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Abstract: Estimating depth from a single low-altitude aerial image captured by an Unmanned Aerial
System (UAS) has become a recent research focus. This method has a wide range of applications in
3D modeling, digital terrain models, and target detection. Traditional 3D reconstruction requires
multiple images, while UAV depth estimation can complete the task with just one image, thus having
higher efficiency and lower cost. This study aims to use deep learning to estimate depth from a
single UAS low-altitude remote sensing image. We propose a novel global and local mixed multi-
scale feature enhancement network for monocular depth estimation in low-altitude remote sensing
scenes, which exchanges information between feature maps of different scales during the forward
process through convolutional operations while maintaining the maximum scale feature map. At
the same time, we propose a Global Scene Attention (GSA) module in the decoder part of the depth
network, which can better focus on object edges, distinguish foreground and background in the UAV
field of view, and ultimately demonstrate excellent performance. Finally, we design several loss
functions for the low-altitude remote sensing field to constrain the network to reach its optimal state.
We conducted extensive experiments on public dataset UAVid 2020, and the results show that our
method outperforms state-of-the-art methods.

Keywords: monocular depth estimation; self-supervised learning; complex scene; Unmanned Aerial
Vehicles (UAVs)

1. Introduction

Low-altitude remote sensing is a technique that employs Unmanned Aerial Vehicles
(UAVs) or other airborne devices equipped with sensors to acquire ground features and
environmental information. This technology has wide-ranging applications in areas such
as map making [1], resource monitoring [2], and urban planning [3]. In low-altitude remote
sensing, accurate depth information is critical for achieving these tasks.

In recent years, with the development of deep learning techniques, it has become
possible to obtain depth information from low-altitude remote sensing images using depth
estimation methods, without the need for traditional depth sensors. However, depth
estimation in the field of low-altitude remote sensing still faces several challenges. On the
one hand, traditional depth estimation methods require a large amount of labeled data
for training [4], and obtaining labeled data in low-altitude remote sensing is difficult and
costly. On the other hand, the complexity and uncertainty of low-altitude remote sensing
scenes pose challenges to the accuracy and robustness of depth estimation.

As an alternative approach, unsupervised monocular depth estimation has become
a highly sought-after research direction. Compared to traditional depth estimation meth-
ods [5-9], unsupervised monocular depth estimation methods do not require labeled
data for training, making them more efficient in handling depth estimation problems in
low-altitude remote sensing.
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Self-supervised monocular depth estimation is a deep learning method that does not
require manual annotation of depth labels, and its basic principle is to use self-supervised
signals between image frames for learning. Specifically, this method uses a sequence of
monocular images to estimate the relative pose and depth information between adjacent
frames, thereby learning the geometric information of the scene. The key to using monocu-
lar image sequences for self-supervision is that pseudo-depth labels can be generated by
using properties such as temporal consistency and motion continuity, which can replace
manually annotated depth labels and reduce data annotation costs.

Currently, there are many unsupervised monocular depth estimation methods [10-15]
available for autonomous driving scenarios. Zhou et al. [10] is one of the earliest works
on unsupervised monocular depth estimation using self-supervised learning. The method
proposed by Godard et al. [16] is based on deep convolutional neural networks (CNNs) and
predicts depth by reconstructing the input image. Yin et al. [17] proposed an unsupervised
deep learning model called GeoNet, which can simultaneously learn the depth, optical
flow, and camera pose of an image. Godard et al. [18] introduced the minimum reprojection
loss and automask to address moving objects and occlusion, making it the most classic
unsupervised monocular depth estimation framework. Casser et al. [19] used pre-defined
segmentation masks to segment object categories in the known field of view to help deal
with moving objects.

These depth estimation methods have shown promise in the field of autonomous
driving, but they cannot be directly applied to low-altitude remote sensing due to the
following challenges: in low-altitude remote sensing scenes, the non-uniformity of depth
distribution can affect the measurement of depth. Unlike the uniform distribution of
depth in autonomous driving scenes, depth in low-altitude remote sensing scenes can
be concentrated in the foreground or background, such as on roofs and walls. There
are also scale variations and occlusion problems in low-altitude remote sensing scenes.
Traditional training methods based on photometric consistency are suitable for autonomous
driving scenes, but, in low-altitude scenes, scale variations can occur quickly and there
may be large areas of occlusion. This makes it difficult for the network to quickly capture
these differences.

As far as we know, there are currently very few depth estimation studies that focus
specifically on low-altitude remote sensing with a wide field of view. Mou et al. [20] trained
the network using aerial imagery and corresponding DSM generated through semi-global
matching. Hermann et al. [21] used a similar architecture to Monodepth [16] and trained
it on monocular drone videos to jointly estimate depth and pose. Madhuanand et al. [22]
proposed a state-of-the-art method that uses a dual encoder with a 3D decoder to estimate
the depth information of a scene.

Previous studies have successfully demonstrated the possibility of using monocular
depth estimation algorithms on UAVs. Our work focuses on the research of unsupervised
monocular depth estimation algorithms in low-altitude remote sensing scenes, enhancing
the applicability and robustness of depth estimation in this type of scenario.

The main contributions of this work are as follows:

1.  We propose a global and local mixed multi-scale feature enhancement network for
depth estimation in low-altitude remote sensing scenarios. It parallelizes the input
image into lateral branches of different scales, where the same branch maintains the
same size throughout the process, and different branches exchange feature information
at the intersection nodes, reducing information loss during convolution to obtain a
more refined depth estimation result.

2. We propose a Global Scene Attention (GSA) module for the decoder part of the
depth network, which aims to establish long-distance semantic connections in the
global context of the input feature map and integrate this contextual information into
the channel representation of the feature map. This helps to improve the model’s
understanding and reasoning ability for the overall scene, thereby enhancing the
performance of the task.
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Our method achieves depth estimation of ground objects in low-altitude remote
sensing scenes through end-to-end self-supervised training. We compared our method
with other existing methods on public dataset UAVid 2020. The experimental results show
that our method can obtain higher depth estimation accuracy and stronger robustness,
providing an effective and practical solution for depth estimation in the low-altitude remote
sensing field.

The structure of this article is as follows. Section 2 provides an overview of the
related work to our research. In Section 3, we describe in detail our proposed method and
introduce each component. Section 4 describes the datasets used in our experiments and
the qualitative and quantitative results. The final section is a summary of our work and an
outlook for future research.

2. Related Work

In this section, we will provide a detailed overview of two research areas related to
our study: self-supervised monocular depth estimation and monocular depth estimation
for aerial images.

2.1. Self-Supervised Monocular Depth Estimation

Self-supervised monocular depth estimation is a hot research topic in the field of
computer vision. Monocular depth estimation starts from traditional methods that relied
on manually designed image features and depth mapping. These features mainly include
shadows [23], vanishing points [24], focus/defocus cues [25], etc., to construct mathematical
models. However, due to the additional assumptions made, the robustness of these models
is relatively poor. With the rise and development of deep learning, supervised depth
estimation has gained widespread attention. However, this training method requires paired
depth and image data for training, but this method is costly, data-scarce, and difficult to
collect. Therefore, self-supervised depth estimation has become an alternative method.
Unlike supervised deep learning, self-supervised depth estimation only requires video
sequences or adjacent image frames as input, and trains neural networks to estimate the
depth of objects in a single image.

It is inspired by the classic computer vision algorithm Structure from Motion (Sf{M),
a groundbreaking work that proposed a basic framework consisting of a depth network
and pose network, trained simultaneously with consecutive video frames. Subsequently,
many research works further developed this idea and made improvements in model
architecture or loss function, including [10,17-19,26-29]. Among them, the most classic
is Monodepth2 [18], where Godard et al. introduced the minimum reprojection loss and
auto-masking to enhance the robustness of the algorithm in handling occluded scenes
and to ignore pixels in training that violate the camera motion assumption, reducing the
number of wrongly projected points in training.

2.2. Monocular Depth Estimation for Aerial Images

Videos captured by low-altitude drones are easier to obtain than creating actual depth
labels, but single-image depth estimation models in aerial scenes require additional com-
plexity to estimate both depth and position compared to those in autonomous driving
scenes. Currently, research on using videos for self-supervised single-image depth estima-
tion is mainly focused on ground images, and there are few studies that specifically focus
on low-altitude remote sensing scenes. In the following, we will discuss some important
research related to our study.

The diverse pitch angles present in drone video scenes yield a considerable range of
depths within scenes, coupled with a wider field of view, thereby intensifying training
difficulties. Hermann et al. [21] devised a self-supervised training strategy for training on
drone-captured videos and extended this methodology to a monocular depth estimation
task performed in naturalistic settings. Madhuanand et al. [22] proposed a network ar-
chitecture that employed a dual-branch ResNet [30] encoder connected to a 3D decoder,
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similar to PackNet [27], for joint depth and pose learning to predict depth. The architecture
adopted the classic self-supervised learning paradigm proposed by [10,16,18]; i.e., the su-
pervision signal came from adjusting the reference image to reconstruct the target image
by calculating the pose change between the reference and target images. They applied the
reprojection loss, edge-aware smoothness loss, and the contrastive loss to constrain the
network training. Finally, they evaluated the model performance on public dataset UAVid
2020 [31].

We have implemented a high-performance model for low-altitude remote sensing
depth estimation. Our model utilizes a global and local mixed multi-scale feature enhance-
ment network that can estimate the depth of targets in real-time within the field of view
of UAVs. The encoder of the depth network extracts multi-scale feature information and
divides it into multiple streams for processing. During the convolution process, the feature
map scale of each stream remains unchanged, and the information is fused at intersection
nodes of different streams to achieve complementary information. In the decoder, we
designed a GSA module to better distinguish between the foreground and background of
objects, resulting in excellent monocular depth estimation results.

3. Materials and Methods

In the following content, we propose a self-supervised monocular depth estimation
algorithm for low-altitude remote sensing. This method is divided into four sub-parts, in-
cluding model inputs, overall network architecture, combination of different loss functions,
and network inference process.

3.1. Model Inputs

During the training phase, the input data for the depth network and pose network
consist of three consecutive RGB frames, denoted as I; € Ryxwx3, where t € {—1,0,1}.
These frames are extracted from manually captured drone videos. The input images
contain sufficient scene information and show the variation in drone perspective. The three
consecutive frames are split into two groups as input to the network, and we apply the
internal parameters obtained from the calibrated drone to the pose network. The accuracy
of depth estimation increases with the resolution of the input images, but it also increases
the computational and memory usage. Therefore, after studying, we adjust the resolution
of the input images for the network to 352 x 640. The pose network takes the target frame
Ip and two source frames Iy (' € {—1,1}) as input and passes them to the encoder.

During the evaluation of depth estimation, the model takes a single low-altitude
remote sensing image Iy as input and attempts to predict the depth value of each pixel to
generate a depth map.

3.2. Network Architecture

The overall structure, as depicted in Figure 1, consists of two networks: DepthNet
and PoseNet. Each of these networks is trained in a self-supervised manner using three
consecutive RGB frame sequences, Iy, t € {—1,0,1}. The input of the DepthNet is an
RGB image Iy, and the resulting depth map Dy is generated through the encoder-decoder,
represented by Equation Dy = DepthNet(Iy). The input of the PoseNet is two pairs of
consecutive frames, and its output is a six-degree of freedom (6-DoF) vector, divided
into translation and rotation vectors, represented by Equation Ty, = PoseNet(Iy, 1),
te{-1,1}.
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Figure 1. Overview of the network architecture. The encoder of the depth network uses multi-scale
feature fusion to generate feature maps of different scales. The stage feature maps of each horizontal
branch are concatenated and input to the decoder. The decoder uses the Global Scene Attention
(GSA) module and a 3 x 3 convolution layer to restore the feature maps at different scales and finally
generates depth maps of different scales. The bottom left corner shows the pose network, which
outputs six degrees of freedom vectors (6-DoF). The specific structural details of the GSA module are
shown in the bottom right corner.

3.2.1. Depth Network

Many existing depth estimation methods [18,22,27,29] are based on ResNet [30], where
the network encodes the image into low-resolution feature maps during the convolution
process. In contrast, we propose a novel encoder—decoder architecture that includes a
multi-scale feature enhancement encoder and a decoder based on Global Scene Attention
modules, which can fuse semantic-rich and spatial features during the encoding process.
The encoder processes the input image in parallel streams of different scales, where each
feature map in each stream has the same resolution, and nodes with different resolutions
in each stage exchange information. Each stream contains many intermediate nodes
to aggregate features. Based on the assumption that the level of semantic information
contained in the feature maps increases with the number of channels, we set the network
feature map node feat] to represent the output of encoder node feat}, where s represents
different stream sequence along the encoder forward propagation, and r represents the
intermediate node number along the skip-connection direction. The stack computation of
feature mapping is as follows:

e(conv (1)), r=s=0
feat, = e(feat;j), r=s#0 1)
1p([feat§*1],D[feut;j],Z/{[feat;;%]), others

where ¢(-) represents the feature extraction block, () represents the feature fusion block
composed of convolution operation and activation function, /(-) and D(-) represent
the up-sampling block and down-sampling block composed of convolution and bilinear
interpolation operations, respectively.

The overall network architecture is shown in Figure 1. The number of channels in
different intermediate nodes within the same stream remains unchanged, whereas the num-
ber of channels in feature maps from different streams doubles as the resolution decreases.
The connection feature maps of the intersecting stages of the same stream are input into the
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decoder part of the deep network by skipping the connection, as shown in Equation (2). In
ablation experiments, we report performance gains using our designed network.

Feats = concat(featl, ..., feat3),r € {s..3},s € {0..3} ()

where concat(-) denotes the concatenate operation, r represents the nodes of different stages
on the same tributary, s denotes the index of different tributary.

The decoder part of the depth network receives four different scales of feature maps
through skip connections. These feature maps are first input into the GSA module to
generate attention maps with different importance and then restored to different scales of
depth maps through 3 x 3 convolutional operations. During the training process, these
depth maps are combined with pose transformation matrices to reconstruct the target
image Iy.

Convolutional neural networks (CNNs) have achieved great success in computer
vision. However, the local context awareness of convolutional kernels makes it difficult
for CNNSs to effectively capture global contextual information in images. To address
this issue, many recent works [22,29,32] have incorporated attention mechanisms into
the network. Inspired by SENet [33], we use a Gaussian function that represents pre-
set negative correlation to directly map global attention to an attention map. The basic
structure of this module is shown in Figure 1. Given a feature map F € Rcypgxw as
input to this module, the GSA module first normalizes the channel vector through the
GAP operation, using avg(-) and norm(-) operations to stabilize the distribution of global
context. Then, a Gaussian function, as shown in Equation (3), is used to perform activation
on the normalized global context to obtain the attention map.

[N]

X

g =G(x) = ex

[N

®)

where g represents the activated values of attention, which can be multiplied by the original
feature map to obtain the attention enhanced feature map. c represents the standard devia-
tion of the Gaussian function G(x), controlling the diversity of the channel attention maps.
A larger standard deviation leads to less diversity in the activated values between channels.

3.2.2. Pose Network

Following Monodepth2 [18], we also use a Pose network to estimate the changes
in camera pose between consecutive frames. Given the target image Iy and the source
image Iy, t' € {-1,1}, the network predicts the relative pose Ty .y between the source
image Iy and the target image Iy, where the output of the network is a six-degree of
freedom (6-DoF) feature vector representing the rotation and translation vectors from the
source image to the target image. The output of the network is then fed into a depth
network that reconstructs the target image I,_, using ResNet-18 [30] as the pose encoder
and a decoder with upsampling operations and 3 x 3 convolutional layers, as shown
in Figure 1. To achieve optimal initial performance, the pose network is pretrained on
ImageNet dataset [34].

3.3. Loss Functions

Usually, self-supervised training for autonomous driving assumes photometric con-
sistency, meaning that objects in the field of view are static and have correct reflectance.
However, it cannot be directly applied to low-altitude remote sensing scenes. We introduce
several loss terms into the network framework to constrain the training of the network in
low-altitude remote sensing scenes. Using the predicted depth map D, the reconstructed
view Iy_,o, and the corresponding target frame I, we build a supervisory signal consisting
of three items. The total loss function is defined as Equation (4),

Liotal = Lcp + Lpm + L 4)



Remote Sens. 2023, 15, 3275

7 of 14

where Lip represents the gradient discrimination loss, Lpy represents the photometric
loss, and L represents the minimization of the photometric loss. We will discuss the
importance of different loss terms in ablation experiments.

3.3.1. Gradient Discrimination Loss (Lgp)

Due to the Edge Smoothness Loss function [18], i.e., Equation (5), designed for au-
tonomous driving scenarios using first-order gradient V!, it is not applicable to low-altitude
remote sensing scenes with large areas of low texture.

Les(D(p) 1) =g(Z T [VAD(p)le” ™) 6
p dexy

Therefore, we follow the previous works [15,35] and introduce second-order gradient
V2 discrimination to increase the differentiation of low-texture areas, improving the model’s
estimation performance in low-texture areas, such as roofs and ground. The calculation
method is shown in Equation (6).

Lep(D(p), 1(p)) Z;(Zdz (VLD (p) eIVl ()] 1
P dexy

Y Y [V2D(p)|e Vil

P dexy

(6)

3.3.2. Photometric Loss (Lpp)

The photometric loss function Lpy; is used to calculate the difference between I
and Iy_,(. Following [14,18,22,29], we also use the structural similarity (SSIM) [36] index
to evaluate the similarity between the reconstructed frame I;_,; and the target frame I.
By combining the SSIM index with the £ norm, the final photometric loss function is
defined as Equation (7), where ¢ = 0.85.

Lpmlo(p), Ir—o(p)) = 1= @) L1(lo(p), ly—o(p))+

22— SSIMU(p), T (p) 7
P

3.3.3. Minimization of the Photometric Loss (L)

To address occlusion issues, we also employed the minimum photometric loss and
automatic masking strategy introduced in Monodepth?2 [18]. The final loss function is
calculated as follows:

Le = Min(Lpm(lo(p), Iv—0(p)) < Lem(lo(p), v (p))) ®)

where I;_,( denotes the reprojected target image, ) represents the target image, I repre-
sents the source images from the previous and subsequent frames, and Lpy; represents the
Photometric Loss.

3.4. Inference

During the inference stage, we perform depth estimation on a single input image.
As the attitude transformation information is only used during training, we do not estimate
the rotation and translation vectors here.

In the encoder of our depth network, we use a multi-scale feature enhancement
network to extract low-altitude remote sensing feature information at different scales.
These feature maps are concatenated after exchanging information at certain nodes and
then input into the scene texture attention module of the decoder in our depth network
via skip connections. Under the guidance of Hermann et al. [21], we use the reference
depth information created by COLMAP software [37], which uses traditional Structure
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from Motion (SfM) techniques for multi-view reconstruction of scenes, to compare our
proposed method with different state-of-the-art depth estimation models. In the following
section, we will introduce the public dataset we used and the results of the qualitative and
quantitative evaluations conducted on it.

4. Results

In this section, we describe the dataset used and provide implementation details
of our proposed method. We then compare our method with current state-of-the-art
model architectures through qualitative and quantitative analysis, demonstrating superior
performance on the UAVid 2020 [31] benchmark test compared to previously published
methods. We validate that our proposed network is capable of outputting depth maps
with semantic richness and spatial accuracy. Our research holds important implications for
fields such as the UAV industry, virtual reality, and beyond.

4.1. Dateset

The UAVid 2020 [31] dataset is a widely used collection of drone videos for training and
evaluating computer vision and machine learning algorithms. The dataset includes a total
of 42 video sequences, each with a length of 45 s. The drone flies at a height of 50-100 m,
with a speed of 10 meters per second, capturing video frames at a rate of 20 frames pers,
at a 45-degree angle; some of the images are shown in Figure 2. The image resolution is
4096 x 2160 or 3840 x 2160, and the video sequences contain stable, moving, and non-
stationary camera views. The UAVid 2020 dataset also includes various common object
categories, such as vehicles, humans, buildings, and more. After conducting a detailed
study of the dataset, we extracted and adjusted the frames to 0.2 s per frame, using the
preceding and following five frames as supervisory signals during training. Through
this frame extraction method, we obtained 6666 training images, 539 testing images, and
209 validation images. During the evaluation process, we used the median ground truth
scaling of each image in the validation set to report the results.

Figure 2. UAVid 2020 dataset [31].

4.2. Implementation Details

Our model was trained and tested on a single NVIDIA RTX 3090 GPU using PyTorch
framework [38]. We used the Adam [39] optimizer with default beta values of 0.9 and
0.999 for training. The batch size was set to 8, and the input and output resolutions were
640 x 352. We employed stepLR optimization strategy, with an initial learning rate of
1 x 10~*, which decayed to 0.1 times the original rate (i.e., 1 x 10~°) after the 15th epoch.
Similar to the optimization function combination used in Monodepth2 [18], we used a
weighted combination of photometric loss, minimum reprojection loss, and edge-aware
smoothness to train the depth network. Specifically, we set the weight of the photometric
loss to 1 x 1073 and the SSIM [36] weight to 0.85. Additionally, we applied edge-aware
smoothness regularization to the depth map, with a weight of 1 x 1073.

Depth Network. For the depth network, we employed our proposed architecture,
which is a modified version of HRNet [26]. The encoder consists of multiple convolutional
layers and residual blocks, which divide the input image into horizontally aligned parallel
streams and fuse information at the intersection nodes of different streams, thereby com-
plementing global structural information and local detail information. Finally, the feature
maps of different nodes are concatenated and inputted to the decoder part of the depth
network through skip connections. We used pre-trained encoder weights on the ImageNet
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dataset [34] to initialize the model. We also incorporated a Global Scene Attention module
into the decoder to better capture the spatial information of the depth map.

Pose Network. Regarding the pose network, we adopted the structure proposed
in [18], which is based on ResNet-18 [30]. The pose network takes the current frame and
the previous frame as input and outputs the relative transformation pose 6-DOF between
them, where the first three represent the translation vector and the last three represent the
rotation vector. We attempted to use different pre-trained encoders, such as ResNet-50 [30]
and HRNet [26], but ultimately decided to use ResNet-18 as it performed the best.

4.3. Evaluation Metrics

To evaluate the performance of the model, we use a set of metrics that are also em-
ployed in [18,22,27,29]. These include absolute relative difference (Abs Rel), as shown
in Equation (9), which calculates the average difference between the reference and corre-
sponding pixel position of the predicted depth by the method. Squared relative difference
(Sq Rel) is provided in Equation (10) and represents the squared difference between the
reference and method predicted depth. Root mean squared error (RMSE) is provided in
Equation (11). Root mean squared logarithmic error (RMSE,,) uses a logarithmic function
to reduce the effect of large errors on distance, as shown in Equation (12), and accuracy, as
provided in Equation (13), which are also used as evaluation metrics.

Abs Rel = % lé 1D(xi) = D(xi)] (x%?xg )l ©)

Sq Rel = ilrli D (x”)D_(x?)/(xf)'z (10)

RMSE = J ;lé ID(x;) — D' (x;)]? (11)

RMSE;,q = J ;é llog D(x;) —log D' (x;)[* (12)
D(x;) D'(x;)

Accuracy = % of D(x;) s.t. Max( ) < 6, where § = 1.25,1.25%,1.25° (13)

D'(x;)" D(x;)

These equations calculate the accuracy of the predicted depth values at each pixel
position, where D(x;) represents the ground truth depth and D’ (x;) represents the predicted
depth using the selected method. T is the total number of valid pixels in the ground truth.
The accuracy is determined by measuring the percentage of pixels whose absolute difference
between predicted and ground truth depths is within a specific threshold 6. To comply
with the standard evaluation benchmarks of KITTI [4], we set the threshold values to 5%,
15%, and 25%.

4.4. Comparison Methods

We qualitatively and quantitatively evaluated the performance of our model and
compared it with current state-of-the-art monocular depth estimation methods, namely
Monodepth2 [18], Madhuanand et al. [22], and CADepth [29]. Monodepth2 introduced
posenet and depthnet, which estimate the depth information of monocular images through
self-supervised training. Madhuanand et al. focused on the field of low-altitude remote
sensing and used a dual encoder and a 3D decoder to estimate the depth information from
a drone’s perspective. CADepth proposed a channel-enhanced depth estimation model
that focuses on feature map channel information and achieved impressive results. The final
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results were obtained by comparing the depth maps generated by these models with the
reference depth provided by COLMAP [37].

4.5. Qualitative Results in UAVid 2020

We conducted a qualitative analysis of various models on the UAVid 2020 dataset [31],
and their results and reference depths are shown in Figure 3. The performance of different
models in depth estimation varies, and all models can accurately estimate the depth
information of objects in the scene. However, our method performs better when dealing
with complex scenes. For example, in urban street scenes, our model can accurately
estimate the depth information of objects such as buildings and roads. Our method also
outperforms others in handling small objects, such as fences and power poles. In the
last two rows of Figure 3, we have highlighted in red boxes the regions of elongated
objects on the road, which occupy only a few pixels (pixels <=10) in a given direction
and can easily lose information through convolution. The method of Monodepth2 [18] is
susceptible to factors such as changes in lighting and shadows, resulting in less accurate
estimates. Our experimental results demonstrate that our model performs exceptionally
well in low-altitude remote sensing depth estimation, especially in complex scenes and
depth estimation of small objects. In contrast, traditional methods based on convolutional
feature extraction perform better in processing simple scenes and single-object detection
but are inferior to our proposed model in handling complex scenes.

Godard et al. Yan etal. Madhuanand et al. Our model Reference Depth

RMSE:6.7727 RMSE:9.0441 RMSE:9.0493 RMSE:5.0169

T R

RGN
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RMSE:6.6345 RMSE:4.1817 RMSE:5.9978 RMSE:2.9472

RMSE:11.7246 RMSE:19.8026 RMS[ 19.8917 RMSE:11.5222
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i""i‘"i""i“

RMSE:1.9607 RMSE:1.6117 RMSE:1.2938

RMSE:8.2503 RMSE:11.9322 RMSE:9.8194 RMSE:7.6646

Figure 3. Visualization of qualitative comparison of depth estimation. First column represents the
input image, second column predicted depth maps of Monodepth2 [18], third column predicted
depth maps of CADepth [29], fourth column predicted depth maps of Madhuanand et al. [22], fifth
column predicted depth maps of our model, and last column referenced depths from COLMAP [37].
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4.6. Quantitative Results in UAVid 2020

We also conducted a quantitative analysis on the uavid 2020 dataset to compare the
performance of different models in depth estimation. We used the metrics mentioned
in Section 4.3 as evaluation metrics. The results of the quantitative analysis are shown
in Table 1.

Table 1. Quantitative results on the UAVid 2020 dataset. Without additional datasets or online
refinement. Best results are in bold. For Abs Rel, Sq Rel, RMSE, and RMSElog, lower is better, and,
for 6 < 1.25,6 < 1.252, and 6 < 1.25°, higher is better. The values represent the mean score over all
the images in the corresponding test dataset.

Method Dataset AbsRel SqRel RMSE RMSE,, <125 J§<125 §<125°
Godard et al. [18] UAVid 2020  0.1389  1.7943 45913  0.2130 0.8781 0.9537 0.9795
Yan et al. [29] UAVid 2020 01297 32008 4.4344  0.1964 0.9177 0.9620 0.9782
Madhuanand et al. [22] UAVid 2020  0.1383 32538 4.7721  0.2052 0.9054 0.9621 0.9792
Our model UAVid 2020  0.0955  1.3705 3.3753  0.1724 0.9341 0.9730 0.9856

From Table 1, it can be seen that our model has the best performance among all models
on the uavid 2020 dataset [31], with an average AbsRel and RMSE of 0.0955 and 3.3753,
respectively. Our model performs best in urban street and mountain scenes. In contrast,
other models’ depth estimation performance in complex scenes is not as good, which may
be because objects in complex scenes are usually smaller and denser, such as cars on the
road, making it difficult to accurately estimate their depth information. Additionally, our
model performs well in handling small objects, low-texture regions, and lighting changes,
such as the roofs of buildings and trees.

Opverall, our model performs exceptionally well on the uavid 2020 dataset, especially in
handling complex scenes and depth estimation of small objects. These results demonstrate
the high practicality and application value of our proposed method in practical applications.

4.7. Ablation Study

In addition, we conducted several ablation experiments to verify the performance
improvements resulting from our contribution. We used Monodepth2 [18] as a baseline.
Tables 2 and 3 show the results of the ablation experiments, including pretraining on
ImageNet, adding the GSA module, and adding the gradient discrimination loss function.
Table 2 shows the quantitative comparison of the effects of including different attention
mechanisms in the decoder part of the depth network. From the analytical results, we ob-
served that using a multi-scale feature enhancement network can improve the performance
of the model. The GSA module can pay more attention to small objects and increase their
importance in the decoder recovery stage compared to other attention mechanisms.

Table 2. Ablation experiments using different attention modules in the decoder part of the depth net-
work. N/A: without attention module. Best results are in bold, For Abs Rel, Sq Rel, RMSE, and
RMSE,og, lower is better, and, for § < 1.25, 6 < 1.25%, and 6 < 1.25%, higher is better. The values
represent the mean score over all the images in the corresponding test dataset.

Method Dataset AbsRel SqRel RMSE RMSE,, J6<125 <125 §<1.25
N/A UAVid 2020  0.1210  1.7066  4.4226  0.1993 0.9033 0.9626 0.9817
CAM [40] UAVid 2020  0.1487  3.3558 5.5283  0.2189 0.8918 0.9499 0.9722
SAM [40] UAVid 2020  0.1341 32246 4.4733  0.2078 0.9091 0.9677 0.9799
Coordinate [41]  UAVid 2020  0.1060  1.2173 3.5873  0.1832 0.9190 0.9671 0.9845

GSA UAVid 2020  0.0955 13705  3.3753 0.1724 0.9341 0.9730 0.9856
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Table 3. Quantitative results of different loss functions on the UAVid 2020 dataset. All methods
in this table were trained on the UAVid 2020 dataset [31]; the best results are in bold. We used
Monodepth?2 [18] as the baseline. For Abs Rel, Sq Rel, RMSE, and RMSElog, lower is better, and, for
§<1.25,6 <1.252, and 6 < 1.25°, higher is better. The values represent the mean score over all the
images in the corresponding test dataset.

Pre- Loss

Method . . AbsRel SqRel RMSE RMSE;,, J<125 §<125 ¢ <125
Train Function 8
Baseline X Lpm 01797  3.8392 6.6307  0.2540 0.8377 0.9292 0.9622
Baseline vV Lpm 01250 11581 3.7793  0.1987 0.8908 0.9605 0.9854
Ourmodel X Lpy 0.1543 32377 47649 02374 0.8577 0.9439 0.9725
Ourmodel v/ Lpy 01253 23697 39955  0.1949 0.9142 0.9658 0.9828
Ourmodel v Lpu+Lg 0.1203 21244 34125  0.1891 0.9212 0.9693 0.9831
Ourmodel v/ Lpy+Lc+Les 01081  1.8056 3.3994  0.1809 0.9302 0.9715 0.9854
Ourmodel v/ Lpy+Lc+Lcp 00955 13705 3.3753  0.1724 0.9341 0.9730 0.9856

We consider that the depth information distribution of salient objects in the scene is
related to the shape of the objects. Finally, we combined our multiple modules to achieve
the optimal state of the entire network architecture.

5. Discussion

This study proposes a novel approach for estimating depth information of low-altitude
remote sensing monocular videos in complex scenes based on a global and local mixed
multi-scale feature enhancement network, aimed at improving the accuracy of monocular
depth estimation in complex scenes. Our method calculates depth by using the pixel coor-
dinate relationship between frames. The input image extracts image information through
the encoder part of the depth network using multiple different scales of convolution.
The feature map size is not changed during the processing of each stream, and information
exchange occurs at the partially intersecting nodes of different streams. Supervisory sig-
nals are created using the reprojection method for training, without requiring additional
supervision information, making it easier to obtain and more accurate. In the decoder
part of the depth network, we propose using a Global Scene Attention module to enhance
the recovery of image information, avoiding the degradation of detail information during
decoding and better distinguishing foreground and background in low-altitude remote
sensing images. Finally, we use a combination of different loss functions to constrain the
training of the network architecture to support our proposed structure. We conducted com-
prehensive experiments on the UAVid 2020 dataset, comparing our method with several
state-of-the-art methods for monocular depth estimation designed for autonomous driving
scenarios and low-altitude remote sensing. The experimental results show that our method
can estimate more accurate scene texture details for low-altitude remote sensing images
and works well in complex environments.

In future work, we will further explore depth estimation methods for low-altitude
remote sensing videos in complex scenes, improve the accuracy of depth estimation for
dynamic objects, and further study the accuracy of target localization using monocular
depth estimation algorithms.
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