ResNet101 93.80 75.55
SA-FFNet [55] ResNet101 93.84 76.42

MPCNet (ours) ResNet101 94.83 77.48

4.3.2. Cityscapes

In this section, we conducted a comparative experiment for the Cityscapes dataset.
Table 5 shows comparison of the PA and mIOU for the Cityscapes dataset. Considering
the rigor of the experiment, we also retested the pixel accuracy for DeepLab [50], FCN [15],
DeepLabV3+ [33], PSPNet [31], OCNet [52], Denseaspp [51], DANet [56], ANN [54], and
OCRNet [53], as well as the mIOU of the FCN [15] for the Cityscapes dataset. From Table 5,
we can see that our PA was 97.92%, which was 1.67% higher than other methods. The
mIOU was 78.24%, which was 5.11% higher than other methods. Therefore, our MPCNet
still has advantages regarding the PA and mIOU.
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Table 5. Comparison of our proposed MPCNet’s PA and mIOU for the Cityscapes dataset with ten
other methods.

Method BaseNet PA (%) mIOU (%)
FCN [15] ResNet101 94.85 66.61
DeepLab[50] ResNet101 95.78 79.30
PSPNet [31] ResNet101 96.49 78.40
DeepLabv3+ [33] ResNet101 96.66 79.55
Denseaspp [51] ResNet101 95.85 80.60
ANN [54] ResNet101 95.16 81.30
DANet [56] ResNet101 95.45 81.50
OCRNet [53] ResNet101 95.29 81.80
OCNet [52] ResNet101 96.53 81.40
SA-FFNet [55] ResNet101 96.25 73.13

MPCNet (ours) ResNet101 97.92 78.24

4.3.3. ADE20K

To further validate our proposed MPCNet, we performed experiments on a larger
ADE20K dataset. Table 6 shows the mIOU and PA of the MPCNet and ten other methods.
It can be seen From Table 6 that the pixel accuracy of the MPCNet was 82.55%, and the
mIOU was 38.04%. The results of these two methods still have certain advantages over
the other ten methods. The ADE20K dataset has a large number of images and complex
pixel types. Our proposed MPCNet extracts different pixel semantic contexts through the
PCAM, uses the SCM to compensate for the missing spatial details, and uses codec mode
to increase the capture of complex information. Our proposed MPCNet achieved different
segmentation performance, so it is effective.

Table 6. Comparison of our proposed MPCNet’s PA and mIOU for the ADE20K dataset with ten
other methods.

Method BaseNet PA (%) mIOU (%)
FCN [15] ResNet101 76.32 29.47
SegNet [57] ResNet101 68.59 21.63
DeepLab[50] ResNet101 80.26 33.87
PSPNet [31] ResNet101 81.56 41.68
DeepLabv3+ [33] ResNet101 82.31 36.42
Denseaspp [51] ResNet101 81.75 34.55
ANN [54] ResNet101 81.37 45.24
DANet [56] ResNet101 82.27 36.33
OCRNet [53] ResNet101 81.88 45.28
OCNet [52] ResNet101 82.10 45.04
MPCNet (ours) ResNet101 82.55 38.04

4.4. Visual Comparison

To demonstrate the proposed visual advantage of the MPCNet, we compared three
methods for the Cityscapes dataset in Figure 4, namely, PSPNet, OCNet, and DeepLabv3+.
From Figure 4, it can be seen that small targets in a complex background, such as traffic
lights, people in the distance, bicycles, etc., were all pixel categories that were difficult to
segment. In contrast, our method had a better segmentation result than the other methods
and could be successfully segmented. In addition, the loss of spatial detail information for
pixels was successfully alleviated, such as the division and positioning of “human contour”
and “overlapping vehicle” in line 5. From the perspective of the segmentation effect, our
proposed MPCNet can provide the context information needed for segmentation and can
accurately segment the image.
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(a) (b) (c) (d) (e) (f)

Figure 4. Comparison of the visual segmentation results of our proposed MPCNet with the
other three methods for the Cityscapes dataset: (a) Image. (b) Ground Truth. (c) PSPNet [31].
(d) OCNet [52]. (e) DeepLabv3+ [33]. (f) Ours.

To further verify the validity of our method, we compared our proposed MPCNet with
three methods for the VOC2012 dataset in Figure 5. From Figure 5, it can be seen that both
vehicle and animal MPCNets could result in the semantics being classified correctly and
the outline being clear. We propose that PCAM constructs a semantic context by capturing
different contextual information and semantically dividing pixels. The SCM improves the
spatial positioning ability of each semantic category and ensures that the outline of the
category is clear. Therefore, from the perspective of visual analysis, our proposed MPCNet
is effective in the application of semantics segmentation.

(a) (b) (c) (d) (e) (f)

Figure 5. Comparison of the visual segmentation results of our proposed MPCNet with the other three
methods for the PASCAL VOC dataset: (a) Image. (b) Ground Truth. (c) PSPNet [31]. (d) OCNet [52].
(e) DeepLabv3+ [33]. (f) Ours.
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5. Conclusions

In this paper, we proposed a Multi-Pooling Context Network (MPCNet) for semantic
segmentation. Specifically, our proposed PCAM aggregates the semantic context informa-
tion in the high-level feature graph through three parts of feature information, increases
the semantic exploitation of pixels in the low-resolution feature graph, and classifies differ-
ent pixels in the image into semantic categories. Our proposed SCM captures the spatial
contextual information of high-resolution features and passes it to the decoder in the form
of a jump connection to enhance the spatial localization of semantic categories. The stable
structure of the network using coding and decoding ensures that the contextual information
is fully utilized, thus better improving the segmentation results. Experimental results show
that our proposed MPCNet is effective.

Our method has initially alleviated the problem of insufficient context information
capture in simple images, but the segmentation effect for complex backgrounds and multi-
category pixel images still needs to be improved. For different complex background image
processing, not only sufficient context information is needed, but also more attention
should be paid to the relationships between pixels. For example, overlapping target objects,
small target objects, and multi-shape target objects constitute the difficulties of semantic
segmentation of complex images, and are also the focus of our research work in the future.
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