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Abstract: The detection range and accuracy of light detection and ranging (LiDAR) systems are
sensitive to variations in fog concentration, leading to the safety of the intended functionality-related
(SOTIF-related) problems in the LiDAR-based fusion localization system (LMSFLS). However, due
to the uncontrollable weather, it is almost impossible to quantitatively analyze the effects of fog on
LMSFLS in a realistic environment. Therefore, in this study, we conduct a layered quantitative SOTIF
analysis of the LMSFLS on foggy days using fog simulation. Based on the analysis results, we identify
the component-level, system-level, and vehicle-level functional insufficiencies of the LMSFLS, the
corresponding quantitative triggering conditions, and the potential SOTIF-related risks. To address
the SOTIF-related risks, we propose a functional modification strategy that incorporates visibility
recognition and a 3σ-criterion-based variance mismatch degree grading adaptive extended Kalman
filter. The visibility of a scenario is recognized to judge whether the measurement information
of the LiDAR odometry is disturbed by fog. Moreover, the proposed filter is adopted to fuse the
abnormal measurement information of the LiDAR odometry with IMU and GNSS. Simulation results
demonstrate that the proposed strategy can inhibit the divergence of the LMSFLS, improve the SOTIF
of self-driving cars on foggy days, and accurately recognize the visibility of the scenarios.

Keywords: the safety of the intended functionality (SOTIF); layered quantitative SOTIF analysis;
LiDAR-based multi-sensor fusion localization system (LMSFLS); functional modification strategy

1. Introduction

Accurate localization information is crucial for autonomous vehicles and affects subse-
quent decision planning and control. Compared with a single sensor, multi-sensor fusion
technology has many advantages, such as more channels to obtain information, less in-
formation uncertainty, and more convenience for fault detection [1,2]. Therefore, it is
considered the first choice for autonomous vehicle localization technology. Light detection
and ranging (LiDAR), based on the time-of-flight principle, is widely used in autonomous
vehicle localization and environmental sensing. It has the advantages of a wide detec-
tion range, high accuracy, not being easily affected by ambient lighting conditions, and a
3D perception of the surrounding environment [3,4]. Therefore, the industry has widely
adopted LiDAR-based multi-sensor fusion localization schemes, such as Google Waymo
and Baidu Apollo.

However, adverse weather conditions, such as rain, snow, and fog, can degrade
the detection performance of LiDAR and limit the all-weather operation of autonomous
vehicles [5,6]. Previous studies [7,8] have shown that heavy rain interferes with LiDAR
in a similar way to fog, while fog has a greater interference on LiDAR than rain or snow.
Therefore, this study investigated the interference of fog on LiDAR.

The laser beam emitted by LiDAR is absorbed, scattered, and refracted by fog, which
attenuates the range and increases the uncertainty of LiDAR detection. Fog interference
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on LiDAR causes the LiDAR-based multi-sensor fusion localization system (LMSFLS) to
provide incorrect localization information to an autonomous vehicle, which ultimately
affects the safety of the vehicle. Such safety problems are caused by the performance
insufficiencies of LiDAR on foggy days and are not caused by faults in LiDAR. According
to ISO 21448 [9], the safety of intended functionality (SOTIF) is defined as the “absence of
unreasonable risk due to hazards resulting from functional insufficiencies of the intended
functionality or its implementation.” Safety problems caused by functional insufficiencies
of LiDAR on foggy days fall within the SOTIF domain.

Foggy conditions are a common occurrence in the real world, and LiDAR is susceptible
to functional deficiencies caused by fog, which can lead to SOTIF-related risks of LMSFLS.
However, due to weather constraints, it is challenging to quantitatively analyze the impact
of fog interference on LMSFLS in natural environments. Therefore, the primary objectives
of this study are to (1) utilize a fog simulation approach to quantitatively simulate and
assess the impact of fog at varying concentrations on LMSFLS, (2) quantitatively analyze the
simulation results to identify component-level, system-level, and vehicle-level functional
insufficiencies of the LMSFLS, associated triggering conditions, and potential SOTIF-related
harms on foggy days, and (3) propose a functional modification strategy to improve the
SOTIF of LMSFLS under fog disturbance. The primary contributions of this research are:

1. A layered quantitative SOTIF analysis method was proposed for the LMSFLS in foggy
environments based on ISO 21448. The method includes static detection analysis
for LiDAR and localization performance analysis for LMSFLS. Based on this, we
identified the potential SOTIF-related harms and quantitative triggering conditions of
LMSFLS on foggy days by quantitatively analyzing the component-level, system-level,
and vehicle-level functional insufficiencies caused by fog in different concentrations.

2. A functional modification strategy was proposed to address the SOTIF-related harms
of LMSFLS. In this strategy, visibility recognition was first introduced to identify
whether LiDAR odometry is interfered with by fog. Subsequently, the 3σ-criterion-
based variance mismatch degree grading adaptive extended Kalman filter (3σ-VMDG-
AEKF) was employed to accurately isolate abnormal measurement information in
LiDAR odometry through sequential filtering and variance mismatch degree grading.

2. Related Work

Our research involved the effects of adverse weather on LiDAR, LiDAR-based multi-
sensor localization methods, and SOTIF of the automated driving function. This section
reviews the current status of these research areas.

2.1. Effects of Adverse Weather on LiDAR

In recent years, industries have paid increasing attention to the effects of adverse
weather conditions on vehicle sensors. Some research results have been introduced in detail
in [7,10,11]. Modeling and testing are the two main methods used to study the effects of
fog on LiDAR. Modeling methods include physics-based and data-driven modeling, and
testing methods include indoor and outdoor testing.

Several studies have been conducted on modeling based on physical mechanisms.
The research in [8,12,13] modeled the interference of adverse weather on LiDAR according
to its physical mechanism. Hahner et al. [14] modeled the effects of fog on LiDAR detec-
tion according to the physical mechanism of LiDAR pulse transmission and added the
information on these effects to LiDAR point-cloud datasets in clear weather to generate
LiDAR point-cloud datasets affected by fog. These datasets were then used to train a
neural network to study the target detection performance of LiDAR under foggy condi-
tions. Zhao et al. [15] proposed a data-oriented LiDAR model composed of geometric and
physical models that modeled signal attenuation and unwanted raw data in rain, snow,
and foggy weather. The mentioned studies mainly focused on the effects of fog on LiDAR
using theoretical models, and experimental tests were used to verify the accuracy of the
proposed models. However, other scholars have directly used experimental data to study
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the effects of fog on LiDAR. Kutila et al. [16], in the outdoor conditions of Sodankyla airport,
conducted rain, snow, and fog attenuation tests on LiDAR and pointed out that LiDAR
detection performance is sensitive to variations in fog concentration. Refs. [17,18] used
the Cerema chamber to control the concentration of fog to test the effects of fog at different
concentrations on different LiDAR, and they pointed out that increasing the transmit power
of LiDAR can improve its detection range. In [19–21], the Cerema chamber test data were
used to train machine-learning models and predict fog attenuation on LiDAR detection
performance. These studies focused on the effects of fog on LiDAR detection performance
or target recognition and provided essential references for our subsequent research.

2.2. LiDAR-Based Multi-Sensor Fusion Localization

LiDAR 3D point cloud feature extraction is a critical step in LiDAR localization,
affecting localization accuracy and real-time performance [22]. Features such as road
signs, lane markings, guard-rail reflectors, and road markings are used for high-precision
localization in urban roads in [23–26]. Steink et al. [27] proposed a feature-extraction
method based on geometric fingerprint technology from a point cloud. They applied
this method to the IMU-LiDAR fusion localization system to achieve centimeter-level
localization accuracy. Liu et al. [28] proposed a feature extraction network, YOLOv5-Tassel,
based on YOLOv5 for extracting complex and variable features. Yin et al. [29] proposed
a localization framework based on 3D LiDAR. LocNet was used in this framework for
3D point cloud feature recognition, improving localization efficiency and accuracy. Some
studies in the context of LiDAR-based localization used map matching. Lu et al. [30]
presented the L3-Net-based LiDAR localization system that achieved centimeter-level
localization accuracy. Chen et al. [31] exploited range images generated from 3D LiDAR
scans to address the problem of localizing mobile robots or autonomous cars in a map of
a large-scale outdoor environment represented by a triangular mesh. Regarding fusion
localization methods, Xiong et al. [32] proposed a robust estimation method for automated
vehicle sideslip angle and attitude based on the parallel adaptive Kalman filter, which
combined GNSS and INS. Xia et al. [33,34] estimated the yaw alignment error and velocity
error of the vehicle using the Kalman filter and then employed the Consensus Kalman Filter
to synthesize the vehicle kinematics and dynamics and estimate the vehicle’s heading error.
These studies demonstrate that fusion methods based on Kalman filtering can accurately
estimate the vehicle’s state parameters. Therefore, they have been widely adopted in lidar-
based fusion localization systems. Zubača et al. [35] proposed an extended H∞ filter with
an adaptive new information sequence to fuse the measurement information of LiDAR,
IMU, and other dynamic sensors of vehicles to improve the robustness and accuracy of
vehicle post-estimation. Maaref et al. [36] proposed a lane-level localization method that
combines LiDAR odometry and cellular data pseudo-distance. However, these studies
mainly focused on the means to improve the localization performance of LMSFLS in clear
or rainy weather without considering the effects of foggy days. Therefore, in this study,
we developed a foggy point cloud simulation method to introduce fog interference to
the LMSFLS.

2.3. SOTIF of the Automated Driving Function

With the demands of SOTIF for autonomous vehicles, some SOTIF-related studies
on automated driving functions have emerged. Different SOTIF analysis methods, which
combined with system analysis theories such as Systems Theory Process Analysis (STPA)
and Model-Based Systems Engineering (MBSE), were presented in [37–40], and these
methods were applied to autonomousemergency braking (AEB) systems. Both [41] and [42]
studied the SOTIF-related problems of lane-keeping assist (LKA) systems and proposed
solutions. Guo et al. [43] studied the SOTIF-related problems of human misuse caused
by driver distrust of autopilot systems. They proposed a path-planning method based
on model predictive control, considering the degree of confidence. Huang et al. [44]
proposed a public systematic identification method for triggering events owing to system
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performance limitations and human misuse. On this basis, they offered the safety analysis
and verification procedures of SOTIF and applied these procedures to an L3 autonomous
vehicle. Unlike the above studies, Wang et al. [45] proposed a robust non-fragile fault-
tolerant control strategy as a risk reduction method to ensure SOTIF of the cooperative
adaptive cruise control (CACC) under the conditions of system uncertainty, multi-source
perturbations, and controller perturbations.

From the abovementioned studies, based on ISO 21448, scholars proposed correspond-
ing SOTIF analysis processes for AEB, LKA, CACC, and other driving assistance functions
by directly using system analysis theories such as STPA or MBSE. These processes focus
on the identification of qualitative triggering conditions and human misuse. However,
the quantitative SOTIF analysis methods for the SOTIF-related problems caused by fog
in LMSFLS are lacking. Therefore, in this study, the component-level, system-level, and
vehicle-level functional insufficiencies of LMSFLS caused by the fog will be quantitatively
analyzed to identify the SOTIF-related harms and quantitative triggering conditions. Then,
functional modification strategies for these SOTIF-related problems would be proposed to
improve the SOTIF of LMSFLS on foggy days.

3. Fog Interference Simulation Method of LMSFLS

In this section, we explain in detail our approach for obtaining localization information
with fog interference. After introducing the LMSFLS architecture with fog interference
introduced in Section 3.1, we show how we generated foggy point clouds in Section 3.2.

3.1. The Architecture of LMSFLS with Fog Interference Introduced

The vehicle-mounted LMSFLS used in this study comprised LiDAR, INS, and GNSS
sensors, and the fusion algorithm adopted was the extended Kalman filter (EKF). The
information source for each sensor was as follows. The 360◦ circumnavigation LiDAR was
installed on the top of the vehicle, and point clouds were generated by scanning a scenario.
INS and GNSS obtained the required information directly from the vehicle.

We proposed an LMSFLS architecture, which introduced fog interference, as illus-
trated in Figure 1. First, clear point clouds of the scenario were generated using the LiDAR
numerical model. Second, the clear point clouds and visibility were input into the foggy
point-cloud generation model (FPCGM) to generate the foggy point clouds, which con-
sidered the attenuation and noise effects of fog for the scenario. Third, the foggy point
clouds were input into the point-cloud registration module. Then the foggy point clouds
after registration were input into LiDAR odometry to solve the pose information of the
ego vehicle. Finally, we fused the measurement information from LiDAR odometry, INS
pre-integration, and GNSS to get the estimation information of the ego vehicle. Through the
above four steps, we introduced fog interference into the LMSFLS. Therefore, it can output
both the detection information of LiDAR and the localization information of LMSFLS that
have been hampered by fog.

A discrete-time state-space nonlinear model of the LMSFLS can be expressed as follows:

Xk = f (Xk−1) + Wk−1 (1)

Zk = h(Xk) + Mk (2)

where f is the state transition function, h is the observation function, X = [psv vsv ϕsv]
T is

the state vector, Z = [pov vov ϕov]
T is the observation vector, in both X and Z,

p = [px py pz]
T and v = [vx vy vz]

T are the position and velocity in the navigation co-
ordinate system, ϕ = [ϕx ϕy ϕz]

T is the Euler angle of attitude in the vehicle coordinate
system; W is the process noise vector, M is the observation noise vector, and k is the time-
step. The EKF algorithm is used as the data fusion algorithm, where INS pre-integration is
treated as the prediction process, and the measurements from laser odometry and GNSS
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are regarded as the observation process. Please refer to Appendix A for details on LiDAR
odometry, INS pre-integration, and data fusion.
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Figure 1. The architecture of LMSFLS with fog interference introduced.

3.2. Foggy Point Clouds Generation

Based on the existing research on LiDAR attenuation [46], physical [20], and noise [47]
models, we propose FPCGM to generate fog point clouds. The specific process for con-
verting clear point clouds into foggy point clouds is shown in Algorithm 1. Please refer to
Appendix B for a detailed explanation of Algorithm 1.

Algorithm 1: Generation of foggy point clouds

1
Initialization: Input visibility and one frame of clear point cloud that includes n
points

2 for i < n do
3 Calculate γ using (A9)
4 Calculate Pi

r using (A10)
5 Calculate SNRi using (A17)
6 if SNRi > SNR0 then
7 Calculate σi

R and add it on xi

8 else

9
The i′th point is
invalid

10 end if
11 end for
12 return One frame of foggy point cloud

To verify the feasibility of algorithm 1, we input a frame of real foggy point clouds from
the RADIATE [48] dataset into the FPCGM. Since this frame of fog point cloud contains
over 4000 laser points, the generation of each laser point represents a simulation by FPCGM.
Therefore, this verified FPCGM over 4000 times in this case. After reasonably setting
the reflectance of the targets, the point cloud intensity distribution was calculated, and
Table 1 listed the parameter settings. Then the calculated point cloud intensity distribution
was compared with the real point cloud intensity distribution. The results are shown in
Figures 2 and 3, and the data in the figure is normalized.
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Table 1. Lidar parameters.

Parameters Descriptions Values

P0 Laser emitted energy 1.6 µJ
∆S Spatial resolution 15 m
ηst Laser emitter efficiency 0.8
ηsr Laser receiver efficiency 0.3
η Receiver quantum efficiency 0.1
θ Receiving telescope viewing angle 0.0003 rad

AR Receiver effective area 10 cm2

∆λ Optical filter bandwidth 60 nm
PB Sky background radiation brightness 0.6 W/(m2·nm·sr)
CD Dark counting rate of the receiver 300
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Figure 2 demonstrates the intensity distribution of the simulation and real results of
foggy point clouds, and we can see that the distribution of point cloud intensity is similar
in both the simulation and real results. Figure 3 shows the corresponding normalized value
distribution. From it, we can also find both the simulation and real results are similar. So,
the proposed FPCGM is feasible.

4. Fog Simulation-Based Layered SOTIF Analysis

In this section, we conducted a layered quantitative SOTIF analysis, as shown in
Figure 4, to identify the SOTIF-related issues of LMSFLS in foggy environments. First,
we performed a quantitative analysis of LiDAR static detection to assess the impact of
fog on a single laser beam and a one-frame point cloud. Subsequently, we analyzed the
effect of different concentrations of fog on the localization performance of the LMSFLS.
Based on the analysis results, we identified the functional insufficiencies of LMSFLS at the
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component, system, and vehicle levels, along with the corresponding triggering conditions
and potential SOTIF-related harms.
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4.1. The Analysis for LiDAR Static Detection in Foggy Environments

The maximum detection range of vehicle-borne LiDAR in clear weather is generally
100–200 m, and the reflectance of the corresponding target object is 0.8–1. We assumed that
the farthest detection range of the LiDAR was 120 m in clear weather, and the corresponding
reflectance of the target was 0.8. When these two parameters were input into the FPCGM,
the SNR was 68.3 and σR was 0.12 m under this condition. This SNR can be used as the
SNR0 in Algorithm 1; that is, it is considered invalid if the SNR of the point-cloud echo is
less than 68.3, otherwise, it is retained.

According to [49], when the horizontal visibility is 1–10 km, it is light fog; when the
horizontal visibility is 0.5–1 km, it is fog; and when the horizontal visibility is 0.2–0.5 km,
it is heavy fog. First, we set the visibility to 10 km, 1 km, 0.8 km, 0.6 km, 0.5 km, 0.4 km,
0.3 km, and 0.2 km to simulate the interference of fog on the static detection of a single laser
beam of LiDAR by using FPCGM. Subsequently, we set the visibility to 10 km, 1 km, 0.6 km,
and 0.2 km and input one frame of clear point cloud, as shown in Figure 5, into FPCGM to
simulate fog interference on clear point clouds. The LiDAR parameters are listed in Table 1,
and the simulation results are shown in Figures 6 and 7.
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Figure 6. Effects of fog at different concentrations on the static detection performance of LiDAR.
(a) Effects on SNR; (b) effects on σR.
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In Figure 6a, the intersection points of the curves and horizontal line are the SNRs
corresponding to the maximum detection ranges of the LiDAR echo signal under this
visibility. Parts of the curves that are lower than the horizontal line are invalid. In Figure 6b,
the intersection points of the curves and horizontal line are the values of σR corresponding
to the maximum detection ranges of the LiDAR echo signal under this visibility, and parts
of the curves that are higher than the horizontal line are considered invalid. In Figure 7a–d,
when the visibility is 10 km, 1 km, 0.6 km, and 0.2 km, the LiDAR receives 6, 4, 2, and 1
cluster of obstacle point clouds, respectively. The following conclusions can be drawn from
Figures 6 and 7.

1. Under the condition that the visibility remains constant, the SNR and σR of the echo signals
decreases and increases, respectively, with an increase in the LiDAR detection range.

2. When the LiDAR detection range is constant, the SNR decreases and σR increases
with a decrease in visibility. The smaller the visibility, the faster the decrease rate of
SNR, and the quicker the increase rate of σR.

3. With a reduction in visibility, the maximum detection range of LIDAR decreases.
When the visibility was 10 km, 1 km, 0.8 km, 0.6 km, 0.5 km, 0.4 km, 0.3 km, and
0.2 km, the corresponding maximum detection ranges were 120 m, 88 m, 83 m, 76 m,
71 m, 65.5 m, 58 m, and 48 m.

4. The number of point cloud clusters of obstacles in foggy point clouds decreases with
reduced visibility.

These results indicate that the SNR and σR of the LiDAR echo signals are sensitive
to variations in visibility, resulting in the reduction of maximum detection range and
accuracy of LiDAR on foggy days. This will inevitably affect the localization performance
of the LMSFLS. Therefore, it is necessary to analyze the effects of fog on the localization
performance of the LMSFLS further.
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4.2. The SOTIF Analysis for LMSFLS in Foggy Environments

1. Simulation scenarios and parameters setting

An uneven arrangement of obstacles in a scenario affects the localization performance
of the LiDAR odometry. To study the interference of fog on the LMSFLS more clearly, it is
necessary to eliminate the effects of an uneven arrangement of obstacles. Therefore, this
study used the driving scenario designer app of MATLAB to build straight and curved
urban expressway scenarios with obstacles uniformly arranged on both sides of the roads,
as shown in Figures 8 and 9. The distance between obstacles in the scenarios is 75 m. The
distance between the obstacles and the road is 40 m. When the visibility is less than or
equal to 0.3 km, the maximum detection range of LiDAR is reduced by more than 50%, and
the sensor is stopped immediately for safety reasons. Therefore, the effects of fog on the
localization performance of LMSFLS for these two visibility types of 0.2 km and 0.3 km
will not be discussed in a subsequent study. In the simulation, the vehicle ran in the middle
lane of the right road at a constant speed of 90 km/h, and the total running distance was
approximately 1 km. The visibility of the scenarios was set to 10 km, 1 km, 0.8 km, 0.6 km,
and 0.4 km. The MATLAB simulation duration is related to the setting of road length, and
the simulation ends when the vehicle runs to the end of the setting road. The parameters of
the various sensors are listed in Table 2.

Table 2. Sensors parameters.

Sensors Parameters

INS Gyroscope Noise: 0.573 deg/s
Frequency: 100 Hz

INS Accelerometer Noise: 0.1 m/s2

Frequency: 100 Hz

GNSS Position Noise: 2 m
Frequency: 10 Hz

GNSS Velocity Noise: 0.1 m/s
Frequency: 10 Hz

LiDAR

Max Range: 120 m
Range Accuracy: 0.002 m

Azimuth: 0.4 deg
Elevation: 1.875 deg

Azimuthal Limits: [−180◦ 180◦]
Elevation Limits: [−15◦ 15◦]

Frequency: 20 Hz
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Figure 9. Curved urban expressway scenario. (a) Vertical view; (b) front view.

2. Quantitative triggering condition analysis

Under the interference of fog at different concentrations in straight and curved urban
expressway scenarios, the variation in LMSFLS localization performance is shown in
Figures 10 and 11, in which the localization error versus the running time of the vehicle
is plotted. The localization errors were calculated in the vehicle coordinate system, as in
reference [50]. From Figure 10a,b and Figure 11a,b, we can see that in the straight urban
expressway scenario, with a decrease in visibility, the lateral localization error curves of
the LMSFLS constantly fluctuate around 0 m. However, the longitudinal localization error
curves diverged when the visibility was 0.6 km and 0.4 km. In the curved urban expressway
scenario, with a decrease in visibility, the lateral and longitudinal localization error curves
of the LMSFLS diverged when the visibility was 0.8 km, 0.6 km, and 0.4 km.
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Therefore, it can be concluded that the quantitative triggering condition for SOTIF-
related issues of LMSFLS in the straight urban expressway scenario is when the visibility is
less than or equal to 0.6 km, and in the curved urban expressway scenario, it is when the
visibility is less than or equal to 0.8 km.

3. Functional insufficiencies analysis

To clarify the reasons for the divergence of localization errors, we analyzed the rela-
tionship between the increment of localization errors and LiDAR point clouds. We found
that when the increment of localization errors increased, the obstacle point cloud detected
by LiDAR was a feature-degraded point cloud similar to that in Figure 12. Inputting two
consecutive frames of this type of point cloud into the LiDAR odometry for scan-to-scan
matching can create an illusion of point cloud repetition patterns in the LiDAR odometry.
When solving for the vehicle pose transformation, this type of point cloud can only provide
constraints on the vehicle’s lateral degree of freedom but cannot provide constraints on
the longitudinal and vertical rotational degrees of freedom for pose estimation algorithms.
Therefore, it can be observed that in the straight urban expressway scenario, where the
vehicle’s attitude does not undergo rotation, the lateral positioning accuracy of the fusion
localization system does not diverge, while the longitudinal positioning accuracy diverges.
This indicates that the longitudinal solution of the LiDAR odometry has degraded. In the
curved urban expressway scenario, where the vehicle experiences rotation, the fusion local-
ization system exhibits divergence in both lateral and longitudinal positioning accuracy,
indicating that the overall solution of the LiDAR odometry has degraded. We statistically
analyzed the relationship between visibility and the probability of degradation point clouds
detected by LiDAR in straight and curved urban expressway scenarios, as shown in Table 3.
From it, we can see that the lower the visibility is, the higher the probability of LiDAR
detecting feature degraded point clouds.
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Table 3. The probability of detecting feature degenerated point clouds.

Scenarios Visibility (km) Probability of Detecting Feature
Degenerated Point Clouds (%)

Straight urban expressway

10.0 0
1.0 0
0.8 0
0.6 6.7
0.4 40.0

Curved urban expressway

10.0 0
1.0 0.7
0.8 4.6
0.6 15.1
0.4 40.8
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Based on the above analysis, in foggy straight and curved urban expressway sce-
narios, the component-level functional insufficiencies of LMSFLS are, respectively, the
longitudinal and overall solution degradation of the LiDAR odometry. Then according to
Figures 10 and 11, the system-level functional insufficiencies of LMSFLS are, respectively,
longitudinal localization divergence and longitudinal-lateral localization divergence. Fi-
nally, it can be inferred that the vehicle-level functional insufficiencies in the straight urban
expressway scenario were unexpected acceleration and deceleration, and in the curved
urban expressway scenario were unexpected acceleration, deceleration, and steering.

4. SOTIF-related harms analysis

According to ISO 21448, a vehicle-level functional insufficiency corresponds to a
hazardous behavior. When a hazardous behavior occurs and there is a condition that
could cause a harm in the scenario, a hazardous event is formed. If the hazardous event is
uncontrollable, harm will occur. In the straight urban expressway scenario of this study,
if the hazardous behavior of unexpected acceleration or deceleration of the ego vehicle
is triggered by fog with visibility less than 0.6 km and there are other vehicles in front or
behind, a hazardous event of a collision between the ego vehicle and the front or rear vehicle
occurs. Moreover, if there is no safety strategy to control the vehicle, the harm of collision
between the ego vehicle and the front or rear vehicle will be caused. Similarly, in the
curved urban expressway scenario, if the hazardous behavior of unexpected acceleration,
deceleration and steering of the ego vehicle is triggered by fog with visibility less than
0.8 km and there are other vehicles around the ego vehicle, the harm of collision between the
ego vehicle and surrounding vehicles or road infrastructure will be caused. A more detailed
description is as follows: in the event of an unexpected acceleration and left steering of the
ego vehicle, a harm of collision with a neighboring vehicle or road infrastructure in the
front left may occur. Similarly, an unexpected acceleration and right steering of the ego
vehicle may occur a harm of collision with a neighboring vehicle or road infrastructure in
the front right. Moreover, if the ego vehicle unexpectedly decelerates and turns left, it may
occur a harm of collision with a neighboring vehicle or road infrastructure in the rear left.
Likewise, an unexpected deceleration and right turn of the ego vehicle may occur a harm
of collision with a neighboring vehicle or road infrastructure in the rear right. The results
of the SOTIF analysis are presented in Table 4.

Table 4. Results of SOTIF analysis.

Scenarios Triggering
Condition

Functional Insufficiencies

Component-Level System-Level Vehicle-Level

Straight urban
expressway

Visibility is 0.6 km
or less.

Solution degradation of
longitudinal
localization

Divergence of
longitudinal
localization.

Unintended
acceleration or

deceleration

Curved urban
expressway

Visibility is 0.8 km
or less.

Solution degradation of
longitudinal and lateral

localization

Divergence of
longitudinal and lateral

localization.

Unintended
acceleration,

deceleration, or
steering

Scenarios SOTIF-Related Harms

Straight urban
expressway

• Collision with the front neighboring vehicle.
• Collision with the rear neighboring vehicle.

Curved urban
expressway

• Collision with a neighboring vehicle or road infrastructure in the front left.
• Collision with a neighboring vehicle or road infrastructure in the front right.
• Collision with a neighboring vehicle or road infrastructure in the rear left.
• Collision with a neighboring vehicle or road infrastructure in the rear right.
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5. Functional Modification Strategy

According to the SOTIF analysis results, whether in a straight or curved urban ex-
pressway scenario with a decrease in visibility, the LMSFLS will experience the functional
insufficiency of localization divergence, leading to the potential SOTIF-related harm of
collision with vehicles. Therefore, it is necessary to propose a functional modification
strategy to ensure the stability of the LMSFLS and then improve the SOTIF.

5.1. Strategy Process

To address the SOTIF-related risks of the LMSFLS caused by fog, we proposed a
functional modification strategy that was mainly divided into two steps. In the first step,
the visibility of the current scenario is recognized, and whether the LiDAR odometry is
disturbed by fog is judged according to the set visibility threshold Vth. In the second step,
if LiDAR odometry is disturbed by fog, the 3σ-VMDG-AEKF is adopted to fuse the LiDAR
odometry measurement information with GNSS and INS. The process of the functional
modification strategy is shown in Figure 13.
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5.2. Recognition of Visibility

It can be seen from previous analysis that the detection range and accuracy of LiDAR
are susceptible to variations in visibility. Therefore, visibility is used to judge whether the
measurement information of LiDAR odometry is disturbed by fog. Based on the echo point
clouds from LiDAR, taking the natural logarithm of both sides of Equation (A10), we obtain
the following result:

γj = − 1
2xj ln

(xj)
2P

j
r

CLρtar
(3)

where superscript j represents the j′th laser point. According to Equation (A9), we obtain

V j =
0.18126λ2 + 0.13709λ + 3.7502

γj (4)

Using (3) and (4), we can calculate the visibility value recognized by each laser point in
one frame foggy point cloud. The mean of these values is then calculated as the visibility of
the current scenario. It is worth noting that the values of visibility recognized by the laser
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points with shorter ranges fluctuated wildly; therefore, the values of visibility recognized
by the laser points with longer ranges were selected, and their mean was the recognized
visibility of the current scenario. In this study, laser points with an x greater than 30 m are
used to recognize visibility. That is,

V =
1
N ∑N

j=1 V j (5)

where N is the number of laser points whose x values are greater than 30 m.
After recognizing the visibility of the scenario, we can judge if the LiDAR odometry

is disturbed by fog by setting a visibility threshold Vth. The analysis results in Table 3
show that when the visibility is less or equal to 0.8 km, the LiDAR odometry has a high
probability of being disturbed. Therefore, the visibility threshold Vdth was set to 0.8 km in
this study.

5.3. 3σ-Criterion-Based Variance Mismatch Degree Grading Adaptive Extended Kalman Filter

After a sensor fault is identified, the most direct and effective way to handle it is to
isolate the corresponding sensor so as not to affect the stability of the localization system.
In this study, LiDAR odometry is disturbed by fog, and the measurement information
deviates from the actual value in part or whole. If LiDAR odometry is directly isolated, it
inevitably leads to inefficient use of its measurement information. Therefore, a method that
can accurately identify and isolate the abnormal part in the measurement information is
required to fuse the LiDAR odometry measurement information with GNSS and INS; to
meet this requirement, the 3σ-VMDG-AEKF algorithm was proposed in this study.

ε is defined as the one-step prediction residual, which represents the degree of variance
mismatch between the measured state of the LiDAR and the predicted state of the INS. For
the k′th measurement, the ε of the i′th state is

εi
k = Zi

k − Hi
kX̌k, (6)

where the “̌” symbol represents the prediction, Zi
k is the i′th state in Zk, Hk = J

(
h
(
X̌k
))

, J
is the Jacobian matrix, and Hi

k is the i′th row of Hk.
σ is defined as the standard deviation of ε. For the k′th measurement, the σ of the i′th

state is
σi

k =

√
Hi

k P̌i
k Hi

k
T
+ Ri

k, (7)

where P is the mean square error matrix of X, P̌i
k is the i′th diagonal element of P̌k, R is the

observation noise matrix, and Ri
k is the i′th diagonal element of Rk.

Ĉ is defined as the estimation of the noise matrix observed by LiDAR. According to
Sage–Husa [51] filter, for the k′th measurement, the i′th diagonal element of Ĉ is

Ĉi
k = (1− βk)Ĉi

k−1 + βkεi
kεi

k, (8)

where the “̂” symbol represents the estimation, βk =
βk−1

βk−1+b , β0 = 1, and 0 < b < 1. Here, b
is called the fading factor, and its value is usually 0.9–0.999.

When the i′th state in the observation vector of LiDAR is no variance mismatch, there is

Ĉi
k ≈ Hi

k P̌i
k Hi

k
T
+ Ri

k. (9)

When the i′th state in the observation vector of LiDAR is a mild variance mismatch,
Ri

k is considered to be biased; for (9) to be true, there is

Ĉi
k − Hi

k P̌i
k Hi

k
T
= αi

kRi
k, (10)
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where α is the adaptive noise coefficient. For the k′th measurement, the α of the i′th state is

αi
k =

Ĉi
k − Hi

k P̌i
k Hi

k
T

Ri
k

. (11)

Finally, we can adaptively compute the X̂i
k and P̂i

k using the following three equations:

Ki
k = P̌i

k Hi
k

T(
Hi

k P̌i
k Hi

k
T
+ αi

kRi
k

)−1
(12)

X̂i
k = X̌i

k + Ki
kεi

k (13)

P̂i
k =

(
I − Ki

k Hi
k

)
P̌i

k (14)

After recognizing that the LiDAR odometry is disturbed by fog, the ε and σ of each
element in the measurement state vector of LiDAR odometry are calculated sequentially.
According to the 3σ criterion in the Gaussian distribution, if |ε| < σ, the element does not
exhibit a variance mismatch. This element can be directly used for fusion. If σ ≤ |ε| < 3σ,
then the element with a mild variance mismatch can be adaptively fused. If |ε| ≥ 3σ, then
the element with a severe mismatch of variance should be isolated directly. However, in
practical applications, the value of σ may not be sufficiently accurate. We can modify σ by
setting σ = a·σ, where 0 < a < 1. The specific process is shown in Algorithm 2.

Algorithm 2: 3σ-VMDG-AEKF
1 Initialization: X̌k, Zk, P̌k, Rk
2 for i ≤ m
3 Calculate εi

k using (6)
4 Calculate σi

k using (7)
5 if

∣∣∣εi
k

∣∣∣ < σi
k

6
Calculate X̂i

k and P̂i
k

using (13) and (14)
7 else if σi

k ≤
∣∣∣εi

k

∣∣∣< 3σi
k

8
Calculate αi

k using
(11)

9
Calculate X̂i

k and P̂i
k

using (12)–(14)
10 else
11 X̂i

k = X̌i
k, P̂i

k = P̌i
k

12 end if
13 end for
14 Return X̂k and P̂k

6. Validation of Functional Modification Strategy
6.1. Design of Validation Schemes

We verified the effectiveness and visibility recognition performance of the proposed
strategy in two quasi-real scenarios built after the Beijing Inner Ring Expressway. The
straight urban expressway scenario was built as a part of the West North Fourth Ring Road.
The curved urban expressway scenario was built after a part of the North East Third Ring
Road. They are shown in Figures 14 and 15.
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In the two quasi-real scenarios, we set two types of visibility: constant and variable.
The constant visibility is 0.4 km. The variation range of the variable visibility is 0.4–1 km,
the visibility first decreasing from 1 km to 0.4 km, then stabilizing for a while, and finally
increasing from 0.4 km to 1 km. This working condition simulates a vehicle moving from a
fog area to a heavy fog area and then from a heavy fog area to a fog area. The operation
conditions of the vehicle are the same as before. The comparison methods are EKF, AEKF,
and EKF with fault diagnosis and isolation (EKF with FDI). The EKF is the filter we used for
SOTIF analysis, which lacks adaptive and FDI capabilities. The AEKF is a filter that uses the
Sage–Husa method for noise parameter adaptation. The EKF with FDI is a filter with FDI
capabilities, where the FDI method is based on the state chi-square test. The parameters of
the sensors are set in Tables 1 and 2. The specific verification scheme is shown in Table 5.

Table 5. The validation scheme of the functional modification strategy.

Validation
Scenarios Road Length Visibility Comparison

Methods

Quasi-real straight
urban expressway

750 m
Case 1: 0.4 km EKF

AEKF
EKF with FDICase 2: 0.4–1 km

Quasi-real curved
urban expressway

700 m
Case 1: 0.4 km EKF

AEKF
EKF with FDICase 2: 0.4–1 km

6.2. Analysis of Simulation Results

Case 1: Visibility at 0.4 km
Figures 16 and 17 show the localization performance of the proposed strategy and

comparison methods in the quasi-real straight and curved urban expressway scenario at
0.4 km visibility.
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As observed from Figure 16a–c, in the quasi-real straight urban expressway scenario,
the longitudinal error curve of the EKF diverges rapidly. The longitudinal error curves of
the AEKF and EKF with FDI increase gradually, and the performance of the EKF with FDI
is superior to that of the AEKF. However, the longitudinal error of the proposed functional
modification strategy is always approximately 0 m. Since there is no attitude change of the
vehicle in the quasi-real straight urban expressway scenario, the feature degraded point
clouds detected by LiDAR can provide constraints for lateral localization. So, the lateral
error curves of the four methods are maintained at approximately 0 m without divergence.
The advantages of the proposed functional modification strategy in this scenario are mainly
reflected in the longitudinal localization. Moreover, the visibility of the current scenario
can be recognized by our proposed functional modification strategy.

As observed in Figure 17a–c, the longitudinal and lateral error curves of EKF diverge
rapidly in the quasi-real curved urban expressway scenario. The longitudinal and lateral
error curves of AEKF and EKF with FDI rise gradually with the increase of simulation
time, and the performance of EKF with FDI is better than that of AEKF. However, the
longitudinal and lateral errors of the proposed functional modification strategy are always
about 0 m. Furthermore, the proposed functional modification strategy can identify the
visibility of the current scenario.

The above simulation results show that the proposed strategy can effectively improve
the SOTIF of LMSFLS when the fog visibility is low and unchanged, and the performance
is better than that of the comparison methods.
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Case 2: Visibility at 0.4–1 km
Figures 18 and 19 show the localization performance of the proposed strategy and

comparison methods in the quasi-real straight and curved urban expressway scenario at
variable visibility. From them, we can find that the variation of error curves of the four
methods is similar to that of Case 1. It means that the proposed strategy can also effectively
improve the SOTIF of LMSFLS when the fog visibility is low and changeable, and the
performance is also better than the comparison methods.

According to the above two cases, the proposed functional modification strategy
can recognize the visibility of scenarios and effectively suppress the divergence of the
localization errors in both quasi-real straight and curved urban expressway scenarios under
constant and variable visibility conditions. It improves the SOTIF of the LMSFLS caused
by fog and eliminates the SOTIF-related risks. Compared with traditional methods, the
proposed method has the advantages of higher localization accuracy and better stability.

According to the localization accuracy requirements for highway autonomous driving
proposed in [52], we calculated the 95% accuracy and maximum localization error of
the proposed method and three comparative methods under the aforementioned four
sub-scenarios. The calculation results are shown in Table 6. It is worth noting that the
95% accuracy and maximum localization error corresponding to each method are the
comprehensive results of the four sub-scenarios. It can be seen that the proposed strategy
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and EKF with FDI meet the localization accuracy requirements in a foggy environment, but
the proposed strategy improves the longitudinal and lateral accuracy by approximately
61% and 23%, respectively, compared to the EKF with FDI. The longitudinal 95% accuracy
of AEKF failed to meet the requirements, and EKF completely failed to achieve the required
localization accuracy. This indicates that the proposed strategy has better localization
accuracy while meeting the requirements.

Table 6. Analysis of localization accuracy of different methods.

Error
Types Requirements

Methods

EKF AEKF EKF with
FDI

Proposed
Strategy

Longitudinal
error (m)

Max 1.40 11.85 0.62 0.31 0.12
95% accuracy 0.48 8.88 0.51 0.27 0.10

Lateral
error (m)

Max 0.57 4.59 0.20 0.13 0.10
95% accuracy 0.24 4.17 0.17 0.11 0.10
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7. Conclusions

In this study, the objective is to improve the SOTIF of autonomous vehicles in a
foggy environment. Firstly, a layered SOTIF analysis method is proposed to quantitatively
analyze the SOTIF-related issues of the LMSFLS. Subsequently, a fog visibility recognition
method and a 3σ-VMDG-AEKF are proposed to ensure the localization performance of the
LMSFLS. Finally, a virtual simulation platform is constructed to validate the effectiveness
of the proposed functional modification strategies.

Some conclusions can be drawn. (1) The proposed layered SOTIF analysis method
could identify the quantitative triggering conditions, functional insufficiencies, and SOTIF-
related harms of LMSFLS on foggy days and solve the problem that it is difficult to perform
quantitative SOTIF analysis on LMSFLS due to weather limitations. (2) The proposed visi-
bility recognition method can identify the visibility of the scenarios to determine whether
LiDAR odometry is disturbed by fog, and the proposed 3σ-VMDG-AEKF can effectively
identify and isolate abnormal measurement information in LiDAR odometry to ensure the
stability of LMSFLS.

In the future, real vehicle experiments will be considered to verify the effectiveness
of the proposed functional modification strategy. We plan to integrate HD maps into this
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localization system and further study the HD map-based multi-sensor fusion localization
systems on foggy days.
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Appendix A

Appendix A.1. LiDAR Odometry

Before performing point cloud registration, it is necessary to preprocess the point cloud
affected by fog. The commonly used preprocessing steps mainly include downsampling
and feature extraction. Feature extraction can cause some point cloud information to be lost,
and different feature extraction methods have different performances to fog interference.
In order to achieve better registration results, we only use voxel filtering to downsample
the point cloud, and the voxel grid size is set to 0.5 m.

In this study, since there is no plan to map the scenario, we use the scan-to-scan
approach for point cloud registration. The registration algorithm used is Point to Plane
Iterative Closest Points [53], and in order to achieve better registration performance, we set
the maximum iteration times for solving pose transformation to 50.

Appendix A.2. INS Pre-Integration

The pre-integration form of INS is as follows:

pk = pk−1 + ∆t·vk−1 +
∆t2

2
(
Cnb·s f k−1 + g

)
(A1)

vk = vk−1 + ∆t
(
Cnb·s f k−1 + g

)
(A2)

qk = qk−1 ⊗ q(ωk−1·∆t) (A3)

where p, v, q, and g are the position, velocity, attitude quaternion, and gravity acceleration
in the navigation coordinate system, s f and ω are the specific force and angular velocity in
the vehicle coordinate system, Cnb is the rotation matrix from the vehicle coordinate system
to the navigation coordinate system, ∆t is the sampling time interval, and the operator “⊗”
represents quaternion multiplication.

Appendix A.3. Data Fusion

The data fusion algorithm used is the EKF, which can be expressed as follows:

X̌k = f
(
X̂k−1

)
(A4)

P̌k = Φ̌k P̂k−1Φ̌T
k + Qk−1 (A5)

Kk = P̌k HT
k

(
Hk P̌k HT

k + Rk

)−1
(A6)
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X̂k = X̌k + Kk
[
Zk − h

(
X̌k
)]

(A7)

P̂k = (I − Kk Hk)P̌k (A8)

where Φ̌k = J
(

f
(
X̂k−1

))
, Hk = J

(
h
(
X̌k
))

, Q is the process noise matrix.

Appendix B

The detailed explanation of Algorithm 1 is as follows. Firstly, the visibility V of the
external environment is input into the attenuation model to get the extinction coefficient γ.
We use the Naboulsi [46] model, which distinguishes the types of fog, considers the size
distribution of fog drops, and clearly describes the functional relationship between γ, laser
wavelength λ, and V, as the attenuation model of the FPCGM. Its form is as follows:

γ =
0.18126λ2 + 0.13709λ + 3.7502

V
(A9)

Secondly, one frame of clear point cloud that includes n points is input into the
physical model, and then the echo energy Pi

r of each point i is computed. The LiDAR
physical model [20] can be expressed as follows:

Pi
r = CL

1(
xi
)2 ρtare−2γxi

(A10)

CL =
1

2π
P0 ARηsrηst (A11)

where CL represents the inherent property of LiDAR, P0 is the laser-emitted energy, AR
is the effective area of the laser receiver, ηsr is the laser-receiver efficiency, ηst is the laser-
emitter efficiency, xi is the detection range, ρtar is the reflective rate of the target.

Finally, the Pi
r and xi of each point i are input into the noise model, which considers

sunlight noise and dark counting to generate the foggy point clouds. It includes the
following steps:

1. To calculate the valid signal for each point i. The formula is as follows:

Ni
r =

Pi
rτη

e
(A12)

τ =
2∆S

c
(A13)

e =
hc
λ

(A14)

where Ni
r is the number of valid signal photons, τ is the pulse time, ∆S is the spatial

resolution, c is the speed of light, e is the energy of a single photon, h is Planck’s
constant, and η is the quantum efficiency of the receiver.

2. To calculate the sunlight noise signal, which is given below:

NB = TRPBπ

(
θ

2

)2
∆λAR

2∆S
c

ηλ

hc
(A15)

where NB is the number of background light photons received by the receiver, PB is
the brightness of the sky background radiation, θ is the viewing angle of the receiving
telescope, ∆λ is the bandwidth of the optical filter, and TR is the total transmittance of
the optical receiver system.
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3. To calculate the dark counting signal. It can be expressed as follows:

ND = CD
2∆S

c
(A16)

where ND is the number of dark counts and CD is the dark-counting rate of the laser receiver.
4. When combining steps 1–3, we can calculate the SNRi of each echo signal using the

following formula [47]:

SNRi =
Ni

r√
F
(

Ni
r + NB

)
+ ND

(A17)

where F is the detector noise factor.
5. If the SNRi of point, i is greater than SNR0, its standard deviation σi

R has the following
relationship with SNRi [47]:

σi
R ∼

1√
SNRi

(A18)

where the SNR0 is the smallest SNR of the echo signals that can be received by LiDAR.
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