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Abstract: Network pruning has been widely used in model compression techniques, and offers a
promising prospect for deploying models on devices with limited resources. Nevertheless, existing
pruning methods merely consider the importance of feature maps and filters in the spatial domain. In
this paper, we re-consider the model characteristics and propose a novel filter pruning method that
corresponds to the human visual system, termed Low Frequency Preference (LFP), in the frequency
domain. It is essentially an indicator that determines the importance of a filter based on the relative
low-frequency components across channels, which can be intuitively understood as a measurement
of the “low-frequency components”. When the feature map of a filter has more low-frequency
components than the other feature maps, it is considered more crucial and should be preserved
during the pruning process. We conduct the proposed LFP on three different scales of datasets
through several models and achieve superior performances. The experimental results obtained on the
CIFAR datasets and ImageNet dataset demonstrate that our method significantly reduces the model
size and FLOPs. The results on the UC Merced dataset show that our approach is also significant for
remote sensing image classification.

Keywords: model compression; neural network pruning; frequency domain; lightweight deep neural
networks; remote sensing image classification

1. Introduction

Deeper and wider architectures of convolutional neural networks (CNNs) have
achieved great success in the field of computer vision and have been widely used in
both academia and industry [1–6]. Nevertheless, they also impose high requirements for
computing power and memory footprint, resulting in a significant challenge in deploying
most state-of-the-art CNNs on mobile or edge devices. Therefore, reducing the parameters
and calculations of existing models is still a research hot spot, where an effective technique
is model compression. This technique can achieve a balanced trade-off between accuracy
and model size.

Conventional compression strategies consist of network pruning [7–11], quantiza-
tion [12–14], low-rank approximation [15,16], knowledge distillation [17–20] and lightweight
neural framework design [21–23]. Network pruning has become the most popular model
compression technique. Recent pruning strategies in this category can be roughly divided
into weight pruning [8,24,25] and filter pruning [26–28], according to the granularity of
pruning. Weight pruning directly removes the selected weights from a filter, resulting in
unstructured sparsity. Despite the irregular structure having a high compression ratio, real
acceleration cannot be achieved on general hardware platforms or Basic Linear Algebra
Subprogram (BLAS) libraries [29]. Filter pruning directly discards the selected filters, leav-
ing a regular network structure, which makes it hardware friendly. CNNs have exerted a
great influence on remote sensing classification tasks with their powerful feature represen-
tation capability. Zhang et al. [30] and Volpi [31] constructed relatively small networks and
trained them using satellite images from scratch. Xia et al. [32] and Marmanis et al. [33]
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extracted features from the middle layer of the pre-training network, formed global fea-
ture representation and realized remote sensing classification. Nogueira et al. [34] used a
remote sensing dataset for fine-tuning and obtained a superior classification performance.
Zhu et al. [35] proposed a knowledge-guided land pattern depicting (KGLPD) framework
for urban land-use mapping. Ref. [36] constructed a new remote sensing knowledge graph
(RSKG) from scratch to support the inference recognition of unseen remote sensing image
scenes. Zhang et al. [37] made full use of the advantages of CNNs and CapsNet models
to propose an effective framework for remote sensing image scene classification. Ref. [38]
proposed a CNN pre-training method guided by the human visual attention mechanism to
improve the land-use scene classification accuracy. However, the success of CNNs comes
with expensive computing costs and a high memory footprint. However, the classification
task of remote sensing images often needs to be carried out on the airborne or satellite-
borne equipment with limited computing resources. Insufficient computing resources
hinder the application of CNNs in remote sensing imaging. Therefore, model pruning
technology can alleviate this resource constraint and enable CNNs to develop in the field
of remote sensing. It is worth noting that the scale of public remote sensing image datasets
is usually smaller than the scale of natural image datasets, which contain hundreds of
thousands or even millions of images. This leads to a lot of parameter redundancy and
structural redundancy in the network model, so pruning techniques are needed to reduce
these redundancies and avoid overfitting of the model. Therefore, pruning technology has
a great application demand and prospect in real-time remote sensing image classification
(as shown in Figure 1) for resource-constrained devices such as spaceborne or airborne
devices [39,40].

Figure 1. Examples of remote sensing image classification.

To achieve both network speedup (reduction in FLOPs) and a model size reduction
(reduction in parameters), we focus on filter pruning aiming to provide a general solution
(as shown in Figure 2) for devices with a low computational power.

Inherent Attribute Constraint. The pruning operation on a filter can be regarded as
decreasing the constraints generated by different inherent attributes in CNNs. Li et al. [26]
calculated the L1-norm of parameters or features to judge the degree of attribute constraints.
The conclusion was that the smaller norm, the less useful the information, which indicates
that a smaller norm is a weak constraint for the network and should be pruned first.
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Hu et al. [41] measured the constraint of each filter by counting the Average Percentage of
Zeros (APoZ) in the activation values output by the filter. The sparser the activation feature
map, the weaker the constraints of the feature map. Molchanov et al. [42] used a first-order
Taylor expansion to approximate the contribution of feature maps to the network output to
estimate the importance of filters. He et al. [43] calculated the geometric median of filters
in the same layer, in this case, the filter closest to the geometric median is considered as a
weak constraint that should be pruned first. Lin et al. [44] proposed that feature maps with
a lower rank have fewer constraints on the network. Therefore, the corresponding filters
can be removed first. Sui et al. [45] proposed to estimate the independence of channels by
calculating the nuclear norm of the feature map. Channels with a lower independence have
weaker constraints and can be deleted first. In brief, these methods follow the principle
of “weak constraints are pruned, strong constraints are retained” to achieve fast pruning.
Nevertheless, they cannot make up for the loss in the network training process while merely
improving the performance by fine-tuning in the later stage.

Figure 2. Framework of the proposed LFP. In the left box, we first use images to run through the
convolutional layers to obtain the feature maps. The resulting feature map is then calculated by
FFT in the second box. In the third box, we then estimate the LFP of each spectrum map, which is
used as the criteria for pruning. The last box shows the pruning (the dotted filters) according to LFP
calculation results.

Induction of sparsity. These methods learn sparse structure pruning by imposing
sparsity constraints on the target function in the network. Wen et al. [28] proposed a
compression method based on structured sparse learning, which learns different compact
structures by regularizing various network structures. Huang et al. [46] also introduced a
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new scaling factor, which scales the output of various structures, such as neurons, group
convolutions or residual blocks, and then safely removes structures whose correspond-
ing scaling factor is close to zero. In contrast to [46], Liu et al. [47] utilized the scaling
parameter in the batch normalization layer to control the output of the corresponding
channel without introducing any additional parameters. Zhao et al. [48] further extended
the scaling parameters in the batch normalization layer to include bias terms and estimated
their probability distributions by variational inference. These methods are not based on
deterministic values but on the distribution of the corresponding scaling parameters to
prune redundant channels, which makes them more interpretable. Lin et al. [49] studied
important filters by incorporating two different regularizations of structural sparsity into
the original loss function, achieving a superior performance on a variety of state-of-the-art
network frameworks. Chen et al. [50] imposed regularizations on both filter weights and
BN scaling factors and then evaluated the filter importance by their combination. Com-
pared with the inherent attribute constraint method, the induction of sparsity achieves
better compression and acceleration results. Nevertheless, the sparsity requirement must
be embedded into the training process, so it is expensive with regard to training time
and manpower.

In general, it is desirable to pursue a higher compression ratio and speedup ratio
without losing too much accuracy. In recent years, pruning models according to the
constraints provided by different inherent attributes in CNNs has become a popular filter
pruning strategy. Instead of directly selecting filters, important feature maps are first
determined and then the corresponding channels are retained. As reported in [44,45,51–53],
feature maps can inherently reflect rich and important information about the input data and
filters. Therefore, calculating the importance of feature maps could provide better pruning
guidance for filters/channels. For example, the feature-oriented pruning concept [45]
can provide richer knowledge of filter pruning than the intra-channel information when
considering the correlation of multiple filter/channel feature information. The importance
of a filter that is merely determined by its corresponding feature map could be easily
affected by the input data. On the contrary, cross-channel feature information leads to
more stable and reliable measurements, as well as a deeper exploitation of the underlying
correlations between different feature maps (and corresponding filters). The results in [45]
also show that the proposed inter-channel and feature-guided strategy outperforms the
state-of-the-art filter-guided methods in terms of task performance (e.g., accuracy) and
compression performance (e.g., model size and floating-point operation reduction).

Preference and Frequency Perspective. In previous work, both the feature-map-
based strategy and the filter-guided strategy passively formulate the pruning strategy
according to the inherent internal structure of CNNs in the spatial domain. Specifically,
some theories, such as optimal brain damage [54] and the lottery ticket hypothesis [55,56],
propose that there is parameter redundancy inside the model. Therefore, only if the param-
eters of the filter or feature maps are calculated in the spatial domain can their importance
be determined according to experience and mathematical knowledge. Considering the
“preference” of the model from the perspective of frequency domain, it can be found that the
neural network often learns low-frequency information first, and then slowly learns high-
frequency information [57,58] in the process of fitting the data (and some high-frequency
information cannot be perfectly fitted). At the same time, the human visual system is sensi-
tive to the representation of low-frequency information [59,60], while the representation of
low-frequency information in the spatial domain is not prominent enough. We can observe
from Figure 3 that after discarding part of the high-frequency information, the category of
the image can still be identified through the retained low-frequency information.



Remote Sens. 2023, 15, 3144 5 of 20

Figure 3. The original image (left), three random feature maps (top), low-frequency representations
of the feature maps (middle) and high-frequency representations (bottom).

In order to maintain the consistency between the model characteristics and the human
visual system, it is necessary to explore new methods in the frequency domain. Experiments
in [61] show that, after adding a low-frequency filter in the test image, the robustness of the
whole model is enhanced. In addition, adding low-frequency information can efficiently
improve the accuracy and gradually achieve a performance similar to the original image.
Considering that most real scenario images are predominantly low frequency, the influence
of noise is relatively negligible on the low-frequency images but enormous on the high-
frequency images, which easily leads to overfitting of the model. Therefore, a better task
and compression performance can be obtained by discarding the learning of high-frequency
information (the feature maps with more high-frequency components are pruned).

Technical Preview and Contributions. Motivated by these promising potential ben-
efits, in this paper, we exploit the frequency information of cross-channel features for
efficient filter pruning. We propose a novel metric termed Low Frequency Preference
(LFP) to determine the importance of filters based on the relative frequency components
across channels. It can be intuitively understood as a measurement of the “low frequency
component”. Specifically, if the feature map of a filter is measured with a larger proportion
of low-frequency components compared with other feature maps of the layer, the feature
map is more important than that in other channels, which needs to be preserved during
pruning. On the contrary, feature maps with more high-frequency components are less
preferred by the model, which indicates that they contain very limited information or
knowledge. Therefore, the corresponding filters are treated as unimportant and can be
safely removed without affecting the model capacity.

To sum up, the contributions of this paper can be summarized as follows:

• We analyze the properties of a model from the new perspective of the frequency
domain and associate the characteristics of an image with the frequency domain
preference characteristics of the model. Similar to the “smaller-norm-less-important”
hypothesis, we come up with a novel “lower-frequency-more-important” metric.
On this basis, a low-cost, high-robustness, low-frequency component analysis scheme
is proposed.

• We propose a novel metric that measures the relative low-frequency components of
multiple feature maps to determine the importance of filters, termed LFP. It originates
from an inter-channel perspective to determine the importance of filters more globally
and precisely, thus providing better guidelines for filter pruning.
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• We apply the LFP-based importance determination method to different filter pruning
tasks. Extensive experiments show that the proposed method achieves good results
while maintaining high precision. Notably, on the CIFAR-10 dataset, our method
improves the accuracy by 0.96% and 0.95% over the baseline ResNet-56 and ResNet-
110 models, respectively. Meanwhile, the model size and FLOPs are reduced by 44.7%
and 48.4% (for ResNet-56) and 39.0% and 47.8% (for ResNet-110), respectively. On the
ImageNet dataset, it achieves 40.8% and 46.7% storage and computation reductions,
respectively, for ResNet-50 and the accuracy of Top-1 and Top-5 is 1.21% and 1.26%
higher than the baseline model, respectively.

2. Proposed Method
2.1. Notation

We formally introduce symbols and notations in this section. Assume a pre-trained
convolutional neural network model has L layers. We use Ci and Ci+1, to represent the
number of input and output channels for the i-th convolutional layer, respectively. Fi,j

represents the j-th filter of the i-th layer, then the dimension of filter is Fi,j is RCi×K×K,
where K denotes the kernel size of the network. The i-th layer of the CNN model W (i)

can be represented by {Fi,1, Fi,2, . . . , Fi,j} that contains j filters, where Fi,j ∈ RCi×K×K, 1 ≤
j ≤ Ci+1. The tensor of connection in the deep CNN network can be parameterized by
{W (i) ∈ RCi+1×Ci×K×K, 1 ≤ i ≤ L}. The outputs of i-th layer, i.e., i-th feature maps, are
denoted asMi = {Mi,1, Mi,2, . . . , Mi,Ci+1} ∈ RCi+1×h×w. The feature map corresponding to
the j-th channel is Mi,j ∈ Rh × w. The height and width of the feature map are h and w,
respectively. In filter pruning,W (i) can be split into two groups, i.e., a subset I containing
ni1 filters to be reserved and a subset, with less importance, to be pruned U containing ni2
filters. Thus, we have I∩U = ∅, I∪U =W (i) and ni1 + ni2 = Ci+1.

2.2. Frequency Domain Analysis of Feature Maps

The Fourier transform aims to obtain the signal distribution in the frequency domain,
which can also be utilized in digital image processing, since an image is a collection of
points sampled in a continuous space (real scenario). It uses a two-dimensional matrix to
represent each point in the space, and the image can be represented by z = f (x, y). For the
discrete signal of digital image, we choose the discrete Fourier transform (DFT) to obtain its
frequency distribution (spectrum). Then, the frequency can be regarded as an indicator of
the intensity change in the image, which reveals the gradient of the gray level in the plane
space. Specifically, if the gray level changes quickly, the frequency will be high. On the
contrary, if the gray level changes slowly, the frequency will be low. In terms of an image,
a high-frequency signal usually corresponds to the edge and noise, while a low-frequency
signal describes the image contour and background signal. The two-dimensional DFT is
defined as follows:

F(u, v) = 2D− DFT[ f (x, y)]

=
M−1

∑
x=0

N−1

∑
y=0

f (x, y)e−j2π( ux
M +

vy
N ),

(1)

where 2D-DFT [·] stands for the two-dimensional DFT; f (x, y) is a digital image of size
M× N; and x and y are spatial variables, which, respectively, represent the specific hori-
zontal and vertical coordinates in the digital image f (x, y). Then, u and v are frequency
domain variables, where u ∈ {0, 1, 2, . . . , M− 1}, v ∈ {0, 1, 2, . . . , N − 1}; e−j2π( ux

M +
vy
N ) is

the transform kernel of the DFT, which has separability.
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Therefore, the DFT of the output of i-th layer (i.e., i-th feature map) is denoted as:

FMi,Ci+1
(u, v) = 2D− DFT[Mi,Ci+1 ]

=
h−1

∑
x=0

w−1

∑
y=0

f (x, y)e−j2π( ux
h +

vy
w ),

(2)

To further boost the computational efficiency of the DFT, Cooley et al. [62] proposed
a special kind of DFT termed a one-dimensional fast Fourier transform (FFT). In this
way, the number of multiplications required in the DFT can be greatly reduced. In addi-
tion, the more sampling points to be transformed, the more significant the savings of the
FFT algorithm computation. Based on the separability of the Fourier transform kernel
e−j2π( ux

h +
vy
w ), the 2D-DFT can also be computed using the two-step FFT:

FMi,Ci+1
(u, v) = FFTx{FFTy[ f (x, y)]}

= FFTy{FFTx[ f (x, y)]}
= FFT(Mi,Ci+1),

(3)

The spectrum map obtained by the two-dimensional Fourier transform is a distri-
bution of image gradient. The points on the spectrum map do not have a one-to-one
correspondence with the points on the image plane, even if the frequency is not shifted.
The degree of brightness or darkness on the Fourier spectrum map indicates the intensity
difference between the gray value of a point on the image with the neighboring points (i.e.,
the gradient and the frequency value of a point). Larger differences/gradients indicate
higher frequencies and lower energies, which leads to lower values and a darker appear-
ance on the spectrum map. A smaller difference/gradient indicates a lower frequency
and a higher energy, resulting in a higher numerical value and a brighter appearance on
the spectrum map. In other words, the brighter the frequency spectrum, the higher the
energy, the lower the frequency and the smaller the image difference (more flat). Therefore,
the result of the FFT on the image is shown in Figure 4c. The low-frequency component of
the image is distributed in the four corners of the spectrum map. For better observation,
the low-frequency component F(0, 0) is translated to the center of the frequency rectangle
defined by the interval [0, M− 1] and [0, N − 1] via the following equation:

f (x, y)(−1)x+y FFT−→ F(u− M
2

, v− N
2
), (4)

In the displayed spectrum map, since the dynamic range of other gray values is
compressed, the log transformation in Equation (5) is performed once on Figure 4c,d.
Therefore, the details can be greatly improved to observe and calculate the spectral law.

F′(u, v) = 1 + log|F(u, v)|, (5)

Therefore, the i-th spectrum map (the i-th feature map after FFT) is represented as
Mi

FFT = {MF
i,1, MF

i,2, . . . , MF
i,Ci+1

}. To observe the extraction of different frequency features
by different filters more apparently, we visualize the feature maps of the model ResNet-50-
conv1 as well as the corresponding spectrum map in Figures 5 and 6. The bright areas in
the spectrum correspond to the low-frequency components (with higher values), while the
dark areas correspond to the high-frequency components (with lower values). In addition,
some spectra with fewer low-frequency components and the corresponding feature maps
are annotated with red boxes. Therefore, we can prune the filters corresponding to the
feature maps with fewer low-frequency components, thus leaving more low-frequency com-
ponents.
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Figure 4. Workflow of the FFT. (a) A color bird image; (b) the grayscale image of (a). The image
should be converted into grayscale before the FFT since the frequency is an indicator of the intensity
change in the image. (c) The result of applying FFT to (b); (d) the centralized spectrum; (e) loga-
rithmic transformation of (c) for better observation and calculation of the spectrum; (f) the result of
(e) after centralization.

Figure 5. Visualization of feature maps of ResNet-50-conv1.
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Figure 6. Spectrum corresponding to the feature map.

2.3. LFP-Based Model Pruning

As mentioned above, measuring importance in the frequency domain is a new research
approach. Motivated by those promising benefits in Section 1, we propose to explore the
filter importance from an inter-channel perspective, and the key idea is to use LFP to
measure the importance of each feature map (and its corresponding filter). Specifically,
if there are more low-frequency components in a feature map of a channel, the model
“prefers” its intrinsic information, that is to say, the Frequency Preference Index of this
feature map is higher. The Frequency Preference Index is higher as the filter corresponding
to the feature map becomes more important. On the other hand, feature maps with
relatively few low-frequency components (i.e., high-frequency components dominate)
contain relatively little useful information. Therefore, even if the corresponding filter is
excluded, the information and knowledge can still be roughly preserved by feature maps of
other filters after the fine-tuning process. In other words, filters that generate low-frequency
preference feature maps tend to be more “ignorable”, which can be interpreted as having
lower importance. Therefore, it would be appropriate to remove those filters that have
feature maps with low channel frequency preferences, while still maintaining the high
model capacity.

Filter pruning aims to identify and remove the less important filter sets fromW (i).
To accurately measure the importance, we design a mathematical metric to quantify the
Frequency Preference of a feature map using the Frobenius norm in Equation (6). It was
reported in [63,64] that the F-norm can be used to measure the energy and difference of an
image. In addition, we have also mentioned that higher frequency locations in the image
mean lower energy, lower value, and a darker appearance in the spectrum. On the contrary,
lower frequency locations mean higher energy, higher values and a brighter appearance
on the spectrum. To this end, we elaborate a mathematical metric to measure Frequency
Preference by using the F-norm of the spectrum.

‖A‖F =
√

tr(AT A) =

√√√√ m

∑
i=1

n

∑
j=1

∣∣aij
∣∣2 , (6)

where A is an m× n matrix and aij is each element of matrix A.
If the importance of a filter is merely determined by its corresponding feature map,

the results may be sensitive to input data. Cross-channel feature information leads to
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more stable and reliable measurements, which is suitable for discovering the underlying
correlations between different feature maps (and corresponding filters). Thus, in practice,
in order to simultaneously remove multiple unimportant filters, a combination of frequency
preference on multiple feature maps needs to be calculated. For the i-th layer with output
feature maps,Mi

FFT = {MF
i,1, MF

i,2, . . . , MF
i,Ci+1

}∈ RCi+1×h×w. Firstly, letMi
FFT be rewritten

as Mi = [mi,1
T , mi,2

T , . . . , mi,Ci+1
T ]T ∈ RCi+1×hw, a matrix of Ci+1 rows and hw columns,

mi,Ci+1 ∈ Rhw. To determine the minimum k-row frequency preference inMi
FFT , we first

successively delete row mi,j from Mi and compute the corresponding F-norm change
between the remaining (Ci+1 − 1) row matrix and the original Ci+1 row matrix Mi. Then,
Ci+1 F-norm change values are obtained after Ci+1 computations, and the k values with
the smallest change are determined by sorting, along with their corresponding feature
maps. These selected k feature maps Mi,j are interpreted as receiving a lower “preference”
from the model compared to other feature maps, so their corresponding filters Fi,j are less
important and should be pruned. Therefore, computing the change in the global F-norm
in the feature mapMi in i-th layer, that is, the low frequency preference ofMi, can be
defined as follows:

LFP[Mi] , [
∥∥∥Mi

∥∥∥
F
−
∥∥∥Mi ∗ Zj

∥∥∥
F
]
Ci+1
j=1 , (7)

where ‖·‖F is the Frobenius norm, ∗ is the matrix convolution operation and Zj is the row
mask matrix whose j-th row entries are zeros and other entries are ones.

In the set of F-norm changes obtained by LFP[Mi], the k smallest changes can be
determined according to the pruning rate, and the corresponding feature maps and filters
are not important and can be pruned. As shown in Figure 7, by randomly extracting the
spectra corresponding to five change values, it can be observed that the spectra with more
low-frequency components show higher LFP change values.

Figure 7. The low frequency preference of feature maps for one layer in ResNet-50. The ordinate is
the change value of Mi, while the abscissa is the index of the feature map.

2.4. The Overall Algorithm

Combining the above two steps, the whole filter pruning process is developed from
an inter-channel perspective. Figure 8 is a chart of methodology for the proposed method.
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The pseudo-code of LFP is provided in Algorithm 1, which gives a lucid description and
summary of our proposed filter pruning algorithm. Starting from a pre-trained model
W (i), the feature maps obtained after the image input model are calculated by the FFT to
obtain the spectrum. The spectrum is reshaped into a matrix Mi with row Ci+1 and column
hw. Then, an LFP calculation is performed on Mi and the results are sorted. According
to the pruning ratio, specific filters can be pruned. After fine-tuning the pruned model,
a sub-modelW∗ can be obtained.

Figure 8. The chart of methodology.

Algorithm 1 Algorithm Description of the LFP method for the i-th layer

Input: An L-layer CNN model with pre-trained weightsW (i); The i-th feature mapsMi =
{Mi,1, Mi,2, . . . , Mi,Ci+1 } ∈ RCi+1×h×w; target sparsity S; training set D;

Output: A sub-model satisfying the target sparsity S and its optimal weight valuesW∗;
1: for Sample a mini-batch from D do
2: FFT calculation: Calculate FMi ,Ci+1 by Equation (3)
3: Reshape FFT feature maps: Mi := reshape(Mi

FFT , [Ci+1, hw])
4: for i = 1; i <= Ci+1; i ++ do
5: LFP calculation: LFP[Mi] by Equation (7)
6: end for
7: end for
8: Filters Selection: Sort LFP[Mi];
9: Pruning: Prune S× Ci+1 filters via the S× Ci+1 smallest LFP[Mi];

10: Fine-tuning;

3. Experiments and Analysis
3.1. Experimental Settings

Baselines Models and Datasets. To demonstrate the effectiveness and generality of
the proposed LFP method, we evaluate its pruning performance against various baseline
models on three image classification datasets. Specifically, we introduce LFP into three
modern CNN models (ResNet-56 [65], ResNet-110 [65] and VGG-16 [66]) on the CIFAR-
10 dataset [67] and ResNet-20 [65] on the CIFAR-100 [67] dataset. CIFAR-10 contains
60,000 color images (50,000 for training and 10,000 for testing) with a uniform size of
32 × 32 and classes of 10, but CIFAR-100 has 100 classes. In addition, we further evaluate
and compare the performance with other state-of-the-art pruning methods using the
ResNet-50 model [65] on ImageNet [68], which is a large-scale and challenging dataset. In
addition, we perform our algorithm on VGG-16 with a publicly available dataset designed
for remote sensing image classification, called UC Merced land-use dataset, which consists
of images of 21 land-use scene categories [69]. Each class contains 100 images with the size
of 256 × 256 pixels and a one foot spatial resolution. Figure 9 shows some example images
randomly selected from the UC Merced dataset.
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Figure 9. Remote sensing example images from the UC Merced dataset. (1) Agricultural. (2) Airplane.
(3) Baseball diamond. (4) Beach. (5) Building. (6) Chaparral. (7) Dense residential. (8) Forest.
(9) Freeway. (10) Golfcourse. (11) Harbor. (12) Intersection. (13) Medium residential. (14) Mobile
home park. (15) Overpass. (16) Parking lot. (17) River. (18) Runway. (19) Sparse residential.
(20) Storage tank. (21) Tennis court.

Configurations. We use PyTorch 1.6.0, Python 3.7 and CUDA 10.2 for implementation
and thop for calculating the parameters and FLOPs. Referring to the experimental design
in [44,45], an identical layer-by-layer pruning strategy is adopted in our framework. To
determine the LFP of each filter, we randomly sample five batches (total five × mini-batch
input images) to calculate the average LFP of each feature map in all the experiments. After
completing filter pruning based on LFP, we perform fine-tuning on the pruned models
with stochastic gradient descent (SGD) [70–72] as the optimizer. SGD can more efficiently
use information, especially when the information is more redundant [72–74]. In addition,
we perform the fine-tuning for 300 epochs on CIFAR and UC Merced datasets with the
batch size 256, momentum of 0.9, weight decay of 0.005 and initial learning of 0.01. On the
ImageNet dataset, fine-tuning is performed for 150 epochs with the batch size of 128,
momentum of 0.99, weight decay of 0.0001 and initial learning rate of 0.1.

3.2. Results on CIFAR Datasets

To prove the feasibility of LFP, we use different pruning ratios (Table 1) to achieve the
goal of high accuracy, as well as the goals of model size and FLOP reduction. Tables 2–5
show the evaluation results of the pruned modern CNN models on the CIFAR-10/100
datasets, respectively.

For the ResNet-56 model, our LFP-based method improves the accuracy by 0.96%
over the baseline model, and reduces the model size and FLOPs by 44.7% and 48.4%,
respectively. When the model size and FLOPs are both reduced by 71.8%, we still achieve a
better performance.
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Table 1. Pruning ratio of various baseline models on different datasets by LFP.

Model/Dataset Pruning Ratio Setting of All Layers

ResNet-56/CIFAR-10 [0.0] + [0.15] × 2 + [0.4] × 27
[0.0] + [0.4] × 2 + [0.5] × 9 + [0.6] × 9 + [0.7] × 9

ResNet-110/CIFAR-10 [0.0] + [0.2] × 2 + [0.3] × 18 + [0.35] × 36
[0.0] + [0.4] × 2 + [0.5] × 18 + [0.65] × 36

VGG-16/CIFAR-10 [0.3] × 7 + [0.75] × 5
[0.45] × 7 + [0.78] × 5

ResNet-20/CIFAR-100 [0.0] + [0.1] × 2 + [0.25] × 9
[0.0] + [0.3] × 2 + [0.3] × 3 + [0.4] × 3 + [0.5] × 3

ResNet-50/ImageNet [0.0] + [0.1] × 3 + [0.35] × 16
[0.0] + [0.5] × 3 + [0.6] × 16

Table 2. Pruning results of ResNet-56 on the CIFAR-10 dataset.

Method Pruned Top-1% ∆ Top-1 Parameters (↓%) FLOP (↓%)

ResNet-56 [65] 93.26 0 0.85M (0.0) 125.49M (0.0)

L1-norm [26] 93.06 −0.20 0.73M (14.1) 90.90M (27.6)

NISP [75] 93.01 −0.25 0.49M (42.4) 81.00M (35.5)

GAL-0.6 [76] 92.98 −0.28 0.75M (11.8) 78.30M (37.6)

HRank [44] 93.52 +0.26 0.71M (16.8) 88.72M (29.3)

CHIP [45] 94.16 +0.90 0.48M (43.5) 65.94M (47.5)

RUFP [77] 93.57 +0.52 0.52M (38.8) 79.3M (37.6)

LFP (Ours) 94.22 +0.96 0.47M (44.7) 64.71M (48.4)

GAL-0.8 [76] 91.58 −1.68 0.29M (65.9) 49.99M (60.2)

LASSO [78] 91.80 −1.46 N/A 62.00M (50.6)

HRank [44] 90.72 −2.54 0.27M (68.1) 32.52M (74.1)

CHIP [45] 92.05 −1.21 0.24M (71.8) 34.79M (72.3)

LFP (Ours) 92.70 −0.56 0.24M (71.8) 35.37M (71.8)

Table 3. Pruning results of ResNet-110 on the CIFAR-10 dataset.

Method Pruned Top-1% ∆ Top-1 Parameters (↓%) FLOPs (↓%)

ResNet-110 [65] 93.50 0 1.72M (0.0) 252.89M (0.0)

L1-norm [26] 93.30 −0.20 1.16M (32.6) 155.00M (38.7)

HRank [44] 94.23 +0.73 1.04M (39.5) 148.70M (41.2)

CHIP [45] 94.44 +0.94 0.89M (48.3) 121.09M (52.1)

LFP (Ours) 94.45 +0.95 1.05M (39.0) 132.08M (47.8)

GAL-0.5 [76] 92.74 −0.76 0.95M (44.8) 130.20M (48.5)

HRank [44] 92.65 −0.85 0.53M (69.2) 79.30M (68.6)

CHIP [45] 93.63 +0.13 0.53M (69.2) 71.69M (71.6)

LFP (Ours) 93.72 +0.22 0.54M (68.6) 72.83M (71.2)
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Table 4. Pruning results of VGG-16 on the CIFAR-10 dataset.

Method Pruned Top-1% ∆ Top-1 Parameters (↓%) FLOPs (↓%)

VGG-16 [66] 93.96 0 15.00M (0.0) 314.00M (0.0)

SSS [46] 93.02 −0.94 3.93M (73.8) 183.13M (41.6)

GAL-0.05 [76] 93.77 −0.19 3.36M (77.6) 189.49M (39.6)

HRank [44] 93.43 −0.53 2.51M (83.3) 145.61M (53.6)

CHIP [45] 93.86 −0.10 2.76M (81.6) 131.17M (58.1)

RUFP [77] 93.81 −0.15 2.50M (83.3) 167.00M (46.8)

LFP (Ours) 93.98 +0.02 2.51M (83.3) 104.96M (66.6)

GAL-0.1 [76] 93.42 −0.54 2.67M (82.2) 171.89M (45.2)

HRank [44] 91.23 −2.73 1.78M (92.0) 73.70M (76.5)

CHIP [45] 93.18 −0.78 1.90M (87.3) 66.95M (78.7)

LFP (Ours) 93.61 −0.35 1.89M (87.4) 67.09M (78.6)

Table 5. Pruning results of ResNet-20 on the CIFAR-100 dataset.

Method Pruned Top-1% ∆ Top-1 Parameters (↓%) FLOPs (↓%)

ResNet-20 [65] 68.47 0 278.3k (0.0) 41.20M (0.0)

L1-norm [26] 66.59 −1.88 176.2k (36.7) 20.80M (49.5)

L2-norm [79] 66.61 −1.86 175.9k (36.8) 21.00M (49.0)

FPGM-0.4 [43] 66.68 −1.79 183.8k (34.0) 20.60M (50.0)

PFP [80] 66.19 −2.28 176.3k (36.7) 21.00M (49.0)

KLNP [81] 66.68 −1.79 187.5k (32.7) 21.20M (48.5)

LFP (Ours) 67.43 −1.04 175.8k (36.7) 20.62M (50.0)

IENP [27] 65.76 −2.71 168.8k (39.4) 20.00M (51.5)

LFP (Ours) 65.82 −2.65 157.4k (43.4) 19.65M (52.3)

For the ResNet-110 model, the accuracy is improved by 0.95% and the model size
and FLOP are reduced by 39.0% and 47.8%, respectively. When the model size and FLOP
are reduced by 68.6% and 71.2% for pruning (close to the highest compression ratio of
the algorithm), our pruned model can still obtain a 0.22% accuracy improvement over the
baseline model.

For the VGG-16 model, our method can reduce the model size and FLOPs by 83.3% and
66.6%, respectively. Meanwhile, it still improves the accuracy by 0.02%. In addition, when
the compression ratio of the pruned model is close to [44,45], the storage and computational
cost are reduced by 87.4% and 78.6%, respectively, and the accuracy is merely reduced by
0.35%.

For the ResNet-20 model on CIFAR-100, on the premise of little accuracy loss, LFP
can reduce the model size and FLOP by 36.7% and 50.0%, respectively. When the model is
further compressed, the accuracy of our method is reduced by only 2.65%.

After preliminary pruning on ResNet-56/110 and VGG-16, LFP can be more accurate
than the baseline model. This shows that the LFP algorithm can alleviate the overfitting
problem of the original model while reducing the model size and calculation costs. Al-
though further pruning on ResNet-56 and VGG-16 will cause a slight drop in accuracy, it is
within an acceptable range compared to other algorithms.
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3.3. Results on ImageNet

The proposed LFP not only shows good performance on small datasets but works
well on large-scale datasets. To verify the effectiveness more comprehensively, we also
conducted several experiments on the challenging ImageNet dataset. Table 6 lists the
pruning performance of ResNet-50 on the ImageNet dataset via our method. The results
indicate that, when targeting a small compression ratio, our method can achieve 40.8%
and 46.7% storage and computation reductions, respectively. In addition, the accuracy of
top-1 and top-5 is 1.21% and 1.26% higher than the baseline model, respectively. When the
compression ratio is further increased, LFP still achieves a superior performance over the
state-of-the-art methods. That is, the accuracy can be guaranteed while maintaining a high
compression ratio. However, in the case of a small compression ratio, CHEX [82] is slightly
more accurate than LFP. At the same time, the reductions in model size and computation
are not optimal for LFP. However, in the further compression, LFP shows its superiority in
precision, storage and computation reduction.

Table 6. Pruning results of ResNet-50 on the ImageNet dataset.

Method Pruned
Top-1% ∆ Top-1 Pruned

Top-5% ∆ Top-5 Parameters
(↓%) FLOPs (↓%)

ResNet-50 [65] 76.15 0 92.87 0 25.50M (0.0) 4.09B (0.0)

ThiNet [83] 72.04 −4.11 90.67 −2.20 16.91M (33.7) 2.58B (36.8)

SFP [84] 74.61 −1.54 92.06 −0.81 N/A 2.38B (41.8)

Auto [85] 74.76 −1.39 92.15 −0.72 N/A 2.10B (48.7)

GAL-0.5 [76] 71.95 −4.20 90.94 −1.93 21.19M (16.9) 2.33B (43.0)

FPGM-0.3 [43] 75.59 −0.56 92.63 −0.24 15.94M (37.5) 2.36B (42.2)

HRank [44] 74.98 −1.17 92.33 −0.54 16.17M (36.6) 2.30B (43.7)

SCOP-0.4 [52] 75.95 −0.20 92.79 −0.08 14.59M (42.8) 2.24B (45.3)

CHIP [45] 76.30 +0.15 93.02 +0.15 15.10M (40.8) 2.26B (44.8)

CHEX-0.3 [82] 77.40 +1.25 N/A - N/A 2.00B (51.1)

LFP (Ours) 77.36 +1.21 94.13 +1.26 15.09M (40.8) 2.18B (46.7)

PFP [80] 75.21 −0.94 92.43 −0.44 17.82M (30.1) 2.29B (44.0)

SCOP-0.5 [52] 75.26 −0.89 92.53 −0.34 12.29M (51.8) 1.86B (54.6)

CHIP [45] 75.26 −0.89 92.53 −0.34 11.04M (56.7) 1.52B (62.8)

CHEX-0.5 [82] 76.00 −0.15 N/A - N/A 1.00B (75.6)

LFP (Ours) 76.07 −0.08 92.26 +0.09 8.02M (68.5) 0.97B (76.3)

3.4. Results on the UC Merced Dataset

Table 7 lists the pruning performance of VGG-16 on the UCM dataset via our method.
The experimental results show that the proposed LFP also performs well in remote sensing
image classification. When targeting a small compression ratio, our method can achieve
78.3% and 40.6% storage and computation reductions, respectively. Meanwhile, the ac-
curacy is 0.23% higher than the baseline model. It can be seen that LFP has a tiny loss in
accuracy (it decreases by 0.68) when the compression ratio is further increased. That is,
the accuracy can be guaranteed while maintaining a high compression ratio.
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Table 7. Pruning results of VGG-16 on the UC Merced land-use dataset.

Method Pruned Top-1% ∆ Top-1 Parameters
(↓%) FLOPs (↓%)

VGG-16 [66] 93.45 0 15.00M (0.0) 314.00M (0.0)

LFP (Ours) 93.68 +0.23 3.25M (78.3) 186.61M (40.6)

LFP (Ours) 92.77 −0.68 2.04M (86.4) 146.53M (53.3)

4. Discussion

This paper proposes a novel model compression method for frequency domain filter-
ing in accordance with the “smaller-norm-less-important” idea. In contrast to previous
algorithms that perform pruning in the spatial domain, we explore the similarity, sym-
metry and substitutability of feature maps. We re-consider the model characteristics that
correspond to the human visual system termed Low Frequency Preference (LFP) in the fre-
quency domain. Based on the new frequency domain perspective and model characteristics,
the performance of LFP is even superior to state-of-the-art methods [45,82].

Although our LFP is originally proposed for CNNs, there are few pruning algorithms
for recurrent neural networks (RNNs). However, we are working hard to explore this
limitation, and hope to extend the pruning algorithm to more diverse network structures
in the future. Secondly, although it is effective to utilize F-norm pruning in the pruning
process, whether there is a more appropriate and accurate metric for pruning than F-norm
will continue to be explored in future work. At the same time, we will also focus on the
study of different pruning granularities such as [71] to further compress the model.

5. Conclusions

Convolutional neural networks (CNNs) have been widely used in remote sensing
image classification due to their powerful feature representation abilities. However, the
accompanying high computational cost is always a problem worth trying to improve. In
this paper, we propose a novel pruning method called low frequency preference (LFP)
from the new perspective of the frequency domain, which takes into account the model
properties (i.e., the preference of the network model) for the data properties. It determines
the relative importance of filters by observing and computing the spectrogram of the
feature map. We conducted LFP with several modern and popular models on different
scale datasets to verify its superiority. The experimental results demonstrate that the LFP
pruning method can effectively reduce the computational complexity and model size while
maintaining a high classification accuracy.

In future research, we will continue to explore different pruning methods in the
frequency domain, as well as combine the spatial domain pruning methods to achieve
a higher compression ratio. The goal is to find a method to prune CNNs from scratch
for remote sensing image classification. Since the pruned channels are already selected
when training the original over-parameterized network, pruning CNNs from scratch can
save more computational resources and time. It is also of great significance for resource-
constrained remote sensing image classification tasks.
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CHIP Channel Independence-based Pruning
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DFT Discrete Fourier Transform
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